Tag Archives: Dr. Bodgit

Measure twice, cut once

Swear often ūüėČ

I’ll return to cursing shortly … bear with me.

The autumn solstice is long gone and we’re fast approaching the end of British Summer Time 1. For most northern hemisphere beekeepers this means that there may be five months of ‘not beekeeping’ before we start all over again.

Of course, there are things we have to do with the bees in the intervening period.

The hive entrances must be kept clear so they can get out on the inoffensively named ‘cleansing flights’ when needed. There will be a winter miticide treatment to apply … probably long before midwinter. It is also important to keep an eye on the weight of the hive – particularly as brood rearing starts in earnest in late January and February – to ensure the bees do not starve.

But those three things aren’t going to fill anything like five months, so there is bound to be some time ‘spare’ over the coming months.

The elasticity of time

Although the year contains twelve about equal length months, those of us who keep bees in temperate northern countries experience a strangely warped calendar.

This is what it feels like … the beekeepers year

Apparently the months only vary in length by ¬Ī3 days. May and December contain the same number of days, but May disappears in the blink of an eye, whereas December can drag on interminably.

Weirdly there appears to be an inverse relationship between the available daylight to work in, and the amount of time it feels as though you have available to actually get the various beekeeping tasks completed.

This surely defies the laws of physics?

All of which means that beekeepers often have little free time in the summer and ample free time in the winter.

Some wise beekeepers have a busman’s holiday and go to New Zealand to tour apiaries (and – more to the point – vineyards).

Others catch up with all of the non-beekeeping activities that apparently ‘normal’ people do … like the decorating, or building model railways, or flamenco dancing 2.

Getting creative

But if you still want to dabble with a bit of beekeeping – in the broadest sense of the word –¬† through the cold, dark days of December and January 3 there are all sorts of things you can do.¬†

Many years ago I wrote an irregular column for my then beekeeping association on do-it-yourself (DIY) for beekeepers.

It was irregular because my use of punctuation has always, been suspect, and because it didn’t appear each month.¬†

That column eventually morphed into this website 4.

In fact, some of the very earliest articles were almost lifted verbatim from the beekeeping monthly newsletter.

I wrote about DIY because it was something that:

  • brought me a lot of satisfaction
  • saved me a few quid
  • improved my beekeeping

Now, a decade or more later, I still use the winter months to do the majority of my beekeeping-related DIY 5.

It’s only in the winter that I have the time to think things through properly before rummaging through the wood offcuts box and actually building something.

Measure twice, cut once

Which brings me back to the start of this post.

The motto for beekeeping DIY could be something like:

Measure twice, cut once, swear often 6

However, having identified a problem, there’s almost as much enjoyment to be gained from thinking it through to a workable solution than there is from the actual woodwork.

But¬†Think lots, measure twice, cut once etc. doesn’t have quite the same flow.

And, as we’ll see below, it doesn’t have to be woodwork.

So I can happily fill a few hours on a dark November evening thinking about improvements to a hive stand that could cope with 1500 mm of rain a year and very uneven ground 7, or how to best construct the removable slides for a Morris board.

And by best here, I mean for a lot less than the £30 charged for the commercial ones 8.

Morris board … that’s ¬£8.25 please

Part of the thinking involves how to tackle the project with the limited range of tools I have. I don’t have the space or the skill 9 to own a bandsaw, or a thicknesser 10, or a router.

Almost everything I build uses a combination of Gorilla glue, Correx, hand tools, blood 11, wood offcuts and some really rich Anglo-Saxon phrases.

My DIY skills are legendary, and not in a good way, but the great thing is that the bees could not care less. 

Fat dummies

Most of the various things I build develop from ideas that occur during the ‘active’ beekeeping season.

If it’s needed urgently I’ll cobble something crudely together and use it there and then. However, it’s unlikely to have received much thought (or care in construction) and so I’m more than likely to ponder how it could be improved once I have a bit more time.

I learnt the basics of queen rearing from the late Terry Clare at a BBKA Annual Convention and couldn’t wait to have a go myself.

Fat dummies – mark 1

I used the Ben Harden queenright queen rearing approach. This needs an upper brood box with most of the space ‘dummied down’ to concentrate the bees on the grafted larvae. For this you need a couple of ‘fat dummies’ 12. I built my first fat dummies one afternoon using gaffer tape and Correx (see above) and later that April reared my first queens.

But that winter I had time to do a bit more research. Dave Cushman’s website described fat dummies with integral feeders.

Clever.

These would clearly be an improvement – unless there’s a strong nectar flow you often have to feed the colony – so I built some.¬†

Fat dummy with integral feeder

Fat dummy mark 2 … with integral feeder and insulation

Mine are still in use … and not just for queen rearing. They are packed with polystyrene insulation … an embellishment I thought up 13. I can use them to reduce ’empty’ space in a brood box occupied by an undersized colony. In fact, with two of them, I can overwinter a four-frame nuc over a strong colony to provide warmth from below.

