Category Archives: Behaviour

Fainting goats … and queens

Myotonia congenita is a genetic disorder that affects the muscles used for movement. Myotonia refers to the delayed relaxation of these skeletal muscles, resulting in a variety of obvious symptoms including temporary paralysis, stiffness or transient weakness.

In humans these symptoms are often manifest as difficulty in swallowing, gagging and frequent falls. Children are affected more than adults. One of the most dramatic manifestations are the falls (‘fainting’) that can occur as a result of a hasty movement. 

Although physiologically distinct, ‘fainting’ is a reasonably accurate description of the sudden loss of movement and the transient nature of the disorder. Like fainting, loss of movement is usually quickly resolved. However, unlike fainting, myotonia congenita involves muscular rigidity or stiffness, so more closely resembles catalepsy.

Genes

There are two types of myotonia congenita, termed Thomsen disease and Becker disease, both of which are usually associated with mutations in the gene CLCN1 1. This encodes a chloride channel (a ‘hole’ through the cell membrane that allows the transfer of chloride ions) critical for muscle fibre activity. 

Cartoon of a transmembrane chloride channel.

With loss-of-function mutations in CLNC1 the muscle fibre continues to to be activated. When stimulated, for example if the fibre is triggered to suddenly contract for jumping or running (or  to stop a fall), the muscle fibre is hyper-excitable and continues to contract, and shows delayed relaxation

Around 1 in 100,000 people exhibit myotonia congenita, though it is about ten times more common in northern Scandinavia. Treatment involves use of a number of anticonvulsant drugs.

The same loss-of-function CLCN1 mutation in humans is seen in symptomatically similar horses, dogs … and goats.

Goats

In the late 19th century four goats were imported to Marshall County, Tennessee. Their strange behaviour when startled was first described in 1904 and defined as a congenital myotonia by Brown and Harvey in 1939. 

The eponymous Tennessee fainting goat

These pre-war studies formed the basis of of our understanding of both the physiology and genetics of myotonia congenita, though the specific mutation in the CLCN1 gene was only confirmed several years after it had been identified in humans.

Since then myotonic goats have become an internet staple, with any number of slightly distressing (for me at least, if not for the goats) YouTube videos showing their characteristic fainting when surprised or frightened 2.

Don’t bother watching them.

If you want to see a fainting goat in action watch little ‘Ricky’ jump up onto a swinging seat on the National Geographic website.

It’s a perfect example.

He jumps up, gets a mild fright as the swing moves, goes stiff legged and simply rolls over and falls to the ground. A few moments later he’s back on his feet again, looking slightly shaken perhaps, but none the worse for wear.

Queens

All of that preamble was to introduce the topic of fainting queens. 

A fainting queen

This was a subject I’d heard about, but had no experience of until last week.

Periodically it gets discussed on Beesource or the Beekeepingforum – usually the topic is raised by a relatively small-time amateur beekeeper (like me) and it gets a little airtime before someone like Michael Palmer, Michael Bush, Hivemaker or Into the Lion’s Den 3 shuts down the conversation with a polite “Yes, I see it a few times a year. They recover”, or words to that effect.

Since these commercial guys handle hundreds or perhaps thousands of queens a year I think we can safely assume it’s a relatively rare phenomenon. 

Since I don’t handle hundreds or thousands of queens a year – and you probably don’t either – I thought the incident was worth recounting, so you know what to expect should it ever happen.

And to do that I have to first explain the fun I had with the first of the two queens in the hive I was inspecting.

A two queen colony

It was late afternoon and I was inspecting the last of our research colonies in the bee shed.

The hive had two brood boxes and a couple of supers. Nothing particularly surprising in that setup at this time of the season; the colony was quite strong, the spring honey had been extracted and a couple of supers had been returned to the hive for cleaning.

However, it wasn’t quite that straightforward. 

The lower brood box had been requeened ~3 weeks earlier with a mature queen cell from one of my queen rearing attempts. I’d seen that the virgin had emerged and restricted her to the lower box at my last visit. 

I’d added a queen excluder (QE) over the lower box with the intention of removing all the old frames above the QE once the brood had emerged.

However, at that last visit I’d ended up with a good looking 4 ‘spare’ virgin queen. Although I had no need for her at the time, and no time to make up a nuc 5, I decided to put her in a fondant-plugged introduction cage in this upper box.

This ‘upper’ queen couldn’t fly and mate in the week I was away, but I reasoned that I could merge the colony with the bottom box if the ‘lower’ queen failed to mate 6.

