It makes you go blind

Synopsis: There is a sexual arms race between the queen and the drones she mates with. The queen needs to mate with multiple drones to maximise colony fitness. Conversely, it’s in the interest of individual drones to reduce the number of additional partners who mate with the queen. Recent studies have demonstrated that drones reduce repeat mating flights by impairing the eyesight of the queen. Potential implications of this for practical beekeeping are discussed.

Introduction

Honey bee queens are described as polyandrous 1 because they copulate with multiple drones during one or more mating flights taken shortly after emergence.

These multiple matings are a risky business 2.

It takes longer to mate with multiple drones than it does to mate with one, but this time is minimised by reducing the number of mating flights. Rather than leaving the hive, mating once, returning and then repeating the process, the queen flies some distance to a drone congregation area and copulates with multiple drone before returning to the hive.

Shallow depth of field

One of many …

I’ve discussed the location and locating drone congregation areas previously and the distances the queens and drones respectively fly to reach these (which are different to avoid inbreeding).

Between the queen returning from the mating flight and the onset of egg laying there is a delay of a few days. During this period the queen is storing the sperm from the drones in her spermatheca. These are the sperm storage organs within which sperm stays active for years … a necessity as, after the onset of laying, the queen will not go on any more mating flights.

Perhaps surprisingly, only about 3-5% of the sperm transferred from each drone is stored by the queen.

I hope that makes you wonder why she bothers mating with so many drones … it should.

Polyandry and hyperpolyandry

Just before I explain why she only stores 3-5% of the sperm from each of several drones, rather than storing it all from one twentieth the number (and thereby reducing the risks of longer mating flights) of drones, I need to explain the poly bit of polyandry.

How many drones does the queen mate with?

The usual figures quoted are in the high teens, with a range extending from single digits into the low forties. These numbers are determined using a variety of different techniques, at least some of which are likely to underestimate the actual number of drones.

Marked queen surrounded by a retinue of workers.

Here’s one I made earlier …

Think of it like this, if you have a large population of something – like beekeepers – how many would you have to ‘sample’ to find one called ’David’.

Not many, it’s a common name.

But what about ’Atlas’ or ’Zebedee’?

You’d have to sample a lot more apiarists to find any with these rarer names, though I bet they’re out there somewhere. You might even have to use a different way to screen the population.

And it’s the same when determining the numbers of drones that the queen mates with.

Search and ye shall find – detecting rare patrilines

When you use a method that specifically looks for rare patrilines – essentially genetically distinct offspring fathered by different drones – you can find them. This suggests that the queen probably mates with more than the 15-19 drones usually quoted, and that hyperpolyandry is perhaps a better term to describe the mating behaviour of queen honey bees.

There’s evidence that these very rare patrilines (so-called ‘Royal patrilines’) are preferentially selected when rearing queens under the emergency response.

Colony fitness

So now we’ve defined what the poly in polyandry means … but we still don’t know why the queen risks all those aerial shenanigans to mate with so many different drones.

By mating with multiple drones she ensures that the workers in the colony are genetically diverse. This genetic diversity increases the rather-difficult-to-grasp concept of colony ‘fitness’. In this instance fitness is used to mean a combination of adaptability, resistance to stress or pathogens, increased foraging activity, better overwinter survival etc.

I’ve discussed this concept before and suggest you revisit that post for all the gory details.

The bottom line is that colonies that are headed by queens that are mated with very many drones (50+) produce more brood, have better disease resistance and have many other desirable traits (that benefit both the colony and the beekeeper).

The final piece of this introductory jigsaw I need to mention is that drone sperm is used randomly. It’s not a case of ‘first in, last out’. The 3-5% of sperm stored from each drone is mixed thoroughly in the spermatheca.

This makes sense in light of the comments above about colony fitness. If the sperm were used in batches from each drone you’d have cohorts of young bees being produced that had reduced genetic diversity, thereby potentially compromising colony fitness.

