Tag Archives: autumn

Fondant fancies

My colonies are all busy piling in the calories in preparation for winter.

Late season supers hiding fondant blocks

Late season supers hiding fondant blocks

As always, at this time of the year I only feed my colonies using bakers fondant. This is exactly the same stuff you get on the top of iced buns. It’s available plastic-wrapped and boxed in 12.5kg blocks from a variety of sources ranging from your friendly local baker to wholesale food suppliers.

I purchase it on a pallet with friends in my local beekeeping association. If you buy enough delivery is free and this year we’ve been paying about £10.50 per block (12.5kg) when purchasing about half a metric tonne.

It’s worth buying in bulk as it keeps well. Store it somewhere dry and cool. Don’t stack it more than 3-4 blocks high if it’s likely to get warm … we kept some in the bee shed for a year and the boxes at the bottom of the pile were horribly misshapen after a warm summer. Next year sugar prices might be significantly more and it will always come in.

300kg of fondant

300kg of fondant

Convenience foods

I’ve discussed the benefits of feeding fondant in 2014 and 2016. Many of the benefits can be grouped under the heading of convenience.

  1. It’s easy to transport, easy to store, keeps well and is ready to use.
  2. Takes minutes (or less) to add to a hive.
  3. Needs no specialised feeders (so there’s also nothing to be stored for the other 11 months of the year).

However, as important, I think there are significant beekeeping benefits from feeding fondant.

  1. Compatible with most/all autumn Varroa treatments – sublimation, Amitraz, Apiguard etc.
  2. No spillages … so less risk of encouraging robbing by wasps or bees.
  3. Taken down more slowly than syrup, so leaving space in the brood box for the all-important rearing of late-season brood for overwintering.

Feeding fondant

Full-sized colonies get an entire block of fondant in late summer. As described previously, simply slice the block in half using a breadknife (or spade), open it up like a book and place it face down on top of the frames.

Do not remove the plastic. Leave it in place to stop the fondant drying out. The bees access it from below and – in due course – leave an empty ‘husk’ of blue plastic that can be removed late in the year 1.

Adding the fondant block takes seconds and, with a very small amount of smoke, barely disturbs the colony.

Sticky stuff

The fondant block is heavy and sticky. If, for whatever reason, you want to access the hive whilst you’re feeding the colony do not place the fondant directly on top of the frames 2.

Abelo poly National crownboard ...

Abelo poly National crownboard …

You probably don’t need to conduct inspections this late in the season, but there may be reasons you need to go into the brood box. If this is the case make your life easier by putting the fondant face down on top of a framed wire queen excluder 3. You can then simply lift the entire block off, do what you need to do, and replace it very easily.

I use a lot of Abelo hives and they have a rather fussy crownboard. It turns out these are ideal for feeding fondant. Simply pop out a few of the ventilated disks and add the fondant on top. The crownboard is rigid and so can easily be lifted off if needed and the bees have no problems accessing the fondant.

Headspace

A fondant block is about 17x17x31 cm. Cut in half it’s therefore a little over 8cm thick. You need to provide space to accommodate this under the crownboard and roof.

The simplest solution is to use an empty super. Alternatively, the insulated crownboards I use are reversible and provide 5cm of headspace. I either use these with a simple eke, or – by judicious use of a wellington boot and my weight (!) – squash the fondant block until it’s 5cm thick.

Either way I try and keep the top of the hive insulated and warm (for example, using polystyrene supers and/or insulation over the crownboard) so that the bees continue to take the fondant down even if the temperature outside is dropping.

Feeding nucs

Although I own a few Miller-type feeders for nucs I generally feed fondant directly in the nuc brood box, taking advantage of the inbuilt feeder in the Everynucs I favour.

Fondant blocks for nucs

Fondant blocks for nucs

These have a limited capacity so I prepare blocks of fondant wrapped in clingfilm and add them as the bees finish the last block off.

Everynuc fondant topup

Everynuc fondant topup

As long as the feeding compartment is largely vacant you can easily prise up the plastic crownboard and slide a couple of blocks of unwrapped fondant into the feeder.

Relax

That’s it.

It’s all over.

With colonies treated for Varroa 4 and fed for winter, now is the time to take a holiday.

Serra de Tramuntana, Mallorca

Serra de Tramuntana, Mallorca

Which is what I’m now doing 😉


Colophon

If you came here looking for a recipe for fondant fancies and have had to wade through paragraphs of irrelevant beekeeping information then I recommend you try these by Mary Berry.

Mary Berry's fondant fancies

Mary Berry’s fondant fancies

They think it’s all over!

We’re gently but inexorably segueing into early autumn after an excellent beekeeping season. The rosebay willow herb is almost over, the farmers are busy taking in the harvest and colonies are – or should be – crowded with under-occupied workers.

Rosebay willow herb

Rosebay willow herb

Drones are being ejected, wasps are persistently looking for access and there’s a long winter – or at least non-beekeeping period – ahead.

There’s a poignancy now in being in the apiary conducting the last few inspections of the season. Only a few short weeks ago, during late May and early June, the apiary was a scene of frenetic productivity … or complete turmoil, depending upon your level of organisation or competence.

Now there’s little activity as there’s not much forage available.

Colonies are busy doing nothing.

The most important time of the season

But that doesn’t mean that there’s nothing to do.

Rather, I’d argue that late August and early September is probably the most important period during the beekeeping year.

However well or badly the season progressed, this is the time that colonies have to be prepared for the coming winter. With good preparation, colonies will come through the winter well. They’ll build up strongly in spring and be ready to exploit the early season nectar flows.

In Fife, this is about 8 months away 🙁

This explains the poignancy.

There are some colonies inspected last weekend that probably won’t get properly opened again until mid/late April 2019. Queens I saw for the first time in August won’t get marked or clipped until next spring 1.

Au revoir!

Spot the queen ...

Spot the queen …

To survive the winter and build up well in the spring the colony has few requirements. But they are important. A lack of attention now can result in the loss of the colony later.