So, after adding the virgin queen to the top box I added a second QE and the two supers.

She can fly …

Having removed the supers and the upper QE I carefully inspected the upper box looking for the virgin queen who had been released from the cage

No sign of her 🙁

I went through the box again.

Time to try some of the ‘queen finding tricks’.

I moved three frames out of the way having examined them very carefully. The remaining 8 frames were then spaced out as four, well separated, pairs. I let the colony settle for a few minutes and then looked at the inner face of each pair of frames.

No sign of her 🙁

I looked again … nada, rien, niets, nunda, dim byd and sod it 7.

The obvious conclusion was that the colony had killed the queen after releasing her from cage. 

How uncharitable.

I reassembled the upper brood box and lifted it off the lower QE, in preparation to leave it outside the shed door while I went through the lower box. 

As I carried the brood box to the door I briefly looked up and saw a 8 virgin queen climbing up the inner pane of one of the shed windows, flapping frantically and fast approaching the opening that would allow her escape.

For obvious reasons I have no photographs of the next few minutes.

Bee shed window ...

Bee shed window …

For those unfamiliar with the bee shed windows, these have overlapping outer and inner panes, so are always open. They provide a very effective ‘no moving parts’ solution to clearing the shed of bees very quickly.

Which was the very last thing I wanted at that moment 😉

… rather well

I had a brood box and hive tool in my hands, the shed door was wide open, there was all sorts of stuff littering the floor and the virgin queen was inches away from making a clean getaway.

It’s worth noting that when virgin queens are disturbed and fly they almost always return to the hive. However, the hives in the shed have a single entrance and all the hives were already occupied with queens. I couldn’t let her fly and hope for the best … it probably wouldn’t end well.

By balancing half the brood box on an unoccupied corner of an adjacent hive roof I made a largely ineffective swipe for the queen, but disturbed her enough she flew away from the window in spirals around my head.

I    s  t  r  e  t  c  h  e  d    to reach the shed door and pulled it close, so reducing the possible exits from eight to seven. A small victory.

I put the brood box safely on the floor, leaning at an angle against the hive stand 9, and abandoned the hive tool.

The next 5 minutes were spent ineptly trying to catch the queen. When she wasn’t flying around the shed (where the lighting isn’t the best) she usually made for the same window.

The one behind the hive with four supers stacked on top 🙁

After a few more laps of the shed, dancing around the precariously balanced brood box and reaching around the hive tower for the window, I finally caught her.

And caged her 10.

I’m looking for publisher for my latest book, ‘Slapstick beekeeping’. If any readers know of a publisher please ask them to contact me.

After all that I should have had a little rest. I’d had enough excitement for the afternoon 11.

But there was still the queen in the bottom box to find and mark.

Feeling faint

The queen in the bottom box was mated and laying well. 

I made a near-textbook example of finding her 12.

After moving aside a few frames I should have announced (to the non-existent audience), She’s on the other side of the next frame … ” (the big reveal) ” … ah ha! There you are my beauty!”.

Holding the frame in one hand I checked my pockets for my marking cage 13.

All present and correct.

I then calmly picked her up by her wings. She was walking towards me, bending slightly as she crossed over another bee, so her wings were pushed up and away from her abdomen.

A perfect ‘handle’.

I didn’t touch her abdomen, thorax or head.

A swooning queen

And, as soon as I lifted her from the frame, she fell into a swoon and ‘dropped dead’.

This is an ex-parrot

Her wings were extended to the sides, her abdomen was curled round in a foetal position and she appeared completely motionless.

It is pining for the fjords

I dropped her into the marking cage and took the photo further up the page.

It was 6:49 pm.

For several minutes there was no obvious movement at all. Her legs and antennae were immobile. She showed no sign of breathing.

I gently shook her out onto a small piece of Correx on a nuc roof to watch and photograph her. I picked her up by the wing and held her in my palm … perhaps she needed some warmth to ‘come round’.

Was that a twitch?

Or was that me shaking slightly because I’d inadvertently killed her? 

Several more minutes of complete catatonia 14 passed … and then a gentle abdominal pulsing started.

This was now 10-11 minutes after I’d first picked her up.

Which got a bit stronger and was accompanied by a feeble waggle of the antennae.

And was followed a minute or so later by a bit of uncoordinated leg flexing.

And after 15 minutes she took her first steps.

It looked like she’d been on an ‘all nighter’ and was still rather the worse for wear.