Problem solving

As I said earlier, the problem solving is part of the fun. 

I use a lot of Correx. That’s the fluted polypropylene board that is used for political posters and For Sale signs.

Sourcing it is often¬†not a problem if you’re prepared to do some homework.

It’s lightweight, strong, available in a range of cheery colours … but most importantly it is used for political posters and For Sale signs.

So, it’s often free.

And that’s a word all beekeepers like ūüėČ

Wait for a general election and seek out a candidate who has suffered an ignominious and humiliating defeat. Ideally one in which they have both lost their deposit and and any remnants of support from the political party they were standing for … and ask politely.

And¬†For Sale signs are even more easily obtained. Always ask … and remember that it’s bad form to remove them if the house has yet to be sold.

But there’s a problem with Correx. You cannot glue it with any normal glues. It’s got some sort of surface coating that prevents glue from adhering properly.¬†

Believe me, I’ve tried.

There are special glues, but at special prices ūüôĀ

Roofs

I wanted to build some hive roofs from Correx but had to solve how to fold it ‘across’ the longitudinal flutes, and then how to stick it together in a way that would be weatherproof.

Pizza cutter

Pizza cutter … take care scoring the Correx

The folding bit was easy … it turns out that people who keep guinea pigs use this stuff to make the cages and runs for their cavies. And after an hour or two reading about someone else’s (weird) obsession I discovered that a pizza cutter was ideal for scoring Correx prior to folding it.

The glue I worked out for myself. I built a couple of dummy roofs and held the folded corners together with zip ties or regular gaffer tape, zip ties and regular gaffer tape, or some (claimed) waterproof tape.

Of these, the waterproof tape Рspecifically Unibond Extra Strong Power tape Рworked really well. 

Sticky stuff ...

Sticky stuff …

And remains the only one I’ve found to work.

You need to lightly sand the surface of the Correx and ideally degrease it with some solvent. I still have roofs built 8 years ago with the original tape holding them together. They cost me £1.50 each to build as I had to buy 14 the Correx as the only For Sale signs I had were too small.

Here’s one I made earlier

Most of the things I’ve made have been through one or two iterations of ‘improvement’ before I’ve ended up with something I’m satisfied with.

The Kewl floors I almost exclusively use these days were an improvement of the original design I built, but have also had a couple of additional modifications. 

My honey warming cabinet – one of the first things I ever built – was modified after a few years by the addition of a fan to better circulate the warmed air. This significantly improved it.

The things I’ve discussed above are all good examples of why it’s worth spending some time in the winter doing some creative thinking and DIY 15 :

  • commercial Morris boards are expensive and (I think) have entrances that are too large
  • I’m not aware of any commercially available fat dummies … please correct me if I’m wrong
  • no one sells hive roofs (or super carrying trays) for ¬£1.50
  • my floors are ideal for the beekeeping I do and significantly less expensive than anything similar available commercially
  • my honey warming cabinet is used to warm supers before extraction, to melt set honey and – because the temperature control and heat distribution is good enough – has even been used as a queen cell incubator

Electrickery

This winter I have three projects to entertain me.

The first project is the second iteration of my DIY portable queen cell incubator. The first of these was cobbled together earlier this year. Although it worked – more or less – it was far from satisfactory.

Mark 2 is currently being stress tested.

It is being tested.

I am getting stressed.

Queen cell incubator – mark 2 … a work in progress

I’ve managed to achieve really good temperature control. However, I’m currently struggling with uneven temperatures at different areas within the box. They barely fluctuate, but they’re not the same.

Great temperature control at a range of (different) temperatures

Grrrr.

I’m pretty sure this is solvable 16 and that it will be possible to build something better than is available commercially for about 10-15% of the price 17.

But, almost more important than that, it will be a problem I’ve solved 18 that suits me, my bees and my beekeeping … which will be very satisfying.

The second project is a set of hive scales. Lots of others have tackled this problem and there are some really clever and complicated solutions out there.

The plan is for mine to be the exact opposite.

Simple, and not very clever at all.

Testing is ongoing ūüėČ

Software, not hardware

And the final project is software, not hardware.

All my honey jars have unique batch numbers. These allow the individual apiary (and bucket) to be identified. The batch number is generated by some PHP or perl scripts and used to print a QR code onto a Dymo label affixed to the back of the jar.

QR code containing a batch number

But that monochrome pointillist pattern contains a hidden web address as well. The purchaser will be able to point a mobile phone at the code and get more information about the honey 19. 

Having sold honey ‘from the door’ for years I’m unsurprised when buyers want to know more about local bees and the available forage … and with these labels they can (and do).

I’ve written the scripts to handle label creation and logging/redirecting ‘views’. I now have to write the programs that create the customised web pages with the local information lifted from the backend database.

And, with only ~165 days until I next expect to open a hive, I think I’m going to have my work cut out to complete any of these projects.