To appreciate their needs it’s important to understand what the colony does during the winter.

Suspended animation

Honey bees don’t hibernate in winter. In cold weather (under ~7°C) they cluster tightly to conserve energy and protect the queen and any brood in the colony.

At higher temperatures the cluster breaks but they largely remain within the hive. After all, there’s little or no forage available, so they use their honey and pollen stores.

The fat-bodied overwintering bees that are reared in autumn have a very different physiology to the ephemeral summer workers. The latter have a life-expectancy of 5-6 weeks whereas overwintering bees can live for many months 2.

But they’re not immortal.

Throughout the winter there’s a slow and steady attrition of these workers. As they die off the clustered colony gradually reduces in volume, shrinking from the size of a medicine ball, to a football, to a grapefruit … you get the picture.

Some brood rearing does occur. The queen often stops laying after the summer nectar flows stop 3 and laying might be sporadic through the autumn, dependent upon weather and forage availability.

Late summer brood frame from a nuc ...

Late summer brood frame from a nuc …

However, by the turn of the year she starts laying again. At a much reduced level to her maximum rate, but laying nevertheless and, with sufficient workers in the colony and as forage become available, this rate will increase.

The amount of brood reared during the winter period (late autumn to early spring) isn’t enough to make up for the losses that occur through attrition. This explains why colonies are much smaller in the spring than the early autumn.

Strong, healthy, well-provisioned and weathertight

Knowing what’s happening in the colony during the winter makes the requirements that must be met understandable.

  • Strong colonies start the winter with ample bees. Assuming the same attrition rate, a larger colony will get through the winter stronger than a smaller one. There will be more workers available to ‘reach’ stores (I’ll deal with this in the next week or two) and keep the queen and brood warm. Hence there will be more foragers to exploit the early crocus, snowdrop and willow.
  • Healthy colonies will have a lower attrition rate. The overwintering workers will live longer. High levels of deformed wing virus (DWV) are known to shorten the life of winter bees. To minimise the levels of DWV you must reduce the levels of Varroa in the colony. Critically, you must protect the overwintering bees from Varroa exposure. Treat too late in the season and they will already be heavily infected …
  • Well-provisioned colonies have more than enough stores to survive the winter. The clustered colony will have to move relatively short distances to access the stores. As a beekeeper, you won’t have to constantly meddle with the colony, lifting the lid and crownboard to add additional stores in midwinter.
  • Weathertight colonies will be protected from draughts and damp 4.The hive must be weathertight and, preferably, not situated in a frost pocket or damp location 5.

Winter preparation

Once the honey supers are off all activities in the apiary are focused on ensuring that these four requirements for successful overwintering are achieved in a timely manner.

Clearing bees from wet supers ...

Clearing bees from wet supers …

Weak colonies are united with strong colonies. At this stage in the season – other than disease – the main reason a colony is likely to be weak is because the queen isn’t up to the job. If she’s not now, what chance has the colony got over the winter or early spring? 6

Varroa treatment is started as early as reasonably possible with the intention of protecting the overwintering bees from the ravages of DWV. This means now, not early October. Use an appropriate treatment and use it correctly. Apiguard, oxalic acid (Api-Bioxal), Apivar etc. … all have been discussed extensively here previously. All are equivalently effective if used correctly.

All colonies get at least one block (12.5kg) of bakers fondant, opened like a book and slapped (gently!) on the tops of the frames. An eke or an empty super provides the ‘headspace’ for the fondant block. All of the Varroa treatments listed above are compatible with this type of feeding simultaneously 7.

Hopefully, hives are already weathertight and secure. Other than strapping them to the hive stands to survive winter gales there’s little to do.

They think it’s all over!?

It is … almost 🙂


Colophon

They think it’s all over! is a quote by Kenneth Wolstenholme made in the closing stages of the 1966 World Cup final. Some fans had spilled onto the pitch just before Geoff Hurst scored the the last goal of the match (England beat West Germany 4-2 after extra time), which Wolstenholme announced with “It is now, it’s four!”. This was the only World Cup final England have reached, whereas Germany have won four.

As Gary Lineker says “Football is a simple game; 22 men chase a ball for 90 minutes and at the end, the Germans win.”

Robbery

Robber

Robber

Another apiculture-flavoured tale of daylight robbery, literally, to follow the post on hive and bee thefts last week.

However, this time it’s not dodgy bee-suited perps with badly inked prison tats offering cheap nucs down the Dog and Duck.

Like other offenders, the robbers this week wear striped apparel, but this time it’s dark brown and tan, or brown and yellow or black and yellow.

I am of course referring to honey bees and wasps (Vespa vulgaris and V. germanica), both of which can cause major problems at this time of year by robbing weak colonies.

Carb loading

The season here – other than for those who have taken colonies to the heather – is drawing to a close. The main nectar sources have more or less dried up in the last fortnight. There’s a bit of rosebay willow herb and bramble in the hedgerows and some himalayan balsam in the river valleys, but that’s about it.

Colonies are strong, or should be. With the dearth of nectar in the fields, the foragers turn their attention to other colonies as a potential source of carbohydrates. Colonies need large amounts of stores to get through the winter and evolution has selected a behavioural strategy – robbing of weaker colonies – to get as much carbohydrate from the easiest possible sources.

Like the nucs you carefully prepared for overwintering 🙁

At the same time, wasps are also wanting to pile in the carbs before winter 1. In the last fortnight the wasp numbers in my apiaries and equipment stores have increased significantly.

Jekyll and Hyde

Within a few days in late summer/early autumn the mood and attitude of colonies in the apiary changes completely.

During a strong nectar flow the bees single-mindedly pile in the stores. They alight, tail-heavy, on the landing board, enter the hive, unload and set out again. There’s a glut and they ignore almost anything other than bingeing on it. Inspections are easy. Most bees are out foraging and they are – or should be – well-tempered and forgiving. 

Laden foragers returning ...

Laden foragers returning …

But then the nectar flow, almost overnight, stops.