I slipped her into a JzBz queen cage, sealed it with a plastic cap, and left it hanging between a couple of brood frames.

From picking her up to placing the caged queen into the brood box had taken 24 minutes.

Caged queen after fainting (and recovering … more or less)

I reasoned that if …

  • she fully recovered they’d feed her through the cage and I could release her the following morning
  • I’d released her immediately and she’d acted abnormally the colony might have killed her off
  • she did not recover I would at least be able to find the corpse easily ( 🙁  ) and so could confidently requeen the colony (with the virgin I’d tucked away safely in my pocket)

The following morning the cage was covered in bees and she looked just fine, so I released her. 

Somewhere under that lot is the recovered queen – still caged

She walked straight down between the frames as though nothing untoward had happened.

I didn’t have the heart to mark and clip her … I didn’t want to risk her ‘fainting’ again and, if she had, didn’t have the time to hang around while she recovered 15.

So was this ‘fainting’ myotonia congenita?

I suspect not.

Another name for the Tennessee fainting goat is the ‘stiff-legged’ goat. This reflects the characteristic rigidity in the limbs when the muscles fail to relax. The queen’s legs were curled under her, rather than being splayed out rigidly.

However, this interpretation may simply reflect my near complete ignorance of the musculature of honey bees 😉

However, I do know that the basics of muscle contraction and relaxation are essentially the same in invertebrate and vertebrate skeletal muscle. There are differences in the innervation of muscle fibres, but the fundamental role of chloride channels in allowing muscle relaxation is similar.

Therefore, for this fainting queen to be affected by myotonia congenita she should have a mutation in the CLCN1 gene encoding the chloride channel.

Although the honey bee genome has been sequenced a direct homolog for CLCN1 appears not to have been identified, though there are plenty of other chloride channels present 16

The majority of the 60 or so mapped mutations associated with myotonia congenita (in humans) are recessive. Two copies of the mutated gene (in diploids, like humans or female honey bees) are needed for the phenotype to occur.

Of course, drones are haploid so it should be easier to detect the phenotype.

I’ve never heard of drones ‘fainting’ when beekeepers practise their queen marking skills on them. Have you?

Repeated fainting

I’ll try to mark and clip this queen again.

It will be interesting to see if she behaves in the same way 17.

A quick scour of the literature (or what passes for the ‘literature’ on weird beekeeping phenomena i.e. the discussion fora) failed to turn up examples of the same queen repeatedly fainting.

Or any mention of daughter queens showing the same behaviour.

All of which circumstantially argues against this being myotonia congenita.

However, there are many other causes of sudden fainting (from the NHS website):

  • standing up too quickly – (low blood pressure)
  • not eating or drinking enough
  • being too hot
  • being very upset, angry, or in severe pain
  • heart problems
  • taking drugs or drinking too much alcohol

… though I can exclude the last one as my bees are teetotal 😉

So, there you have it, a brief account of a cataleptic queen … and her recovery.


Notes

A fortnight after the events described above I clipped and marked the queen. I did everything the same – picked her up by the wings in the shed (so again not exposed to bright sunlight – which may be relevant, see the comment by Ann Chilcott).

She (the queen) didn’t faint. She behaved just like the remaining 4 queens I marked on the same afternoon.

So no repeat of the ‘amateur dramatics’ 🙂

It’s a drone’s life

What has a mother but no father, but has both a grandmother and grandfather?

If you’ve not seen this question before you’ve not attended a ‘mead and mince pies’ Christmas quiz at a beekeeping association. 

Drone

Drone … what big eyes you have …

The answer of course is a drone. The male honey bee. Drones are produced from unfertilised eggs laid by the queen, so formally they have no father. Drones are usually haploid (one set of chromosomes), whereas queens and workers are diploid 1

Anyway, enough quiz questions. With the relaxation in Covid restrictions we may all be able to attend in person this Christmas 2, so I don’t want to spoil it by giving all the answers away in advance.

The long cold spring has been pretty tough for new beekeepers, it’s been a struggle for smaller colonies and it’s been really hard for drones.

Spring struggles

New beekeepers have had to develop the patience of Job to either acquire bees in the first place or start their inspections. Inevitably new beekeepers are bursting with enthusiasm 3 and the cold northerlies, unseasonal snow (!) and low temperatures have prevented inspections and delayed colony development (and hence the availability and sale of nucs).

Small colonies 4 are struggling to rear brood and to collect sufficient nectar and pollen.