 

DIY queen cell incubator

NOTE: This post is now redundant as I have designed, built and tested version 2 of my portable queen cell incubator. I’m leaving this post here for those who wanted to read some of the background information.


You can please some of the people all of the time, you can please all of the people some of the time, but you can‚Äôt please all of the people all of the time … so said John Lydgate (1370-1450).

And he wasn’t wrong.

This is something I’m particularly aware of writing a weekly post on beekeeping. Much like my talks to beekeeping associations, the ‘audience’ (in this case the readership) ranges from the outright beginner to those with way more experience than me.

An article, like the one last week, on transporting your first nuc home and transferring it to a new hive, is unlikely to be of much interest to an experienced beekeeper.

Conversely, a post on something esoteric – like Royal patrilines and hyperpolyandry – is probably going to be given a wide berth by someone who has recently started beekeeping 1.

There’s no way I can write something relevant, interesting and topical for the entire breadth of experience of the readers 2.¬†

Going by the popularity of certain posts it’s clear that many readers are relatively inexperienced beekeepers.

The post entitled Queen cells … don’t panic! contains little someone who has kept bees for five years doesn’t or shouldn’t already know 3. Nevertheless, it is one of the most popular pages over the last couple of years. It has already been read more times this year than all previous years 4.

I suspect the majority of these thousands of viewings are from new(ish) beekeepers.

If you’re in this group then I suggest you look away now ūüėČ 5

I’m going to discuss a pretty focused and specialised topic of relevance to perhaps a fraction of 10% of all beekeepers

The 10%

When I started beekeeping I was certain I would never be interested in queen rearing.

In fact I was so certain that, when repeatedly re-reading Ted Hooper’s book Bees and Honey, I’d skip the chapter on queen rearing all together.¬†

By ‘queen rearing’ I mean larval selection, grafting, cell raisers, cell finishers, mini-nucs, drone flooding¬†etc.¬†

Queen cells from grafted larvae … what a palaver!

What a palaver!

All I wanted was a few jars of honey.

Oh yes, and slightly better tempered bees.

And perhaps a nuc to overwinter ‘just in case’.

What about a queen or two ‘spare’ for those swarms I miss?

A year or two later I had the opportunity Рthrough the generosity of the late Terry Clare Рto learn the basics of queen rearing and grafting. 

A week later I had a go on my own.

Amazingly (though not if you consider the tuition) it worked ūüôā . I successfully reared queens from larvae I’d selected, transferred, produced as capped cells and eventually got mated.

It was probably the single most significant event in my experience as a beekeeper. I got my nuc to overwinter and I’ve gradually improved my bees through selecting from the best and requeening the worst. I know how to produce ‘spare’ queens, though need them less frequently as my swarm control has also improved ūüėȬ† 6

I don’t know what proportion of beekeepers ‘actively’ rear their own queens. I suspect it’s 10% or less.

But even that select group aren’t the target audience for this post.

The target audience are queen rearers who need to incubate queens or queen cells for protracted periods (hours to days) without constant access to mains electricity.

Let me explain

The peripatetic beekeeper

I live on the remote west coast of Scotland 7 but keep the majority of my bees in Fife. 

My apiaries in Fife are 30-40 minutes apart, and I drive past one on my way to my main apiary (in St Andrews). If I need a ‘spare’ queen in an out apiary (and have one in St Andrews) it adds over an hour to what is already a four hour beekeeping commute.

That’s an hour of my life I’ll never get back and something I’d really like to avoid 8.

On the west coast beekeepers and bees are very thin on the ground. I’ve just started queen rearing here and (again) have a 45 minute commute between apiaries 9. I’m working with another beekeeper and larvae are sourced from one and the cells are raised in another.

You can move frames of larvae about if you keep them warm and humid – a damp tea towel works well – at least if the times/distances are not too great.

But there’s an added complication … this area is¬†Varroa free and I don’t want to be moving potentially mite-infested frames into the area. Nor do I want to deplete any of the donor colonies of brood frames.

All I want to move are a few larvae … but they’re a lot more fragile and sensitive.

So … two slightly unusual situations.

It seemed to me that my life would be a lot easier if I had some sort of portable queen and queen cell incubator.

My trusty honey warming cabinet

More than most events in beekeeping, the timing of the various stages of queen rearing is very clearly defined. You graft day old larvae and use the cells 10 days later. This timing currently defines the dates of my trips … except that sometimes there are diary clashes.

If my apiary with the cell raising colony was a mile away I could just go later in the day. 

But it’s not … ūüôĀ

Before I started this (temporary) life as a travelling beekeeper I’d sometimes needed to incubate queen cells that were near to emergence. Once the cell is capped you can put it in an incubator, either until you use it as a capped cell, or until the virgin queen emerges. You then requeen a colony using the recently emerged virgin queen.

This was clearly another option to make the diary clashes less of an issue – raise the cells and then incubate them (outside the hive) until emergence, and then use the queens.