Colonies become markedly more defensive. They are packed with bees and they’re tetchy. There’s nothing to distract them, they resent the intrusion and they want to protect their hard-won stores 2.

At the same time, they quickly become more inquisitive, investigating any potential new source of sugar. If you shake the bees off a frame and leave it standing against the leg of the hive stand there will be dozens of foragers – many from nearby colonies – gorging themselves on the nectar.

If you spill unripened nectar from a frame they’re all over it, quickly forming a frenzied mass – probably from several different hives – scrabbling to ‘fill their boots’.

They also closely investigate anything that smells of nectar or honey. Stacks of equipment, empty supers, hive tools, the smoker bellows … anything.

Robbing

And it’s this behaviour that can quickly turn into robbing.

The foragers investigate a small, dark entrance that smells of honey … like a nuc in the corner of the apiary. They enter unchallenged or after a little argy-bargy 3, find the stores, stuff themselves, go back to their colony and then return mob-handed.

Before long, the nuc entrance had a writhing mass of bees trying to get in, any guards present are soon overwhelmed and, in just a few hours, it’s robbed out and probably doomed.

This is the most obvious – and rather distressing – form of robbing. Wasps can do almost exactly the same thing, with similarly devastating consequences.

Prevention is better than cure

Once started (and obvious), robbing is difficult to stop. About the only option is to seal the target hive and remove it to another apiary a good distance away.

Far better to prevent it happening in the first place.

The best way of preventing robbing is to maintain large, strong and healthy colonies. With ample bees there are ample guards and the colony will be able to defend itself from both bees and wasps. Strong colonies are much more likely to be the robbers than the robbed.

For smaller colonies in a full-sized hive, or nucleus colonies or – and these are the most difficult of all to defend – mini-nucs used for queen mating, it’s imperative to make the hive easy to defend and minimise attracting robbers to the apiary in the first place.

The underfloor entrances on kewl floors are much easier to defend than a standard entrance and small entrances are easier to defend than large ones. ‘Small’ might mean as little as one bee-width … i.e. only traversable by a single bee at a time.

Smaller is better ...

Smaller is better …

You can even combine the two; insert a 9mm thick piece of stripwood into the Kewl floor entrance to reduce the space to be defended to a centimetre or two. If – as happened tonight when returning wet supers to the hives – I don’t have a suitable piece of stripwood in the apiary I use a strip of gaffer tape to reduce the entrance 4.

Gaffer tape is also essential to maintain the integrity of the hive if some of the supers are a bit warped. Wasps can squeeze through smaller holes than bees and the quick application of a half metre along the junction between boxes can save the day 5.

The poly nucs I favour have a ridiculously large entrance which I reduce by 90% using foam blocks, dried grass, gaffer tape, wire mesh or Correx.

Correx, the beekeepers friend ...

Correx, the beekeepers friend …

Don’t tempt them

Finally, reduce the inducement robbers – whether bees or wasps – have to investigate everything in the apiary by not leaving open sources of nectar, not spilling honey or syrup, clearing up brace comb and ensuring any stored equipment is ‘bee proof’.

You don’t need to inspect as frequently at this time of the season. The queen will have reduced her laying rate and colonies are no longer expanding. With no nectar coming in they should have sufficient space in the brood nest. There’s little chance they will swarm.

If you don’t need to inspect, then don’t. The ability to judge this comes with experience.

If you do have to inspect (to find, mark and clip a late-season mated queen for example 6 do not leave the colony open for longer than necessary. Any supers that are temporarily removed should be secured so bees and wasps cannot access them.

Wet supers

If you’re returning wet supers after extraction, do it with the minimum disruption late in the evening. These supers absolutely reek of honey and attract robbers from far and wide. Keep the supers covered – top and bottom – gently lift the crownboard, give them a tiny puff of smoke, place the supers on top, replace the roof and leave them be.

Returning wet supers

Returning wet supers …

In my experience wet supers are the most likely thing to trigger a robbing frenzy. I usually reduce the entrance at the same time I put the wet supers back and try to add wet supers to all the colonies in the apiary on the same evening 7.

I generally don’t inspect colonies until the supers are cleaned out and ready for storage.


 

That’s all folks

That's all Folks

That’s all Folks

It’s late August and the end of my least successful beekeeping year ever. That sounds very negative, so perhaps it should be qualified. It’s the end of my least successful beekeeping year in terms of honey production.

However, in terms of the satisfaction I’ve got from my beekeeping, it’s been a pretty good year. Let’s examine these two things separately, dealing with the bad news first.

Tell ’em about the honey, mummy

My production colonies only generated about 25lb each of Spring honey. Some of this was clearly oil seed rape (OSR) as there were fields just about in range, but much of it was essentially mixed hedgerow and tree nectar, and none the worse for that. This was all extracted in late May or early June and is now stored, set, in buckets. Later in the year, once the temperature drops, I’ll prepare soft set honey for sale or distribution to friends and family.

25lb is firmly at the bottom end of the averages over the last few years though – in fairness – It’s only my second Fife Spring, so I don’t have much recently to compare it with. Colonies were doing well when I first inspected them, but in some cases that wasn’t until early May. The active beekeeping season is only 4-5 months long here (latitude 56.3° N).

June started well, with clear weather and high temperatures.

And then it started to rain. And continued for almost the entire month.

Lime can yield well in July

Lime can yield well in July …

None of my full-size colonies needed feeding, but most reduced their brood rearing. July nectar flows were poor. The lime yielded a small amount of very high quality honey, but for whatever reason – poor weather, colonies not strong enough, patchy flows – pretty-much nothing else. The summer honey was extracted in mid-August and is already disappearing fast.

I didn’t take any colonies to the heather as I was abroad for a chunk of July when I’d need to be preparing and shifting them to the moors. And, in all likelihood, they probably weren’t strong enough anyway.

And that was it … like last year, all over much sooner than expected.

There’s some balsam in central Fife along the River Eden that might give some late-season nectar and there’s ivy (but that is some way off flowering yet) but I usually let the bees keep anything they collect once the summer honey is extracted.