This is an interesting topic in its own right and deserves a post of its own 5. In a nutshell, below a certain threshold of bees, colonies are unable to keep the brood warm enough and have sufficient foragers to collect nectar and pollen.

As a consequence, smaller colonies are low on stores and at risk of starvation. 

It’s a Catch-22 situation … to rear sufficient brood to collect an excess of nectar (or pollen) the colony needs more adult workers. 

I don’t know what the cutoff is in terms of adult bees, but most of my colonies with <7 frames of brood have needed feeding this spring.

One feature of these smaller colonies is that, unless they have entire frames of drone comb 6, there is little if any drone brood in the hive.

There might be drones present in the colony, but I don’t know whether they were reared there or drifted there from another hive.

And, for those of us attempting to rear queens, drones are an essential indicator that queen mating will be timely and successful.

On a brighter note …

But it’s not all gloom and doom.

Strong colonies are doing very well.

Several of mine have a box packed full of brood and I’m relying on a combination of …

  • lots of space by giving them more supers than they need
  • low ambient temperatures
  • crossed fingers

… as my swarm prevention strategy 😉

Beginners take note … one of these is likely to help (space), one is frankly pretty risky (chilly) and the last is not a proven method despite being widely used by many beekeepers 😉

I’m pretty confident that colonies will not swarm at 13-14°C.

I am inspecting colonies every 7 days and have only seen two with charged queen cells. One was making early swarm preparations; I used the nucleus method of swarm control and then split the colony into nucs a fortnight ago 7.

The other colony contained my first attempt at grafting this year, which seems to have gone reasonably well 8.

Lots of brood, nectar and drones

A typical brood frame from one of these strong colonies contains a good slab of sealed or open brood, some pollen around the sides and an interrupted arc of fresh nectar above the brood. 

In the photo above you can see pollen on the right hand side of the frame and glistening fresh nectar in the top left and right hand corners.

Typically these strong colonies also have partially filled supers, though it’s pretty clear that the oil seed rape is likely to go over before the weather warms enough (or the colonies get strong enough) to fully exploit it.

Spring honey is going to be in short supply and my fantastic new honey creamer is going to sit idle 🙁

Drones

What you probably can’t really see in the picture above is that these strong colonies also contain good numbers of drones.

Strong colonies … ample drones

I can count about a dozen in the closeup above. 

I like seeing drones in a strong, healthy colony early(ish) in the season 9.

Firstly, the presence of drones indicates that the colony (and presumably others in the neighbourhood which are experiencing a similar environment and climate) will soon be making swarm preparations. This means I need to redouble my efforts to check for queen cells to avoid losing swarms 🙁  … think of it as a long-range early warning system.

But it also means I can start thinking about queen rearing 🙂

Secondly, although these drones are unlikely to mate with my queens, you can be sure they’re going to have a damned good go at mating with queens from other local apiaries.

In addition to being strong and healthy, this colony is well-tempered, steady on the comb and pleasant to work with. The production of a few hundred thousand frisky drones prepared to lay down their lives 10 to improve the local gene pool is my small act of generosity to local beekeepers 11.

How many drones?

Honey bee colonies that nest in trees or other natural cavities produce lots of drone comb. Studies of feral colonies on natural comb show that about 17% of the comb is dedicated to rearing drones (but also used for storing nectar at other times of the season).

Foundationless triptych ...

Foundationless triptych …

Similarly, beekeepers who predominantly use foundationless frames regularly see significantly greater amounts of drone comb (and drone brood and drones) in their colonies. With the three-panel bamboo-supported frames I use it’s not unusual for one third of some frames to be entirely drone comb.

In contrast, beekeepers who only use standard worker foundation will be used to seeing drone comb occupying much less of the brood nest. Under these circumstances it’s usually restricted to the edges or corners of frames.

However, given the opportunity e.g. a damaged patch of worker comb or if you add a super frame into the brood box, the workers will often rework the comb (or build new brace comb) containing just drone cells.

The bees only build drone comb when they need it.

A newly hived swarm will build sheet after sheet of new comb, but it will all be for rearing worker brood. If you give them foundationless frames they only build worker comb and if you provide worker foundation they don’t rework it to squeeze in a few drone cells.

The colony will also not build new drone comb late in the season. Drone comb is drawn early in the season because the drones are needed before queens are produced.

The timing of drone production

Studies in the late 1970’s 12 demonstrated that drone brood production peaks about one month before the the main period of swarming. Similar studies in other areas have produced similar results.