It takes two to tango

But let’s think about the poor drones for a moment.

Drones have two fates (excluding getting eaten by a bee eater); they either die while mating with a queen, or they get turfed out of the hive and starve to death towards the end of the season.

If the drone fails to mate with a queen he’s genetic dead end.

If he does mate with a queen there’s a good probability that the genes he carries will be passed on to the following generation.

There is therefore a lot of competition for the queen in the drone congregation areas (DCA).

The drones, once sexually mature, fly every (suitable) day to several DCAs, one after the other. In addition, they fly relatively short distances from the hive to maximise their time within the DCAs.

Heat map of the landscape used by drones – bright spots are DCA’s

This competition is intense, and it doesn’t stop once the drone has mated (and died).

If a queen mates with a relatively small number of drones – let’s say 10 for the sake of argument – the chance of the sperm from any one of those drones being used to fertilise an egg is much greater than if the queen had mated with 50 drones.

The fewer drones the queen mates with the better the chances that the genes from any one of her successful suitors will be passed on to the following generation.

Paradoxically, it therefore benefits the drone 3, if the queen mates with fewer other drones.

And, remarkably, drones have evolved a way to reduce the number of additional drones that a queen mates with.

A sexual arms race

Before I describe the mechanism, it’s worth emphasising here that best interests of the colony are served by the queen mating with many drones, but those of the drones are best achieved by limiting the polyandrous activity of the queen.

These two processes are therefore in direct competition.

There are some additional subtleties.

If the drone simply prevented the queen from mating again 4 it would be detrimental if that drone was the first with which the queen mated. The resulting colony would have little genetic resilience and would be unlikely to survive.

Any one drone must therefore allow the queen to mate with sufficient other drones to ensure colony fitness.

In addition, the more mating flights that a queen goes on, the greater the chances she will be predated by a passing bird, or get lost on the return flight.

From the drones point of view it would probably be beneficial for the queen to go on only one mating flight, but that she mates with sufficient (but no more than that) drones on that flight.

And finally, before I get to the mechanism by which all this is achieved – a compromise solution, like all the best solutions – I’ll remind you that studies have shown that queens go on about 5 mating flights spread over 3, usually successive, days.

Love is blind

At least, too much love is … 😉

Liberti and colleagues have recently published a snappily titled paper on how drones reduce the number of mating flights taken by a queen. The paper is Open Access so you can get all of the nitty-gritty details I don’t have time, energy or intelligence to include in the summary below.

The paper is:

Seminal fluid compromises visual perception in honeybee queens reducing their survival during additional mating flights by Joanito Liberti et al., (2019) eLife 2019;8:e45009

As with all science, the results published in this paper were a continuation of earlier studies of queen honey bees. In particular, these included studies by some of the same authors who had showed that seminal fluid contained proteins that had the ability to interact with neurons.

In addition, in Drosophila melanogaster (the fruit fly, and genetically best studied insect) there was evidence to suggest that seminal fluid promotes fast oviposition and reduces the willingness of females to seek additional copulations.

Drosophila mating in captivity

Now, Drosophila mating behaviour is very different to that of honey bees, but there was clearly a precedent here in which some of the components of seminal fluid – the ‘carrier’ that keeps sperm alive and motile and protects against pathogens – influenced subsequent mating in insects.

Or the lack of mating.

The study by Liberti et al., involves an elegant combination of hardcore molecular gene expression analysis coupled with electroretinography 5 and field work. I’ll skip briefly through the first two of these and provide a bit more detail on the last.

Analysis of gene expression

Virgin queen bees were instrumentally inseminated with seminal fluid (i.e. no sperm) or a control saline solution. Subsequent analysis of the brains of the bees – using a method called RNA-Seq which allows the qualitative and quantitative changes in gene expression to be accurately determined – demonstrated reproducible changes in the gene expression of dozens of genes.