Flowering ivy

Flowering ivy

And the good news is

Beekeeping isn’t all about honey. There’s also tremendous satisfaction to be gained from working with the colonies, improving your stock and feeling that – although perhaps not in complete control – you’ve got a pretty good grasp of what’s happening and how things are going.

In this regard, 2017 was a success.

I know I lost one swarm (actually a cast from the queenless half of a split). I got a call to say that the apiary was thick with bees but they’d long gone by the time I extricated myself from meetings and got home. In itself this wasn’t a success. However, I learned my lesson and managed to hive a second cast that issued from the same colony a day or two later. I also had success with my bait hives.

With a couple of exceptions my vertical splits went well, with the resultant queens both laying well and heading well-behaved colonies. The couple that didn’t work developed into (drone) laying workers and were dealt with successfully by uniting.

In retrospect, considering the weather in early/mid-June I’m astounded any queens managed to get out and mate. By late July colonies headed by these newly mated queens were developing well, with frame after frame of brood exhibiting a pretty respectable laying pattern.

That'll do nicely

That’ll do nicely …

Throughout the season I had a pretty good idea what was happening in most of my colonies. There were no big surprises … “Oops, a virgin queen, where did she come from?”, or “Grrrr … no queen, no eggs and no swarm cells, I’m stumped”.

Colonies behaved in a thoroughly predictable manner. Strong ones were caught before they swarmed, split and were merged back to a double brood box. Nucs developed pretty well, though they needed close attention and some emergency feeding through June. No drama, no panic.

The end of the summer season, other than the truly woeful honey yield, has left me with a good number of nicely behaved and generally very strong colonies. As always there’s one exception, but I’ll unite that weakling late this week if things haven’t picked up.

All the gear, no some idea

Split board ...

Split board …

Gradually equipment standardisation is starting to pay dividends. I ran out of almost nothing (I certainly didn’t run out of supers 🙁 ) and managed to mix’n’match as needed to leave colonies secure, watertight and with the proper bee space when needed. Homemade split boards ended up being pressed into service as floors and it’s clear I’ll have to make some additional kewl floors this winter.

Bamboo-strengthened foundationless frames were a great success. Furthermore, I prepared a second batch mid-season and never got round to using them, so have plenty to start the season next year. Result! However, it’s sobering to realise that one of the reasons they weren’t used was that the nectar flow simply wasn’t strong enough to get them drawn properly.

Finally, whilst we’re on the subject of equipment, I’ve used about half a dozen Abelo poly hives this year in addition to the usual Swienty boxes with homemade floors and roofs. First impressions of the Abelo boxes are pretty positive and I’ll write something up later in the year on them.

Season’s end … or the start of the new season?

Late summer and autumn is an important time in the beekeeping year. Some even consider it the start of the next season, as success in the subsequent year is very dependent upon the preparation in the preceding autumn.

Feed'n'treat ...

Feed’n’treat …

All my colonies are scarfing down large quantities of fondant at the moment. They’ll all get another few kilograms as the autumn progresses. Unless there’s good reason to, it’s unlikely any colonies will be inspected again until Spring.

Varroa treatment is ongoing and the mite drop from most colonies is reassuringly low. I count the mites from each colony over a two week period. Over the first 5 days, some dropped just single figures …

All colonies are coordinately treated to maximise decimation of the mite population at a time when bees have a tendency to drift more and/or rob adjacent colonies – both being well-documented routes by which Varroa can be transmitted between hives. I’ve also helped a neighbouring beekeeper (with colonies within range of my own apiary) by loaning out my Sublimox so that, together, the mite population at a landscape-scale is reduced.

This is simple common sense. I don’t want my (nearly) mite-free colonies infested from neighbouring apiaries and I also don’t want the colonies I do have with appreciable mite levels (~50+ after 5 days treatment) to infest others.

2018

It’s far too soon for much serious thought about 2018. However, I already know there are going to be some major changes to my beekeeping. The local Council have just announced that they will shortly (Spring next year) build a new road literally through the middle of my bee shed and apiary … finding a new location and getting things rebuilt is my major focus at the moment.

And finally … it’s harvest time and raining again …

Mainly dry ...

Mainly dry …


† Tell ’em about the honey, mummy was a catchphrase from a TV advert for Sugar Puffs breakfast cereal. The advert aired from 1976 to ’85 and featured the Honey Monster and Henry McGee (from the Benny Hill show).

Henry is the one on the right.

They don’t make advertising like that any longer. For obvious reasons.

‡ Scarf is American slang meaning to ‘eat voraciously’. It’s probably a bastardisation of the word scoff. Scarf has other meanings and I strongly suggest you don’t look these up.

Colophon

That's All Folks

That’s All Folks

The phrase That’s all folks dates back to 1930 when it was used on the closing screen of a Warner Bros. Looney Tune cartoon.

Over the years many different characters used this line on both Looney Tunes and Merrie Melodies cartoons. Mel Blanc (1908-’89), the actor who voiced (stuttered) the most famous version … Th-th-th-that’s all folks! has the engraving That’s All Folks on his gravestone.

There’s a 1949 Merrie Melodies cartoon called The Bee-Deviled Bruin with the Three Bears, a colony of bees and a shortage of honey for breakfast. Typical slapstick ensues. It ends with That’s all folks”.

Those pesky mites

DWV symptoms

DWV symptoms

If you haven’t yet treated your colonies to reduce Varroa levels before the winter arrives it may well be too late. High Varroa levels are known to result in the transmission of virulent strains of deformed wing virus (DWV). These replicate to very high levels and reduce the lifespan of bees. If this happens to the ‘winter bees’ raised in late summer/early autumn there’s a significant chance that the colony will die during the winter.

Mite levels in most of my colonies have been very low this year. Partly due to thorough Varroa management in the 2015/16 winter (the only thing I can take credit for), partly due to the relative sparsity of beekeepers in Fife, partly due to the late Spring and consequent slow build-up of colonies and partly due to an extended mid-season brood break when requeening. Most colonies yielded only a small number of mites (<50) during and after a 3 x 5 day treatment regime (to be discussed in detail in a later post) by sublimation.