Why produce all those drones when there are no queens about?

The timing is due to the differences in the development time (from egg to eclosion) of drones and queens, together with the differences in the time it takes before they are sexually mature.

Drones take 50% longer to develop than queens – 24 days vs. 16 days. After emergence the queen take a few days (usually quoted as 5-6) to reach sexual maturity before she embarks on her mating flight(s).

In contrast, drones take from 6-16 days to reach sexual maturity.

Swarming tends to occur when charged queen cells in the hive are capped. These cells will produce new virgin queens about a week later and – weather permitting – these should go on mating flights after a further six days. 

Therefore a colony that swarms in very early June will need sexually mature drones available 12-14 days later (say, mid-June) to mate with the newly emerged queen that will subsequently return to head the swarmed colony. These drones will have to have hatched from eggs laid in the first fortnight of May to ensure that they are sexually mature at the right time.

Decisions, decisions

How does the colony know to produce drones at the right time? Is it the workers or the queen who makes this decision?

I’ve recently answered a question on this topic for the Q&A pages in the BBKA Newsletter. In doing some follow-up reading I’ve discovered that (inevitably) it’s slightly more complicated than I thought … which was already pretty complicated 🙁

The workers build the comb and therefore determine the amount of drone vs. worker comb the brood nest contains.

I don’t think it’s known how the workers measure the amount of brood comb in the nest, but they clearly can. We do know that bees can count 13 and that they have some basic mathematical skills like addition and subtraction.

Perhaps these maths skills 14 include some sort of averaging, allowing them to sample empty cells, measure them and so work out the proportion that are drone or worker.

Whatever form this ‘counting’ takes, it requires direct contact of the bees with the comb. You cannot put a few frames of drone comb in the hive behind a mesh screen and stop the bees from building more drone comb. It’s not a volatile signal that permeates the hive.

However they achieve this, they are also influenced by the amount of capped drone brood already present in the colony. If there’s lots already then the building of additional drone comb is inhibited 15.

Colonies therefore regulate drone production through a negative feedback process.

So … does the queen simply lay every cell she comes across, trusting the worker population has provided the correct proportions of drone and worker comb?

Not quite

Studies by Katie Wharton and colleagues 16 showed that the queen could also regulate drone production.

Wharton confined queens on 100% drone or worker comb in a frame-sized queen ‘cage’ for a few days.

Frame sized queen ‘cage’ …

She then replaced the comb in the cage with 50:50 mix of drone and worker comb and recorded the number of eggs laid in drone or worker cells over a 24 hour period (and then allowed the eggs to develop).

Queens that had only been able to lay worker brood for the first four days of confinement laid significantly more drone brood when given the opportunity.

The scientists showed reasonably convincingly that this was a ‘decision’ made by the queen, rather than influenced by the workers e.g. by preparing biased number of drone or worker cells for eggs to be laid in, by preferentially ‘blocking’ certain cell types with honey or by selectively cannibalising drone or worker eggs.

Interestingly, queens initially confined on worker comb laid significantly (~25%) more eggs on the 50:50 comb than those confined on drone comb. I’m not sure why this is 17.

Wharton and colleagues conclude “these results suggest that the regulation of drone brood production at the colony level may emerge at least in part by a negative feedback process of drone egg production by the queen”.  

So it seems likely that drone production in a colony reflects active decisions made by both workers and the queen.

Why has this spring been really hard for drones?

To be ready for swarming, colonies therefore need to start drone production quite early in the season – at least 4-5 weeks before any swarms are likely.

Late May ’21 forecast. Swarmy weather? I don’t think so …

But with consistently poor weather, these drones are unlikely to be needed. Colonies will not have built up enough to be strong enough to swarm.

Producing drones is a high energy process – they are big bees and require a lot of carbohydrate and protein during development.

Under natural conditions 18 a colony puts as many resources into drone production over the season as it does into swarms.

Thomas Seeley has a nice explanation of this in The Lives of Bees – if you take the dry weight of primary swarms and casts produced by a colony it’s about the same as the dry weight of drones produced throughout the season. 

Rather than waste energy in drone production the workers remove unwanted drone eggs and larvae. The queen lays them, but the workers prevent them being reared.

How do the workers decide the drones aren’t going to be needed?

Do workers have excellent long-range weather forecasting abilities?

Probably not 19

If the weather is poor the colony will be unable to build up properly because forage will be limited. As a consequence, the colony (and others in the area) would be unlikely to swarm and so drones would not be needed for queen mating.