Venn diagram of differential gene expression in instrumentally inseminated queen bees

Detailed analysis of which genes had changed in expression showed that several so-called signalling and metabolic cascades were modified in response to seminal fluid, and many of these mapped to the phototransduction pathways i.e. those involved in sight.

Several of the genes that were detected encoded proteins that were implicated in the conversion of light into the electrical signals in photosensitive electrical cells.

Inevitably, that one sentence has probably confused half the readers that have persevered to this point in the post …

Essentially what this means is that there are components within drone seminal fluid that change the ability of the queen to perceive light, or to see.

So, do they?

Visual perception of queens

The gene expression studies in this paper are complicated (for a molecular biologist). The electroretinography is an order of magnitude more complicated for this molecular biologist to understand … but here goes.

Electroretinography involves measuring the electrical signals generated by particular neurones that are connected to the compound eyes and ocelli 6. This allows the consequences of the changes in gene expression to be determined in terms of the vision of the queen bee.

These studies showed that queens instrumentally inseminated with seminal fluid had lower responses to low frequency flickering light, and that that this response (or lack of response) increased on the second day after insemination.

There were additional changes in the response of the ocelli in queens inseminated with seminal fluid.

Taken together, these results show that queens exposed to seminal fluid experience reduced visual performance.

They are not blinded, but their vision is impaired.

Does this visual impairment have any influence on their mating behaviour?

Mating flight behaviour

Finally, we come to something that’s a bit easier to comprehend, not least because I’ve previously discussed the technology used – the RFID tagging of individual bees to monitor their flight frequency and duration.

RFID-tagged queens (34 in total) were instrumentally inseminated (either mock, or seminal fluid or semen) and subsequently monitored when going on mating flights. Those receiving either seminal fluid or semen were more likely to get lost on these flights, and repeatedly triggered the hive entrance sensors, suggesting they were disorientated by sunlight after leaving the hive.

Of the 21 queens that returned, 81% went on mating flights of more than 7 minutes which was considered a conservative threshold for a completed mating flight i.e. flight to a DCA, mating(s) and return to the hive, and about 50% laid worker brood.

Notably, of the 17 queens that went on ‘successful’ (by duration, not necessarily by outcome) mating flights, those receiving the control saline solution left 1-2 days later than those that had received seminal fluid or semen.

Seminal fluid and semen induce alterations of mating flight behaviour in honeybee queens

These results show that exposure to seminal fluid induces significant changes in queen mating flight behaviour, presumably as a consequence of the alteration to the vision of the queen.

Therefore, the implication from these results is that proteins in the seminal fluid of drones impairs the visual perception of queens, thereby reducing the likelihood that the queen will embark on additional mating flights.

Queens that had already mated (or been instrumentally inseminated in this study) were more likely to get lost on subsequent mating flights, and embarked on these flights earlier.

But what about swarming?

The hive – or a natural nest site – is a low-luminance environment. Queens do not need fully functional eyesight once they have returned from their mating flights. In the hive communication is non-visual, mediated by pheromones, contact, vibrations and sound.

However, although a queen only goes on a few mating flights, she will also leave the colony if it swarms.

Swarm of bees

Swarm of bees

What are the implications for the this study on the eyesight of queens during swarming?

This isn’t really discussed in the paper, but I think there are two likely scenarios:

  • the changes in visual perception by the queen are transient and return to ‘normal’ after a few days, weeks or months
  • swarming is a fundamentally different activity in which thousand of bees leave the hive and for which accurate vision is not needed by the queen.

There’s a world of difference between embarking alone on a mating flight of several kilometres and having to return to the exactly the same location, and leaving on a one-way trip with a swirling mass of attendees with dozens of scout bees leading the way.

Further studies will be needed to determine whether the changes in vision are transient or permanent, as well as to identify the ‘active ingredient’ in seminal fluid that is responsible for the degradation of the mated queen’s vision.

I also think further studies will be required to determine the relationship between dose and timing of the response.

How long does it take for the reduction in visual perception? If the first and second mating flight are taken on successive days is the “return rate” greater than if they are taken a few days apart?