Infested arrivals

The low mite drop definitely wasn’t due to operator error or vaporiser malfunction. At the same time I treated a swarm that had moved into a bait hive in early June …

Out, damn'd mite ...

Out, damn’d mite …

This is ~20% of the Varroa tray. Have a guess at the number of mites in this view only. Click on the image to read the full legend which includes the mite count.

The image above was taken on the 18th of September, a day or two after starting the second round of 3 x 5 day treatments. The colony really was riddled. When a colony swarms 35% of the mites in the colony leave with the swarm (or, in this case, arrives with it). For this reason the swarm was treated for mites shortly after it arrived in June. It did have a reasonably high mite load but subsequently built up very quickly and didn’t experience the mid-season brood break my other colonies benefitted from.

The colony now has an acceptable mite drop (<1 per day). Similar colonies are still rearing brood – I’ve not checked this one, but they are bringing in some pollen from somewhere – so there’s a possibility the majority of the remaining mites are tucked away in sealed cells. I’ll keep a close eye on this colony through the next few weeks and will be treating again midwinter to further reduce the parasite burden.

Treat ’em right

If you are treating this late in the season make sure you use a miticide that is appropriate for the conditions. Apiguard (a thymol-containing treatment) is almost certainly unsuitable unless you’re living in southern France as it needs a temperature of 15°C to be effective. MAQS has a recommended temperature minimum of 10°C which may be achievable.

Hard chemicals such as Apivar and Apistan can be used at lower temperatures but there’s little point in treating with Apistan unless you’re certain all your mites are sensitive. They almost certainly are not as Apistan/Bayvarol resistance is very widespread in the UK mite population. Just because you get an increased mite drop in the presence of Apistan does not mean treatment has been effective. Perhaps all you’ve done is killed the sensitive mites in the population, leaving the remainder untroubled. This is what’s known as a bad idea … both for your bees next season and for your neighbours.


 I’m posting this now due to the large number of searches for, and visits to, pages on use of Apiguard or other Varroa treatments. These are currently running second to ‘fondant‘ in one form or another.

Last of the drones

At the inspections last weekend there was only one colony with obvious numbers of drones present. We’ve had nearly a full month with no appreciable nectar flow and the colonies have almost all ejected the drones. Here’s one of the few that were left:

Last of the drones

Last of the drones

 

Not long mate until you too are chucked out during the autumn purge. Watch your back!

This colony was a swarm that was attracted to a bait hive in early June. I don’t know whether bee genetics influences the time when drones are ejected from the hive, but it’s notable that almost all the other queens in the apiary are half sisters (unrelated to the queen from the swarm) and there wasn’t a drone to be seen in half a dozen hives. The other notable thing about this colony is that the Varroa levels remain stubbornly high despite three treatments by sublimation. I’m just starting a second series of treatments to get the numbers down to a more acceptable level.

No, not really …

Was it good for you? … No, not really.

I recently posted the weather forecast for the week beginning the 15th of August. I was pleased that the forecast was for near-perfect queen mating conditions – sunny, warm and calm – as I had three colonies which should have contained virgin queens that were due to emerge a few days before.

The forecast was very accurate. Conditions were wonderful. I wasn’t around as I had disappeared to Torridon and Skye for a few days. On checking the colonies at the end of the week after I returned, all three contained queens at least two of which were laying.

Beinn Eighe

Beinn Eighe …

All good then …

Well, not entirely, because mid-afternoon on the previous Wednesday I’d been sent an email from my friend at the apiary that read … “Incredible roaring noise attracted me outside the workshop – a swarm moving west through the garden and into the trees.  All caught on camera”. I didn’t receive the email as I was in the howling wilderness. Not that I could have done much about it.

A very quick inspection of the colony in question on my return confirmed that they’d swarmed. D’oh! I’d obviously missed at least one additional queen cell (mistake #1) on the last inspection and a large cast (the queen must have been a virgin as the original queen had been removed from the colony) had disappeared over the fence … mistake #2. There was a queen present but bee numbers were significantly down. I closed the colony up and disappeared on business for a further three weeks … mistake #3.

The weather had been great the entire week I was away in Torridon. I suspect the colony swarmed on the Monday or Tuesday, that it hung around in a nearby tree until the Wednesday while the scout bees found somewhere more desirable to relocate to, and that my friend had seen it leaving the neighbourhood that afternoon.

Lessons learned

  1. Don’t let the colony decide how many queens should emerge. Instead leave only one known charged (occupied) queen cell to emerge. I’d left an open queen cell on a marked frame, but had not returned a few days later to check that a) it was safely sealed and b) that they hadn’t raised anymore. They had 🙁  Consequently they swarmed when the first queen emerged, leaving one or more additional queens to emerge, fight it out and then head the now much-depleted colony (see 3, below).
  2. Leave a bait hive in or near the apiary, even if the main period of swarming has passed. I’ve been very successful with bait hives over the years, successfully attracting my own and others’ swarms. In this instance the main swarming period was well-passed and I’d packed away my bait hives until next Spring. Wrong. Had I left one near the apiary I may well have managed to attract the swarm and so a) not lost the bees, and b) not potentially inflicted the  bees on someone else. I view bait hives (and queen clipping) as part of being a good neighbour.
  3. Don’t leave a weakened colony late in season. On returning from my three week absence for work I discovered the colony had been robbed out and destroyed. Clearly it had been unable to defend itself from robber bees or wasps and had perished. I should have instead made an executive decision on discovering the colony had swarmed and probably sacrificed the virgin queen and united the weakened colony with a strong colony nearby. In retrospect this was an obvious thing to do … the colony was weak, wasps were beginning to be a problem, there was little or no nectar coming in and the weather was uncertain. As it turned out the weather was good enough for queen mating while I was away. However, the combination of a dearth of nectar, a weakened colony and strong neighbouring colonies meant that robbing was inevitable and – for the colony in question – catastrophic.
Skye ...