Free and Williams (1975) demonstrated that forage availability was the factor that determined whether drones were reared and maintained in the colony. 

Under conditions where forage was limited, drone eggs and larvae were rejected (cannibalised) and adult drones were ejected from the hive.

Unwanted drone ejected from a colony in early May

Beekeepers are familiar with drones being ejected from colonies in the autumn (again, a time when forage becomes limiting), but it also happens in Spring.

And at other times when nectar is in short supply …

Those of you currently enjoying a good nectar flow from the OSR should also look at colonies during the ‘June gap’. With a precipitous drop in nectar available in the environment once the OSR stops yielding, colonies can be forced to eject drones.

It’s tough being a drone … which may explain why one of my PhD students has the name @doomeddrone on Twitter 😉


 

Acting on Impulse

Men just can’t help acting on Impulse … 

This was the advertising strapline that accompanied the 1982 introduction of a new ‘body mist’ perfume by Fabergé. It was accompanied by a rather cheesy 1 set of TV commercials with surprised looking (presumably fragrant) women being accosted by strange men proffering bouquets of flowers 2.

Men just can’t help acting on Impulse …

And, it turns out that women – or, more specifically, female worker honey bees – also act on impulse

In this case, these are the ‘impulses’ that result in the production of queen cells in the colony.

Understanding these impulses, and how they can be exploited for queen rearing or colony expansion (or, conversely, colony control), is a very important component of beekeeping.

The definition of the word impulse is an ‘incitement or stimulus to action’.

The action, as far as our bees are concerned, is the development of queen cells in the colony.

If we understand what factors stimulate the production of queen cells we can either mitigate those factors – so reducing the impulse and delaying queen cell production (and if you’re thinking ‘swarm prevention‘ here you’re on the right lines) – or exploit them to induce the production of queen cells for requeening or making increase.

But first, what are the impulses?

There are three impulses that result in the production of queen cells – supersedure, swarm and emergency.

Under natural conditions i.e. without pesky meddling by beekeepers, colonies usually produce queen cells under the supersedure or swarm impulse.

The three impulses are:

  1. supersedure – in which the colony rears a new queen to eventually replace the current queen in situ
  2. swarm – during colony reproduction (swarming) a number of queen cells are produced. In due course the current queen leaves heading a prime swarm. Eventually a newly emerged virgin queen remains to get mated and head the original colony. In between these events a number of swarms may also leave headed by virgin queens (so-called afterswarms or casts).
  3. emergency – if the queen is lost or damaged and the colony rendered queenless, the colony rears new queens under the emergency impulse.

Many beekeepers, and several books, state that you can determine the type of impulse that induced queen cell production by the number, appearance and location of the queen cells.

And, if you can do this, you’ll know what to do with the colony simply by judging the queen cells.

If only it were that simple

Wouldn’t it be easy?

One or two queen cells in the middle of frame in the centre of the brood nest? Definitely supersedure. Leave the colony alone and the old queen will be gently replaced over the next few weeks. Brood production will continue uninterrupted and the colony will stay together and remain productive.

A dozen or more sealed queen cells along the bottom edge of a frame? The colony is definitely  in swarm mode and – since the cells are already capped – has actually already swarmed. Time to thin out the cells and leave just one to ensure no casts are also lost.

But it isn’t that simple 🙁

Bees haven’t read the textbooks so don’t necessarily behave as expected.

I’ve found single open queen cells in the middle of a central frame, assumed it was supersedure, left the colony alone and lost a swarm from the hive a few days later 🙁

D’oh!

Or I’ve found loads of capped queen cells on the edges of multiple frames in a hive, assumed that I’d missed a swarm … only to subsequently find the original marked queen calmly laying eggs as I split the brood box up to make several nucleus colonies  🙂

Not all queen cells are ‘born’ equal

It’s worth considering what queen cells are … and what they are not. And how queen cells are started.

There are essentially two ways in which queen cells are started.

They are either built from the outset as vertically oriented cells into which the queen lays an egg, or they start their life as horizontally oriented 3 worker cells which, should the need arise, are re-engineered to face vertically.

Play cup or queen cell?

Play cup or are they planning their escape …?

Queen cells started under the supersedure or swarming impulse are initially created as ‘play cups‘. A play cup looks like a small wax version of an acorn cup – the woody cup-like structure that holds the acorn nut. In the picture above the play cup is located on the lower edge of a brood frame, but they are also often found ‘centre stage‘ in the middle of the frame.