I’d already used my trusty honey warming cabinet to incubate queen cells. When I built this I used an Ecostat chicken egg incubator element rather than a 100 W incandescent bulb. The Ecostat heaters are thermostatically controlled and do a pretty good job of maintaining a stable temperature, anywhere between the high 20’s (¬įC) and about 55¬įC.

A day in the life of my honey warming cabinet (click for explanation of fluctuations)

There were two minor issues … the incubator needed a 240 V mains supply and was about the size of my car 10.

Honey warming cabinet. The Apiarist

Honey warming cabinet …

However, it’s perfect if you need to incubate 800 queen cells at once ūüėČ

What I needed was a smaller, more portable, ‘battery’ – or at least 12V – powered version … 11

Beekeepers have short arms and deep pockets

One obvious solutions was to use a commercially available hen egg incubator. Brinsea are one of the market leaders and I know several beekeepers who use them as queen cell incubators. 

Although they are usually mains powered, they actually have an integral transformer and run at 12V, so could be powered from a car cigarette lighter socket. Temperature and humidity are controlled. They start at about £80 and would need modifying to accommodate queen cells, or Nicot cages containing queens.

The beekeeping-specific commercial solution is the Carricell.

Carricell queen cell incubator

These are manufactured in New Zealand in three sizes – for 40, 70 or 144 queen cells. Swienty (and presumably others) sell the 70 cell variant 12 over here for ‚ā¨636 13.

Excluding VAT ūüôĀ

Beekeepers are notoriously commendably parsimonious. Since I have an alter ego named Dr. Bodgit, it seemed logical to try and build my own.

For a little less that ‚ā¨636 …

And ideally less than ¬£80 ūüėČ

But first I needed to know more about the influence of temperature on queen cell development.

Temperature and development

The usual temperature quoted for the broodnest is about 35¬įC. Numerous studies have shown that, although the temperature is never constant, it is always in the range 33-36¬įC 14.¬†

It is reasonably well known that temperature can influence the development time of honey bees. At lower temperatures, development takes a little bit longer.

More significantly, J√ľrgen Tautz and colleagues showed almost two decades ago that honey bee workers reared (as pupae) at low temperatures have behavioural deficiencies 15.

For example, workers reared at 32¬įC showed reduced waggle dance activity when compared to bees reared at 36¬įC. Not only were they less likely to dance to advertise a particular nectar source, but they would dance less enthusiastically, performing fewer dance circuits.

In tests of learning and memory – for example associating smells with syrup rewards – bees reared as pupae at 32¬įC were also impaired when compared to bees reared at 36¬įC.

Tautz also demonstrated that bees reared at the lower temperature were more likely to go¬†‘missing in action’. They disappeared at a faster rate from the hive than the bees reared at the higher temperature. This strongly suggests their compromised memory or learning also had a negative influence on their survival. For example, in predator evasion, flight duration or the ability to find the hive.

OK … so temperature is really rather important for worker development.

Perhaps very accurate thermostatic control will be needed?

But what about queens?

There are good reasons to think that queen development might not be quite as sensitive to lower temperatures.

Queen cells are relatively rarely found in the centre of the broodnest. Those that are are often considered to be ‘supersedure cells‘, though location alone is probably not definitive.

Where are queen cells more usually found?

At the periphery of the broodnest, decorating the lower edges of the frame and even protruding down into the space below the bottom of the comb.

Queen cells

Queen cells …

Logic suggests that these might well experience lower temperatures simply by being at or near the edge of the mass of bees in the cluster. 

Perhaps queen development is less temperature sensitive?

Fortunately, I don’t need to rely on (my usually deeply flawed) logic or informed guesses … the experiment has been done 16.

Chuda-Mickiewicz and Samborski incubated queen cells at 32¬įC and 34.5¬įC. Those incubated at the lower temperature took ~27 hours longer to emerge than those at 34.5¬įC (which emerged at 16 days and 1 hour after egg laying).

However, of the variables measured, this was the only significant difference observed between the two groups. Body weights at emergence were similar, as were the spermathecal volume and ovariole number.

In both temperature groups ~90% of (instrumentally) inseminated queens started laying eggs.

So perhaps development temperature is not so critical (for queens after all).

The cheque queen is in the post

Finally, I expected my bodged incubator would also be used to transport mated queens. There’s good evidence that these are very robust 17. After all, you can get them sent in the post 18.¬†

Again, the experiment has been done ūüôā

Survival of adult drones, queens and workers at 25¬įC, 38¬įC and 42¬įC

Jeff Pettis and colleagues investigated the influence of temperature on queen fertility 19 and concluded that incubation within the range 15-38¬įC are safe with a tolerance threshold of 11.5% loss of sperm viability 20.¬†

In addition, Pettis looked at the influence of high or low temperatures on adult viability (see graph above). Queens and workers survived for at least 6 hours at 25¬įC or 42¬įC. In contrast drones, particularly at high temperatures, ‘dropped like flies’ 21.