Skye …

Had I thought carefully about things in mid-August I may have been able to prevent the inevitable carnage when the colony was robbed out. In my defence I’ve only been around for a day or two over the last month, with extended periods out of the country on business. Nevertheless, this was clearly a case of a lesson (or three) learned the hard way …


† If you’ve not read Tom Seeley’s outstanding Honeybee democracy about how a swarm decides where to relocate to you should.

What was that?

Zoom. Having moved back to Scotland in mid-2015 this is my first full season keeping bees here. The season has been very short. Some colonies weren’t inspected until the end of April and now, about 14 weeks later, it’s turned distinctly autumnal over the last week or so in Fife. Nectar flows have pretty much dried up, nights are much cooler and thoughts turn to preparing colonies for the winter. However, good winter preparation with strong, disease-free colonies and low Varroa levels means that, should Spring 2017 be early, the bees will be ready to take advantage of it.

The immediate priorities are to:

  • protect colonies from robbing
  • ensure colonies have enough stores
  • remove any honey for extraction before the bees use it

Robbing b’stards

Entrance reducer ...

Entrance reducer …

The very best way to protect colonies from robbing – either by other bees or wasps – is to keep them as strong as possible. Wasps can be very troublesome in the autumn. Smaller colonies and nucs are particularly susceptible to attack and can be devastated in just a day or so if not properly looked after. A block of foam or wood can easily be pushed into place on a full hive, reducing the space the bees need to defend. The underfloor entrance of kewl floors (right) have the added advantage of a narrow L-shaped tunnel that can be defended on the landing board and/or immediately below the frames.

It’s not unusual to have 2-4 frame nucs in mid-August, either being prepared for overwintering or with ‘backup’ queens while re-queening other colonies. If the colonies aren’t really strong enough to defend themselves they need to be given all the help they can. Reducing the entrance space to a single bee width helps a lot, particularly when the entrance is as cavernous as the design on the Thorne’s Everynucs that I use.

Reduced entrance ...

Reduced entrance …

Stores

There’s still sufficient time for strong nucs to be built up to occupy a full hive, but they need to be given sufficient space for the queen to lay and will probably require feeding unless there’s a good late-season nectar flow. This nuc (below) started the first week of July on just a frame of emerging brood, a frame of stores and a new queen and is just about ready for a full hive. Although not obvious from the picture, the feeder on the left contains a large block of fondant which the bees are busy with. This was added as soon as the flow stopped and before the nuc got dangerously light. The bees might have survived but the queen would have slowed or stopped laying eggs and development of the colony would have been retarded. This nuc is fast running out of space and will be moved into a full hive in the next day or two.

5 frame nuc ...

5 frame nuc …

The  integral feeder on these Everynucs has space for about a kilo of fondant. Here’s another nuc started a fortnight ago with a ‘backup’ queen that was also light on stores. The parent colony were showing signs of replacing the queen so I removed her and a couple of frames of emerging brood and left them in the corner of the apiary with the entrance stuffed with grass (to deter the flying bees from returning to the original colony). After a couple of days I removed the dried grass and they’re now ticking along nicely. As they’re a smaller colony and contain predominantly young bees they lack a strong force of foragers and so need regular feeding. If the original colony successfully rears a new queen I’ll have a spare for overwintering. If not I’ll unite them back together at the end of the month.

Nuc with fondant ...

Nuc with fondant …

This is the same nuc as shown in the top image with the reduced width entrance. One of the advantages of feeding fondant is there’s no chance of slopping it about and leaving spills to attract wasps to the apiary.

The image above also shows a ‘crossbar’ I add to the Everynuc feeders; this prevents the frames sliding backwards when the nucs are in transit between apiaries. The integral feeder is useful, but it means there’s no ‘stop’ against which the end of the frame topbar can rest. There is a stop fitted across the bottom of the face of the feeder (shown in a previous post) but my experience is that the inevitable jolting of a car journey means the frames lift above this and then can slide about too much with the risk of crushing bees.

Supers off

I’m resigned to it being a poor summer for honey this season – a combination of a late spring and consequent slow colony development, variable weather during the summer and an extended queenless period for many colonies due (again) to lousy weather for queen mating. Clearers are now on the majority of colonies with filled supers. I’ll retrieve all the filled frames for extraction and make up new supers with the leftovers (incompletely filled or too high water content). The latter will go back onto strong colonies, either in the hope of a late season top-up from the himalayan balsam or for winter stores.

Clearers on ...

Clearers on …


The opening video clip was from the second series of Fawlty Towers first shown in 1979. Immediately before it Basil and Sybil are discussing their early married life …

Basil Fawlty … “Seriously, Sybil, do you remember, when we were first manacled together, we used to laugh quite a lot?”

Sybil Fawlty … “Yes, but not at the same time, Basil.”

Just retrieving the clip from YouTube means I’ll now be spending half the evening chuckling over other bits of this classic series.

Basil Fawlty … “Well… may I ask what you were expecting to see out of a Torquay hotel bedroom window? Sydney Opera House, perhaps? The Hanging Gardens of Babylon? Herds of wildebeeste sweeping majestically…”

Beekeepers’ holidays

It can be tricky balancing the annual cycle of beekeeping activities with maintaining family responsibilities and domestic bliss. At least, I’m told I find it tricky 😉  Holidays, in particular, are problematic. I’m talking here about beekeepers’ holidays not beekeeping holidays, which are an entirely different thing. Many of the standard “family holiday” periods overlap with key events in the beekeeping calendar … and because the latter is influenced by the weather, it’s difficult to predict a few days ahead, let alone the 6-9 months that appear to be required to arrange a fortnight’s yacht charter in the Bahamas§.