Play cups

A colony will often produce many play cups and their presence is nothing to be concerned about. In fact, I think it’s often a rather encouraging sign that the colony is sufficiently strong and healthy that it might be thinking of raising a new queen. 

Before we leave play cups and consider how emergency queen cells start life it’s worth emphasising the differences between play cups and queen cells.

Play cups are not the same as queen cells

Until a play cup is occupied by an egg it is not a queen cell.

At least it’s not as far as I’m concerned 😉

And, even if it contains an egg there’s no guarantee it will be supported by the workers to develop into a new queen 4.

However, once the cell contains a larva and it is being fed by the nurse bees – evidenced by the larva sitting in an increasingly thick bed of royal jelly – then it is indisputably a queen cell.

Charged queen cell ...

Charged queen cell …

And to emphasise the fundamental importance in terms of colony management I usually refer to this type of queen cell as a ‘charged queen cell’.

Once charged queen cells appear in the colony, all other things being equal, they will be maintained by the workers, capped and – on the 16th day after the egg was laid – will emerge as a new queen.

And it is once charged queen cells are found in the colony that swarm control should be considered 5.

But let’s complete our description of the queen cells by considering those that are produced in response to the emergency impulse.

Emergency queen cells

Queen cells produced under the emergency impulse differ from those made under the swarm or supersedure impulse. These are the cells that are produced when the colony is – for whatever reason – suddenly made queenless. 

Without hamfisted beekeeping it’s difficult to imagine or contrive a scenario under which this would occur naturally 6, but let’s not worry about that for the moment 7

The point is that, should a colony become queenless, the workers in the colony can select one or more young larvae already present in worker cells and rear them as new queens.

So, although the eggs are (obviously!) laid by the queen 8, they have been laid in a normal worker cell. To ensure that they get lavished with attention by the nurse bees, feeding them a diet enriched in Royal Jelly, the cell must be re-engineered to project vertically downwards.

Location, location

Queen cells can occur anywhere in the hive to which the queen has access.

Queen cell on excluder

Queen cell on underside of the excluder …

But they are most usually found on the periphery of the frame, either along the lower edge …

Queen cells ...

Queen cells …

… or a vertical side edge of the frame …

Sealed queen cells

… but they can also be found slap, bang in the middle of a brood frame.

Single queen cell in the centre of a frame

And remember that bees have a remarkable ability to hide queen cells in inaccessible nooks and crannies on the frame … and that finding any queen cells is much more difficult when the frame is covered with a wriggling mass of worker bees.

Location and impulses

Does the location tell us anything about the impulse under which the bees generated the queen cell?

Probably not, or at least not reliably enough that additional checks aren’t also needed 🙁

Many descriptions will state that a small number (typically 1-3) of queen cells occupying the centre of a frame are probably supersedure cells. 

Whilst this is undoubtedly sometimes or even often true, it is not invariably the case.

The workers choose which larvae to rear as queens under the emergency impulse. If the only larvae of a suitable age are situated mid-frame then those are the ones they will choose.

In addition, since generating emergency cells requires re-engineering worker cells, newer comb is likely more easily manipulated by the workers.

Some beekeepers ‘notch’ comb under suitably aged larvae to induce queen cell production at particular sites on the frame 9. The photograph shows a frame of eggs with a notch created with the hive tool. It’s better to place the notch underneath suitably aged larvae, not eggs. Clearly, the age of the larvae is more critical than the ease with which the comb can be reworked. Those who use this method [PDF] properly/extensively claim up to a 70% ‘success’ rate in inducing queen cell placement on the frame. This can be very useful if the plan is to cut the – well separated – queen cells out and use them in mating nucs or for requeening other colonies.

Eggs in new comb ...

Eggs in new comb …

Comb at the bottom or side edges of the frame often has space adjacent and underneath it. Therefore the bees might favour these over sites mid-frame (assuming ample suitable aged larvae) simply because the comb is easier to re-work in these locations.

And don’t forget … under the emergency impulse the colony preferentially chooses the rarest patrilines to rear as new queens 10.

Not all larvae are equal, at least when rearing queens under an emergency impulse.

Active queen rearing and the three impulses

By ‘active’ queen rearing I mean one of the hundreds of methods in which the beekeeper is actively involved in selecting the larvae from which a batch of new queens are reared.

This doesn’t necessarily mean grafting , towering cell builders and serried rows of Apidea mini nucs.