Stand back … inventor at work

Version 1 of the incubator was built and has been used successfully.

Queen cell incubator – exterior view (nothing to see here)

It consists of a polystyrene box housing a USB-powered vivarium heating mat. This claims to offer three heating levels – 20-25¬įC, 25-30¬įC and 30-35¬įC – though these are not when confined in a well-insulated box where it can reach higher temperatures. I’m not sure I believe the amperage/wattage information provided and don’t have the equipment to check it.

I run it from a 2.1A car USB socket, or a similar one that plugs into the mains.

The battery pack in the picture above runs the Raspberry Pi computer that is monitoring the temperature 22. It’s important to have accurate temperature monitoring and to do some trial runs to understand how quickly the box warms/cools. In due course all this wiring can either be omitted or built in … but it wouldn’t be a proper invention unless it looked cobbled together ūüėČ

Not a lot to see here either …

Inside the box is a lot of closed cell foam – some crudely butchered to accommodate Nicot queen cages – sitting on top of a large ‘freezer block’. This acts as a hot water bottle. There’s also a plastic tray holding some soggy kitchen towel to raise the humidity.

Define ‘success’

The box has been used for the following:

  • transfer grafted larvae from an out apiary to a cell raising colony an hour away. Success defined by getting the grafted larvae accepted by the cell raiser.
  • transport queen cells up to 7 hours by car 23. Success defined by requeening colonies with the cells.
  • transport and maintain virgin queens for 7-10 days. These emerged in the incubator and then accompanied me back and forth before being used. All are now in hives and out for mating.

While powered – either in the house or the car – the box is easy to maintain at an acceptable temperature for extended periods, though it takes some time to reach the operating temperature.

An afternoon collecting and distributing queen cells to an out apiary

Even when opening the lid as queen cells are added/removed the temperature fluctuates by no more than 2-3¬įC. The graph above was generated from temperature readings taking queen cells from one apiary to another.

I’ll describe maintaining queens for extended periods in an incubator (with no attendant bees) in a future post.

The future

This really is a bodged solution.

At the moment the temperature has to be changed manually to keep it within the 32-35¬įC range. This might only be every few hours, depending upon how frequently the box is opened.

The combination of the insulation and the ‘hot water bottle’ freezer block means it can be left unattended overnight.

However, it really needs to have automatic temperature control. This should be trivial to add but will require more time than I have at the moment¬†and for the box to be empty. It’s accompanying me on an exotic holiday to Glenrothes for the next three days 24 and will be in use for much of July as I start to make up nucs for overwintering.

So … as promised, an inelegant but working solution for a fraction of the 10% of beekeepers who rear queens.¬†

At a fraction of the price of a commercial one ūüôā


STOP PRESS – update 7th September ’21

I now have a working solution with proper thermostatic temperature control. It’s currently going through a final series of tests. I strongly suggest you don’t follow the botch-up design described above, but wait for another post on this subject sometime this winter. It’s possibly to build a queen cell incubator with fully automatic temperature control of ¬Ī0.5¬įC that will work at home or in a vehicle for about ¬£60.

STOP PRESS – update 26th November ’21

Full details of version 2 have now been published and this page is left here for historical reasons only …¬†

Let there be light

Our new bee shed provides a protective environment for hives, allowing inspections in most weather conditions if needed. The only exception is during extended cold periods when the colonies remain clustered. The shed is south facing and gets whatever sunlight is available from early/mid morning depending upon the season. This warms the shed nicely and, because of the seven 50 x 50cm windows along the side 1, provides light to work the colonies.

A typical sunny day ...

A typical sunny day …

But Рbelieve it or not Рthe East coast of Scotland is not always sunny. Although it is one of the sunniest places in Scotland, with an average of ~1500 hours of sunshine a year 2, it is not always bright when I need to inspect the colonies.

And if it is grey and overcast outside it can be really murky in the bee shed.

This was the only significant drawback of the original bee shed which – due to its orientation – got no direct sunlight through the windows from early/mid-afternoon. Consequently, late afternoon inspections on gloomy days could be a bit testing. There was enough light to find the queen and observe the general state of the colony, but finding eggs or distinguishing the age of larvae – something critical for our research – was very hit and miss. It was usually necessary to take frames to the open door to see things better.

Which, of course, was not ideal if it’s chucking it down or windy outside, the very conditions that justify using a bee shed in the first place.

LED lighting systems

Therefore, in addition to orientating the new bee shed to maximise light throughout the day, I’ve also installed a 12V LED lighting system. These are available in kit form or you can easily purchase the necessary components – battery, solar panel, charge controller, cable, lamps and a switch – individually 3.

For convenience I used a Geo 4 Solar Lighting Kit from the Solar Centre. It’s not the cheapest way to get started, but at least all the components should be compatible and there are some (rather perfunctory) instructions provided. There’s also a useful YouTube video linked from the suppliers website.