How many drone matings are needed to reduce the visual acuity of the queen? I would predict that this would be a number consistent with the lower estimates of polyandrous matings needed to generate fitness in the resulting colony.

And implications for practical beekeeping?

Perhaps none directly, though I’m interested in the answers to the questions I posed in the paragraphs above.

In an area with low drone densities and those with shall we say ‘variable’ weather – such as my apiaries on the west coast of Scotland (or for that matter, any beekeepers living in remote northerly areas with just a few hives) – is colony fitness compromised by reduced matings?

An isolated apiary

Conversely, is mating success lower because more queens fail to return from subsequent mating flights that they have to take to try and mate with enough drones?

Can mating success and colony fitness be increased by boosting drone numbers?
And is this achievable at a scale meaningful to a small-scale beekeeper?

If a measurable increase in mating success took a 1000-fold increase in drone numbers it’s probably not achievable.

However, if all it took was an extra frame of drone comb in every hive in the apiary, then that’s quick win.


 

Footnotes

  1. Derived from the Greek πολύανδρος meaning ’having many husbands’.
  2. And I’m ignoring all of the sexually transmitted diseases that they might acquire … Ewwww!
  3. Or, more correctly, the genes carried by the drone.
  4. The ’put a cork in it’ strategy … and there are examples of this in other species.
  5. WTF?
  6. I’ve not written much previously on the eyesight of bees – the compound eyes are big and obvious, the ocelli – there are three of them – are on the top of the head and can be considered as simple eyes that can discriminate between light and dark and are used to orientate the bee towards the sun.

15 thoughts on “It makes you go blind

  1. Chris Griffiths

    When I’ve used foundation-less frames my colonies tend to preferentially build drone brood. Does this reflect colonies naturally attempting to increase mating success?

    Reply
    1. David Post author

      Hello Chris

      Probably not directly … most managed colonies have significantly less drone comb than natural colonies (or colonies allowed to draw the comb they want to on foundationless frames). Off the top of my head I think it’s something like 3% for bees on standard worker foundation and 17% for bees that have drawn the comb they want to, rather than what we think they should have.

      So, the bees think they need more drones, so draw more drone comb in your foundationless frames. Whether this is because they want to improve their mating success is a different issue altogether. I suspect it’s more likely an evolutionary hangover from when colonies were wild and at lower densities in the environment. Under those conditions they probably do need 17% drones to ensure good levels of polyandry. They continue to produce that much drone comb even though managed colony density is much higher and there are usually more than sufficient drones about.

      That’s my guess … and ignore my sloppy descriptions of what bees ‘want’ or ‘think’. They probably do rather little of either, but the result of whatever they do is easier to describe that way 😉

      Cheers
      David

      Reply
  2. John Eaden

    Fascinating as always this post leaves me with more questions than answers.
    If I interpret the study data correctly only around 11 of 34 queens go on to rear brood – this seems a very low success rate and doesn’t chime with experience.
    I can roughly understand the concept of colony fitness and the way competing interests of drones and queens could play out. But I am amazed to see in the data a loss rate of more than 60% after artificial insertion of seminal fluid or semen. Is that an effect of the artificial process itself?
    Fair play to these clever boffins – the research is very challenging and complicated – I think I shall be happy if my policy of rearing queens from splits keeps my colonies healthy and productive.

    Reply
    1. David Post author

      Hello John

      Dealing with the points you make in reverse order …

      The 60% loss is of queens instrumentally inseminated (II). Therefore they will have failing eyesight due to exposure to the seminal fluid proteins that affect their eyesight. It’s not due to the manipulation as the loss of control queens (Hayes saline) was 10% or less. The II queens flew earlier, because their sight was failing.