Mallorcan market honey and (sort of) observation hive

Mallorcan market honey and (sort of) observation hive

With good weather, colony build-up is going to be full-on in April, and in a really good year you can be starting queen rearing at Easter if it is late in the month. May is when the swarming season starts … and ends in June, just in time for the “June gap” to start which (in a bad year) might require colonies to be fed. The summer months of July and August are busy with the main flow, preparing colonies for the heather or harvesting (and possibly more queen rearing). September means Varroa treatments should be applied and colonies should be fed syrup or fondant for the winter. And then midwinter is interrupted by oxalic acid treatment (or Api-Bioxal if you’re the type of beekeeper who can afford Bahamian cruises), checking stores etc. And almost all of the timings above can be plus or minus at least a fortnight to take account of the vagaries of the weather.

February and November might be provisionally free … which creates another weather-related problem. Firstly – if honey sales have gone well during the year (and they’ll need to have been good as the 90m Athena is an eye-watering $350,000/week) – you’ll not want to be going island-hopping in the Bahamas in November as it’s still the hurricane season. Secondly, if your knees are as bad as many beekeepers’ backs, skiing in February might be a non-starter even if snow is available.

Less is more …

… likely to avoid you losing a swarm. The duration of the family holiday is also an issue. Inspections really need to be conducted at 7 day intervals during the main part of the season – say late-April to late-July. A fortnight away can mean missing the development of queen cells which are capped on the ninth day, at which point the prime swarm with your queen and foraging workforce disappear over the apiary fence. Not only do you return to a rather emptier hive, but your chance of a good honey crop has just been significantly reduced. You can increase the inspection interval to 10 days if you clip your queens, but that’s still four days short of the fortnight.

Queen rearing, from colony preparation, through grafting, cell raising and getting the virgin queens mated, takes about a month and – although not hugely time-consuming – is very-much time-critical. Getting to your cell raiser a day late might mean you have a box with one virgin running about and a pile of virgin queen corpses.

Apiary in Andalucia

Apiary in Andalucia

Nevertheless, with a little preparation, an appreciation of colony development and your fingers firmly crossed it is possible to get away during the beekeeping season without too many problems.

Holiday solutions

It seems to me that there are three obvious solutions …

  1. Go between late autumn and early spring, to the southern hemisphere if you’re after some warm sunshine. Or to Aspen or Whistler for the skiing if your knees are up to it.
  2. Get a friend to look after your colonies and go whenever you want. Depending how well behaved your colonies are, or the state you find them in on your return, this might only work once per friend 😉
  3. Accept that some beekeeping activities will be interrupted, prepare well and go for a week.

My knees are a bit dodgy and I get more than enough long-haul with work commitments so option 1 doesn’t work for me. I’ve avoided option 2 as I either have too many colonies to think it’s reasonable to foist upon a beekeeping friend, or they’re so badly behaved I’m too embarrassed to ask. So option 3 is the only choice … which is why I didn’t post anything last week as I was enjoying the walking in the Serra de Tramuntana in Mallorca.

Benjamin Franklin was right

Bait hives ...

Bait hives …

By failing to prepare you are preparing to fail. Sneaking off for a week just as swarming period was kicking off, with the best weather of the season predicted to arrive and the OSR in full flower, might have been asking for trouble. However, a little time spent on preparation helped avert disaster. Bait hives were put out near the apiaries. Remaining overwintered nucs were unceremoniously dumped into a full hive. Any colonies looking even vaguely crowded were given lots of additional space and almost all were on double broods by the time I left. Every full colony was given one additional empty super. Where necessary, one or two frames stuffed with stores were removed and replaced with foundation or drawn comb. Finally, all colonies were checked for queen cells and other obvious signs of swarm preparation the day before I left.

Nine days later I returned … none of the bait hives had been occupied, none of the colonies had swarmed, almost all of the colonies were doing precisely what they should have been doing which was building up strongly and filling the supers. Two in the bee shed were doing particularly well, having almost filled several supers. Pretty much everything was under control with the exception of one queenless colony that, the day before my departure, had been given a frame of eggs and young larvae but had failed to make any decent queen cells.

During my absence the weather in Fife was excellent … in contrast, I walked into this lot in the Tramuntana …

Thunderstorm overlooking the Bay of Pollenca

Thunderstorm overlooking the Bay of Pollenca, Mallorca …

Despite not going on a beekeeping holiday, it’s still possible to see – and sample – some of the local beekeeping activities, as shown in the photos at the top of the page from Mallorca and Andalucia taken in previous trips.


§ I wish

 Just in case you’re thinking of buying bees from me please note that this is a rather poor joke 😉

As an aside … I’ve never seen an area with more hornets that this region of Southern Spain

Time to BEEHAVE

BEEHAVE ...

BEEHAVE …

I’ve been dabbling with BEEHAVE, a computer simulation of a honeybee colony. It’s not beekeeping, but it’s about as close as you can get in the middle of winter. BEEHAVE was developed by Matthias Becher in the University of Exeter and the paper that describes the model is published and Open Access [PDF]. The model includes a wealth of user-modifiable variables such as forage availability, climate, beekeeping activities and pathogens, and outputs information on colony size, speed of development, age structure, honey stores etc. The BEEHAVE simulation is implemented in the open source language NetLogo and is freely available. The parameters that influence colony development – egg laying rate, drone/worker ratios, forage (nectar and pollen) availability, mite replication rate etc. are all based on measured and published data (or logically extrapolated from this if they don’t exist) so that the in silico performance is a fair reflection of what might be expected in the field.

If you can, do … if you can’t, simulate it 🙂

I’m interested in the rational and effective use of miticides to control Varroa-mediated transmission of DWV (and other viruses) in the hive. Using BEEHAVE and a standardised set of conditions allows predictions to be made of how effective a particular Varroa control might be. For example, here’s a simple question we can try and answer:

How important is a midwinter mite treatment if you’ve treated earlier in the year?

Using BEEHAVE set to all the default conditions and ‘priming’ the colony with just 20 mites on the 1st of January it’s possible to see what happens if no treatments are applied over one or more years. It’s then possible to repeat the predictions with the inclusion of a Varroa treatment. For the purpose of this brief introduction to BEEHAVE I’ve used a miticide which is applied and active for a total of 28 days and which kills 95% of phoretic mites. This might broadly reflect Apiguard treatment (2 x 14 days) or vaporised oxalic acid (OA; 3 treatments at 5 day intervals, but documented to kill mites for up to one month). I’ve additionally looked at the application of a single treatment with oxalic acid in midwinter, again killing 95% of phoretic mites, the sort of effect that OA trickling might achieve if there’s no brood present.