The kit includes a single 30W solar panel and six 40W-equivalent LED bulbs. The latter seemed unlikely to be bright enough to help see eggs and developing larvae so I’ve replaced them with 9W LEDs, equivalent to about 120W incandescent bulbs 4.

Battery

The Solar Centre also sell suitable batteries for solar power systems … but at daft prices. I therefore sourced one elsewhere, ending up with a 100Ah leisure battery 5. This is probably overkill for lighting the shed … my back-of-the-envelope calculations suggest this battery will run the six 9W LED lamps for over 20 hours from a full charge 6. However, there are additional things I want power for in the shed including some hive monitoring equipment, so the excess capacity will come in useful.

The battery is hidden away in the corner of the shed inside a battery box. This includes USB and 12V outlets, enabling additional things to be hooked up in due course.

Installation

This was pretty straightforward. It was simply a case of rigidly adhering to red = positive and black = negative cabling, connecting all the bulb holders together, wiring up the switch and the charge controller, hooking up the solar panel and screwing in the bulbs.

The solar panel was fitted to the shed roof. This caused a few problems. Firstly, the roof is at an angle of ~25¬į. This appeared to be less than optimal for a solar panel at the latitude (56¬į N) of the shed. The usual way to determine the panel angle is to¬†add¬†15¬į to the latitude in winter, or subtract¬†15¬į from the latitude in summer – the difference to take account of the angle of the sun in high summer or midwinter.

Since the lighting will be used mostly in summer – during inspections – I sketched a few possible bracket designs to angle the solar panel at about 40¬į. However, I ran out of time and enthusiasm, so ended up fitting the panel directly to the roof.

Solar panel installation ...

Solar panel installation …

I subsequently discovered an alternative way of calculating the optimal angle for a solar panel – multiply the latitude by 0.9 and subtract 23.5 i.e.¬†(56 * 0.9) – 23.5 = 26.9¬į, which isn’t significantly different from the angle of the roof in the first place¬† ūüėÄ

Switches

The lighting system has a standard on-off switch. However, I’d wanted to install a simple time switch which would automatically turn the lights off after a fixed period, for example one hour. This would avoid draining the battery should the system be left on¬†inadvertently.¬†The 12V timer I bought came with no comprehendible instructions and I’ve so far failed to get it to do what I want.

As an interim measure I’ve fitted a kitchen cupboard¬†“on when open” circuit breaker in series with the main switch. The lights only turn on when the shed door is open. When working in the shed the door is almost always left open with the smoker left on the step outside. If this isn’t done there’s a tendency to end up getting ‘kippered’ as the shed fills with smoke ūüėȬ†

Kitchen cupboard switch ...

Kitchen cupboard switch …

The wiring is spectacularly bad Рin true Dr. Bodgit style Рbut it works just fine. 

Bulb holders and reflectors

The bulb holders were fixed to the shed roof, more or less directly above the position of the hives. Due to the angle of the roof this places them above head height – so little chance of hitting them with your head – but it does mean they are rather dazzling.

Welcome ...

Welcome …

It’s no use fixing them down the centre of the roof as the light is then¬†behind you when conducting inspections, so negating most of the benefits of installing the lighting system in the first place.

Therefore, to avoid retinal burns (!) I’m investigating simple white Correx ‘reflectors’ nailed to the roof battens near the lamps. These should angle the light better into the hives.

Finally, to allow future changes to the lamp holder positions should they be needed, I allowed additional cable between them, all held in place using lots of cable clamps.

There should be bees in the shed by the time this is posted. However, we’ll need to wait a few weeks until it’s warm enough for routine inspections before we can be sure the lighting system is optimal.


Colophon

Let there be light is a Biblical phrase from the third verse of the Book of Genesis. Many academic or educational institutions use the phrase in Latin, Fiat lux, as a motto.

Inevitably the phrase is also used as the basis for a large number of quotes, including my particular favourite (from the actress and comedian Ellen DeGeneres) In the beginning there was nothing. God said, ‘Let there be light!’ And there was light. There was still nothing, but you could see it a whole lot better.

Even kewler floors

So-called kewl floors have underfloor entrances that are pretty-much¬†rodent proof (so you don’t need¬†mouseguards in winter) and are easy to seal when needed for transporting hives or administering vaporised oxalic acid. They are very easy and inexpensive to build.¬†The last batch I built were all fitted with a Correx landing board that protruded a centimetre or so. It turned out that the ‘design’ (a rather grand word for the bodged solution I came up with at the time) was not ideal¬†so I’m gradually replacing them with a modified version that corrects the worst of the faults of the original.

New Correx landing board ...

New Correx landing board …

The problem

  1. The protruding landing board inevitably got a bit bashed about when transporting colonies
  2. The gap underneath the landing board¬†disorientated bees who climbed up the hive stand or otherwise undershot. This was particularly noticeable when reversing colonies during vertical splits. I’d previously fitted a plastic ‘skirt’ to some hives to fix this (see pic below).
  3. The ‘edge’ of the Correx provided a narrow and slippery target for heavily-laded foragers returning to the colony. Many lost their grip and fell off into the grass before having a second or third attempt at entering the hive.