      The 11/34 that went on to rear brood were those that had been II, but I think the suggestion is that most failed to complete a full mating flight. If you look at the primary data (assuming you’re feeling brave) which is available here you’ll see that the mating (and brood rearing) success of the control queens was markedly better than that of the ones exposed to seminal fluid proteins (I also show this in the graph I reproduced, but all the gory details are on the linked spreadsheet).

      I didn’t get a chance to draw parallels between honey bees and other species. Several other social insects exhibit the same sort of sexual competition, but ‘solve’ it in different ways. That would be an entire article on its own.

      I think the main point to realise that whilst we might just think of queens going off on mating flights, there’s a whole lot more stuff going on in the background. The queen is judging the number of drones she’s mated with (How? There’s some data on this in other papers). Is it sufficient to ensure colony fitness and survival? The drones are all competing for access to the queen, and then have ‘cunning ploys’ to prevent the queen from mating with loads more drones to give their own genes a competitive advantage.

      Overall queen mating success in the wild is probably about 80% or a little higher. That’s the survival rate of naturally swarmed colonies (the originating colony, not the swarm). I usually reckon the successful mating rate of my own queens is 75-80% … a few more than that get mated and then fail, but if I end up with 75% of the cells I add to mating nucs then I’m happy.

      Cheers
      David

      Reply
      1. John Eaden

        Thanks for your response. I followed the link to the source article which helped fill in further details.
        The authors concede that they could not be entirely sure that the use of seminal fluid was typical as they had to derive their samples from multiple drones which would alter the balance of molecules present compared with “natural” matings.
        Interesting comments in the discussion include the idea that queens could deploy countermeasures against the effect of seminal fluid on their vision! So there is an ongoing sexual arms race between queens and drones.
        Truly fascinating insight – it just adds to the wonder that such elaborate behaviour has emerged and that honeybees have evolved quite a distinctive strategy for survival.
        Thanks again for provoking thought.

        Reply
        1. David Post author

          The pooling and likely imbalance from what a single drone ‘donates’ in terms of bioactive proteins that affect the queens sight is going to need further work. There’s clearly a balance between too little activity and total activity – the latter ‘blinds’ the queen (of course, she’s not actually blind) too soon, the former too late (or not at all).

          And the countermeasures just make the entire thing more interesting.

          In virology – my day job – this type of arms race between host and pathogen is routine. In some viruses a third or more of the proteins they make are dedicated to suppressing or modifying the host immune response. And, of course, the complexity of our immune response is at least in part due to the selection over millenia by pathogens.

          Cheers
          David

          Reply
  3. Reto

    Thank you for this.

    Regarding the selection of royal patrilines, would it be correct to say that a frame with larvae at the right age and no other modification, has the potential to result in queens with in the highest possible “spread” of genetics of what is available ithe general area of the apiary?

    Reply
    1. David Post author

      Not sure I understand your question fully, but I’m going to write about larval selection again in the next few weeks. I don’t think the worker bees can make their selection based upon the genetics of what’s available in the surrounding environment … it can only be based upon what larvae are available on the frame(s). These may or may not have been fathered by local drones. The term ‘Royal patrilines’ – associated with the qualifier ‘rare’ – has been used to describe the fact that, under the emergency response (only, strangely) the bees choose underrepresented patrilines in the colony.

      However, it’s almost certainly a lot more complicated than written above. It will be influenced by, for example, how well fed the larvae are and perhaps rare patrilines are fed more? Maybe the bees aren’t choosing rare patrilines per se, but are just picking the fattest larvae for their age?

      More on this subject shortly 🙂

      Cheers
      David

      Reply
      1. Reto

        I am sorry that was an incoherent comment. What I meant is to use that frame for queen rearing. I.e. prepare a cell builder with good population of young worker bees, food of both kinds and then add a frame with larvae / eggs. If they then indeed have a tendency to select the “royal patrilines”, would that not result in a broader genetic spectrum in the resulting queens?

        I am looking forward to your future post!