No treatment … they’re doomed

No treatment

No treatment

BEEHAVE modelling is based on a series of underlying probabilities (e.g. likelihood of a developing pupa to become mite associated, likelihood of that being a drone or worker pupa) so doesn’t produce the same results every time it is run¹. For example, the graph above shows adult bee numbers (left axis, blue lines) in an untreated colony for three simulations of up to five years each (horizontal axis), together with the associated mite number (right axis, red lines). Mite number build up strongly as new brood is reared each spring, with mite numbers peaking at ~24,000 in the fourth summer. In the third and fourth winters mite number per bee range from 2-4. The default conditions of 20 mites, coupled with a minimum viable colony size of 4000 bees, results in one colony succumbing in the fourth winter and the two remaining dying in the fifth winter (bee numbers drop to zero). Real studies – with untreated hives in the field – have shown similar outcomes (Martin, 1998 [PDF]) though colonies tend to die between winters 2 and 3, presumably because the input mite populations are higher². In all subsequent graphs the data plotted is the average of three simulations.

One treatment … better than nothing

It’s worth remembering at this point that the advice from the National Bee Unit is that mite numbers in the colony should be maintained below 1000 (Managing Varroa [PDF]). To try and achieve this we need to investigate the influence of applying miticides in the simulation – in mid-June (left graph), mid-September (middle) or late December (right). I appreciate mid-June is very early in the season, but it emphasises an important point.

That’s a bit better 🙂 These plots show the averages of adult bee and mite numbers (using the format shown above, blue for bees, red for mites). None of the in silico colonies expired during the simulation though the mite numbers are dangerously high irrespective of the treatment during the mid/late summer months. Note that range of the scale on the right hand (mite numbers) axis differs in each graph. Treatment in mid-June (left) delays the summer exponential rise in mite numbers and, in terms of overall impact on mite numbers (and consequent adult bee losses) is measurably better than only treating in midwinter (right). Of the conditions tested, mid-September (centre) is clearly the best … Varroa levels are reduced at the same time as the colony starts to contract, leaving the remaining mites less opportunity to reproduce. Maximum colony size remains about the same year on year and Varroa numbers never reach more than one third of those seen in either mid-summer or midwinter treatments. However, not everything is rosy … Varroa levels are dangerously high from the third summer on, and levels are increasing each winter. Remember that these simulations were started with just 20 mites in the colony².

Do your colonies have only ~20 mites in them this winter?

Two treatments … a double whammy

Two optimal treatments

Two optimal treatments

It’s only when you combine early autumn and midwinter treatments that mite numbers are really well controlled. Under the highly optimised conditions – both treatments were set to be 95% effective against phoretic mites – Varroa numbers remain below the NBU recommended maximum of 1000 for the duration of the simulation. Clearly the combination of the mid-September slaughter of phoretic mites, coupled with a midwinter mopping up – when there’s little or no brood present – provides really tight control of Varroa levels. However, the importance of this is perhaps even more apparent when you consider the consequences of a sub-optimal mid-September treatment.

The graph on the left shows the consequences of using a miticide that achieves only 85% efficacy … perhaps reflecting Apiguard usage when the ambient temperature is too low for the thymol to be spread throughout the colony. Under these conditions mite numbers rapidly get out of control. Compare that with the graph on the right which includes an additional midwinter treatment where mite numbers are far better controlled … though only to about the same level as is seen with a 95% knockdown of mites in mid-September (centre graph in the ‘one treatment only’ section, above).

And the answer is …

Occupied bait hive

Occupied bait hive …

Although the majority of miticides are broadly similar in their maximum published efficacy, I suspect that they are often used in a way or under conditions that do not routinely achieve these maxima. For example, the 30 year average September temperature in England is just below 13°C, much lower than the temperatures in which Apiguard efficacy reached the reported maximum of 99%, and lower than the Vita-recommended minimum temperature (15°C). Therefore, the answer to the original question (which was How important is a midwinter treatment if you’ve treated earlier in the year?) is … if there’s any chance the late summer/early autumn treatment was sub-optimal then a midwinter treatment is very important to prevent Varroa levels building up in the colony, resulting in the spread of virulent strains of DWV and other viruses. The other broad conclusion is that miticides are much more effective – in terms of impact against the total mite population – when brood levels are low or absent. That’s why brood breaks coupled with miticide treatments e.g. applying vaporised oxalic acid to a recently hived swarm or one that has moved in to a bait hive, are a very powerful combination to reduce the impact of mites, and the viruses they transmit, on the colony.

There are additional considerations which influence the choice and timing of miticide treatments. In a future post I’ll address the timing of the autumn treatment and the critical development of the overwintering bees that get the queen and the colony through to the following Spring.


¹BEEHAVE provides the ability to model colony development based upon measured and measurable parameters within a honeybee colony. Of course, in the real world a host of factors influence our bees – climate, forage availability, bad beekeeping, good beekeeping, integrated pest management, swarming, queen longevity etc. These are all variable within BEEHAVE but have been left unaltered from the defaults for the purpose of this post in which only the timing and efficacy of miticide treatment was altered. All the data for this post were generated using the rather verbosely numbered BEEHAVE_BeeMapp2015 version.

²Mite levels were deliberately started at a very low level to emphasise how quickly they build up if not controlled. Running the simulations with a higher mite input simply shifts all the graphs to the right e.g. increasing input mites to 200 (not an unreasonable number for many midwinter colonies) with no treatment, results in the virtual colony dying in early December of the third year, with mite levels having reached ~5300 in the first summer and ~19000 in the second.

This is the second in a series of related posts about Varroa control. The first was on drifting in honeybees. I’ve created a separate page that lists these and other posts on the how, why and when of Varroa treatment.