The solution

An L-shaped piece of Correx (of course), though this time not protruding, with a rough textured integral ‘skirt’ to block the gap¬†below the hive entrance works well. To make an acute bend in Correx you need to make¬†two parallel cuts through one skin and remove the intervening ‘rib’. This takes longer to write than to do. After stapling‚Ć the Correx in place I spray paint it and sprinkle sand onto the wet paint. You can use different colours to help orientate bees and minimise¬†drifting. Alternatively, use multi-coloured ‘repurposed’ estate agent signs and a clear spray varnish of some type.

Other improvements?

The final change I’d intended¬†to make to these floors was¬†to add a second entrance on the opposing¬†side. Some hive manipulations involve turning the colony 180¬į on the stand – these include vertical splits and using a Cloake board for queen rearing. Rather than manhandling the entire colony it would be much easier to seal off the front of the hive and open a hinged¬†entrance at¬†the rear (much like opening and closing the gates on a Snelgrove board). Unfortunately, this batch of floors were¬†over-engineered, with the upper upper rim¬†glued and screwed in place, so this modification will have to be introduced¬†when (or if) I¬†next build¬†floors.

New landing board in action …


† The original landing board was held in place with gimp pins. Inevitably these had rusted which made removing them a bit of a pain. When replacing them I used stainless steel staples (like these from Arrow) with the hope that this will make future removal of the landing board easier.

 

Dr. Bodgit goes beekeeping

Two frame nucs

Two frame nucs …

Dr. Bodgit is the name my wife gives my alter ego … the bloke¬†who spends the first few days each week nursing the cuts and gouges in his hands from a weekend spent butchering pieces of wood for beekeeping purposes. In a past life I was asked to talk about ‘DIY for beekeepers’¬†for¬†the Warwick and Leamington BKA … something relatively lightweight to follow¬†their AGM. As any BKA member knows, these are usually very tense events, with huge competition to get onto the executive committee … or not. That talk¬†lead to¬†an irregular Dr. Bodgit column in the otherwise excellent WLBK¬†Bee Talk newsletter which in turn prompted me to start this website … if you go back to some of the early posts they were often¬†about DIY for beekeepers. Now, a few years later, I’m dusting off the same talk for the Fife BKA at their 2016 AGM (10/3/16), updated¬†to include a further¬†5 years of tips and tricks and a large¬†amount of additional scar tissue.

Paynes poly nuc ...

Paynes poly nuc …

In the spectrum of beekeeping DIY – ranging from badly carving¬†up a block of polystyrene¬†for hive insulation to crafting beautiful cedar broods and supers from wood I’ve felled, matured, dried, cut and planed – I’m firmly positioned¬†at the (rank) amateur end. Nevertheless I reckon there are a large number of items that can be easily,¬†relatively inexpensively and usefully built – these both potentially improve your beekeeping (enjoyment at least) and give you something to do in the long, cold, dark winters.

Tools of the trade

Clearer boards

Clearer boards …

Over the years I’ve developed some fairly basic boundaries¬†to the types of DIY I attempt. I’m restricted on time, space and very restricted on ability. Furthermore, since I don’t really trust myself with power tools I don’t own too many (though see below). Therefore the vast majority of the things I attempt can be constructed – a rather grand word meaning ‘bodged together’, hence Dr. Bodgit – using the sorts of tools¬†most people already have available:

  • cutting tools – a good tenon saw, a Stanley knife and a breadknife
  • measuring tools – tape measure and set square
  • joining tools – hand drill, screwdriver and small hammer

The breadknife is really for working with polystyrene – either carving¬†insulation or butchering Paynes poly nucs to improve them. To these tools I’d add a list of ‘consumables’ that will need regular replacement:

  • pencil for marking stuff – you will inevitably lose it¬†… it’s behind you ear ūüėČ
  • screws – buy them in bulk from Screwfix in a couple of¬†convenient sizes
  • nails – almost exclusively the gimp pins for frame construction
  • sticky stuff – Evostick wood glue, Gorilla glue and¬†Unibond Power tape (for Correx)
  • Elastoplast (though Unibond Power tape and tissues work well) and antiseptic cream
  • tea – critical to keep hydrated properly … you might also need fruit cake

Tacwise nail gun

Tacwise nail gun …

The ‘joining tools’ is where I have gradually made concessions on power tools. A reasonable quality rechargeable electric drill/screwdriver is a huge timesaver and a nail/staple gun makes assembling everything from brood boxes to frames extremely easy (you’ll need to add nails/staples to the consumables list above). However, these power tools are¬†a luxury and not a necessity. I’m also having to consider a table saw as I now no longer have an excellent local timber merchant (or anything but the big chain, big price, rubbish) who stocks a wide variety of ‘bee space friendly’ planed softwood. It’s only the affection I have for my fingers that’s stopping me …

Don’t do this at home

Don't do this at home ...