        Reply
        1. David Post author

          Hi Reto

          There are a number of methods of queen rearing that involve providing a queenless hive with a complete frame of selected larvae. The Miller method is one. The Hopkins method is another (though this does involve some culling of larvae). I’ve not used these (and only write about methods I’ve used, successfully or unsuccessfully) as I prefer to not to have to cut my queen cells out of comb. However, at least in principle, both should/might ensure that the rare ‘Royal patrilines’ are selected.

          However, it’s worth noting that it’s not been shown that, a) these patrilines are selected using these methods, or b) that queen reared from such rare patrilines are actually any better.

          I’m going to be writing about larval selection sometime this Spring (I hope 😉 ).

          Cheers
          David

          Reply
          1. Reto

            I thought about using the Morris board method. I read good things about it somewhere 😉

            At the moment the interest is only in widening the genetic pool. I realise, there are other ways, but sticking a frame in a cell builder is the most accessible to me. If indeed it has the potential to work out that way.
            (I do not mind cutting comb to get the cells, even though usually you lose some candidates when the cells are close together.)

          2. David Post author

            Hi Reto

            I think I’ve only mentioned the Morris board so far … I used it last year successfully, but will be giving it a go this season and then write something a little more detailed about it. It’s like a mini-Cloake board (which I’ve used before very successfully) but suspect it better suits my smaller colonied (if that’s a word, which my spellchecker suggests it’s not) black bees on the west coast.

            Watch this space 🙂

            Cheers
            David

  4. Elaine Robinson

    Hi David
    When I first read this research, it seemed a neat way for drones to compete for expression of their genetics over others. I then started to think about it from the queens point of view. Surely better for her to have fewer mating flights and how does she judge when she has had sufficient matings at a DCA?

    I’ve subsequently read that rather than volume of semen received, she judges whether mating is successful by the number of times her bursa copulatrix is stretched.

    Understand her strenuous mating flight builds lactic acid and starts stimulation of the onset of ovulation, as does walking around in the hive on return. I understand she starts ovulation fairly quickly within a couple of days if mating is successful, so any additional flights and reversal of vision would presumably need to happen fairly quickly afterwards?

    A possible conclusion is the queens Biology and behaviour acts in competition to the ‘selfish genes’ of the drone? Like all things in nature, behaviour and biology is complex with many factors and competing forces, presumably resulting in an outcome of what’s best for the colony survival overall.

    Reply
    1. David Post author

      Hi Elaine

      Good to hear from you. I don’t know a lot more about how the queen judges mating number/frequency but the RFID-tagging study I discussed a few weeks ago showed that most queens went on ~5 mating flights, averaging ~2 flights/day. They also showed that drone availability did not appear to influence mating activity.

      It would be better for her to go on fewer mating flights if, a) she still mates with sufficient drones, b) the flights aren’t so long she risks predation or exhaustion. Like most of biology, the behaviour we observe is a compromise … I’m sure if drones and her energy were limitless she would go on a single flight. That she doesn’t suggests that she needs to go on multiple flights to mate with enough drones. I wouldn’t be at all surprised if a combination of predation and exhaustion contribute to this, perhaps also with some sort of biological limit (guessing here) on the number of drones she could mate with on a single flight.

      Since she usually goes on multiple flights, it’s in the interest of the drones she has already mated with that she goes on as few additional flights as possible. Hence the vision impairment. This cannot be immediate, or permanent (presumably).

      And, for some queens, in some years (e.g. when bad weather limits successive days of mating flights and her vision fails), this is a problem because they fail to mate with sufficient drones … either they die trying, or the resulting colony then has reduced fitness. All of which then leads to the evolution of countermeasures by the queen to limit the activity of seminal fluid proteins on her vision.

      So you end up with the competition we’re just starting to unravel.

      And I wouldn’t be at all surprised if some drones evolved variant seminal fluid proteins that bypassed the queen’s countermeasures … and so on, and so on.

      And, it’s not just insects … sex competition occurs almost wherever you look.

      Cheers
      David

      Reply

Leave a Reply

Your email address will not be published.