Don’t do this at home …

There are a number of things I think that are simply not worth attempting … these are items that are either already inexpensive, that are difficult to make without a lot of¬†investment in tools or where it is difficult to make them at a quality good enough to justify the effort. In my view brood boxes and supers tick all three of these ‘exclusion’ rules … the cedar seconds are pretty inexpensive and readily available, they’re well made and go together easily and they should last pretty-much¬†forever. I’ve made plywood boxes previously and wouldn’t do it again … too heavy and nothing like as long-lasting.

I don’t attempt any metalwork – other than the base of my steam wax extractor – but have heard of people making queen excluders, smokers and building their own honey extractors … again, hugely rewarding I’m sure, but needs too much time, tools and expertise than I have.

The art of the possible

I think the best things to build are those that meet one or more of the following criteria:

  • items that cannot be purchased at all (there are lots of these)
  • items that can be purchased but that are poorly¬†designed and/or built (few of these)
  • items that can be purchased but only for silly money¬†(lots of these)

For me, considering hive components, it turns out that it’s the parts that are essentially horizontal in the hive that seem to most often meet these criteria. These include:

  • Kewl floors – these are floors with a so-called ‘Dartington-type’ underfloor entrance. I think they offer advantages for the bees in terms of reduced robbing and wasp problems, and for the beekeeper by obviating the need for mouseguards and making transporting hives and vaporising oxalic acid easier. You can buy these from one supplier but the price is ridiculous and the design is sub-optimal in my opinion (so I’m not including a link).
  • a variety of split or division boards¬†– these include conventional single entrance split boards, multi-entrance Snelgrove boards, slightly more complicated Horsley boards and clearer boards. I’d also include Cloake boards for queen rearing in this category. In all cases, these meet one or more of the qualifying criteria – some cannot be bought, those that can are not ideal and the prices are always simply daft. Thorne’s Snelgrove boards are about ¬£35 each and can probably be made (better) for about a fiver … that’s one of my jobs for this winter. Their Cloake board is the same price. It does come with a queen excluder (but you’ve got lots of those already) but the shallow eke and Correx removable slide can be built from scavenged materials for¬†almost nothing.¬†There’s a very recent thread on the SBAi about building so-called ‘flight boards‘ from thick Correx for ~¬£2.70 each – these are dual entrance, dual-use, split boards which can be used as crownboards or used to divide strong colonies for swarm control or making increase.
  • perspex, insulated crownboards – unavailable to my knowledge (all of those for sale are uninsulated), very useful and relatively easy and inexpensive to build.
  • inexpensive, totally weatherproof, lightweight roofs – these can be built from Correx for well under ¬£2, less than 25% of the price of the¬†metalwork alone from Beehive bits or about 10% of the price of the – disappointingly poor quality – Thorne’s sale quality¬†cedar roofs.

I only list Thorne’s above for convenience – their offerings are usually no worse or better (or differently priced) than any of the major beekeeping equipment suppliers. The second quality cedar broods and supers they sell at BeeTradex and the big annual shows are – with a little picking and choosing to avoid the terminally-warped (note that you’re well-advised to take care avoiding the terminally-warped at any of the annual beekeeping jamborees)¬†– perfectly usable. Their first quality cedar broods, of which I have a few, are lovely (and so they should be at ¬£42).

If you move away from hive components there are lots of additional opportunities for exploiting a little DIY skill and/or experiencing a little blood loss:

  • my¬†honey warming cabinet was first described on this site over two years ago and is consistently the most searched-for (and possibly even read) page. With a little careful planning you can build one that’s far better insulated than commercially available, with better thermostatic control and heat circulation, that will also treble up (is there such a term?)¬†as a super-heater to aid extraction and as a queen cell incubator. If you source the individual components carefully you can build one for 25-33% of the prices listed by big T or Maisemore’s.
  • honey bucket tippers are now available commercially – they can look beautiful but are eyewateringly expensive – but are a doddle to build for the price of a few scrap pieces of wood and two hinges.
  • my¬†hivebarrow has more than paid for itself¬†in saving¬†hours of backbreaking work … one of the most useful things I’ve built and, as I get more decrepit, getting more useful by the year.

So, there you have it, you’ve now no need to attend the Fife Beekeepers AGM in early March … I’ll attribute the tiny audience for my talk to the fact you’ve all read about it in advance, rather than it being of no interest to anyone.

Of course, the three or four who do turn up are going to have trouble avoiding being voted onto the committee ūüėČ

Finally, if you need any more convincing that beekeeping DIY makes sound financial sense, I present my final exhibit …

National hive dummy boards DIY

Dummy boards …

… these cost ¬£6-7 from the beekeeping suppliers. No wonder¬†they’re called dummy boards ūüėČ

And don’t forget …

Measure twice, cut once, swear often