It could be as simple as taking a queen out of a good colony to create a small nuc and then letting the original colony generate a number of queen cells.

Almost all queen rearing methods use either the emergency or supersedure impulses to induce new queen cell production 11.

For example, let’s consider the situation described above.

Active queen rearing and the emergency impulse

A strong colony with desirable traits (calm, productive, prolific … choose any three 😉 ) is made queenless by removing the queen on a frame of emerging brood into a 5 frame nucleus hive. With a frame of stores and a little TLC 12 the queen will continue to lay and the nuc colony will expand.

Everynuc

Everynuc …

But the, now queenless, hive will – under the emergency impulse – generate a number of new queen cells. These will probably be distributed on several frames if the queen was laying well before she was removed.

The colony will select larvae less than ~36 hours old (i.e. less than 5 days since the egg was laid) for feeding up as new queens.

If the beekeeper returns to the hive 8-9 days later it can be split into several 5 frame nucs, each containing a suitable queen cell and sufficient emerging and adherent bees to maintain the newly created nucleus colony 13.

Active queen rearing and the supersedure impulse

In contrast, queenright queen rearing methods such as the Ben Harden system exploit the supersedure impulse.

Queen rearing using the Ben Harden system

In this method suitably aged larvae are offered to the colony above the queen excluder. With reduced levels of queen pheromones present – due to the physical distance and the fact that queen cannot leave a trail of her footprint pheromone across the combs above the QE – the larvae are consequently raised under the supersedure impulse.

Capped queen cells

Capped queen cells produced using the Ben Harden queenright queen rearing system

I’m always (pleasantly) surprised this works so well. Queen cells can be produced just a few inches away from a brood box containing a laying queen, with the workers able to move freely through the queen excluder. 

Combining impulses …

Finally, methods that use Cloake or Morris boards 14 use a combination of the emergency and supersedure impulses.

Cloake board ...

Cloake board …

In these methods the colony is rendered transiently queenless to start new queen cells. About 24 hours later the queenright status is restored so that cells are ‘finished’ under the supersedure response.

The odd one out, as it’s not really practical to use it for active queen rearing, is the swarming impulse. Presumably this is because the conditions used to induce swarming are inevitably rather difficult to control. Active queen rearing is all about control. You generally want to determine the source of the larvae used and the timing with which the queen cells become available.

Environmental conditions can also influence colonies on the brink of swarming … literally a case of rain stopping play.

Acting on impulse

If there are play cups in the colony then you don’t need to take any action 15, but if there are charged queen cells present then your bees are trying to tell you something.

Precisely what they’re trying to tell you depends upon the number and position of the queen cells, the state or appearance of those cells, and the state of the colony – whether queenright or not.

What you cannot do 16 is decide what action to take based solely on the number, appearance or position of the queen cells you find in the colony. 

Is the colony queenright?

Are there eggs present in the comb?

Does the colony appear depleted of bees?

If there are lots of sealed queen cells, no eggs, no sign of the queen and a depleted number of foragers then the colony has probably swarmed. 

Frankly, this is pretty obvious, though it’s surprising the number of beekeepers who cannot determine whether their colony has swarmed or not.

But other situations are less clear … 

If there are a small number of charged queen cells, eggs, a queen and a good number of bees in the hive then it might be supersedure.

Or the colony might swarm on the day the first cell is sealed 🙁

How do you distinguish between these two situations? 

Is it mid-May or mid-September? Swarming is more likely earlier in the season, whilst supersedure generally occurs later in the season.

But not always 😉

Is the queen ‘slimmed down’ and laying at a reduced rate?

Much trickier to determine … but if she is then they are likely to swarm.

Decisions, decisions 😉 … and going by the number of visits to my previous post entitled Queen cells … don’t panic! there are lots of beekeepers trying to make these decisions right now 🙂


 

Quick thinking & second thoughts

I gave my last talk of the winter season on Tuesday to a lovely group at Chalfont Beekeepers Society. The talk 1 was all about nest site selection and how we can exploit it when setting out bait hives to capture swarms.

It’s an enjoyable talk 2 as it includes a mix of science, DIY and practical beekeeping.

Nest sites, bait hives and evolution

The science would be familiar to anyone who has read Honeybee Democracy by Thomas Seeley. This describes his studies of the features considered important by the scout bees in their search for a new nest site 3.

Under offer ...

Under offer …

The most important of these are:

  • a 40 litre cavity (shape unimportant)
  • a small entrance of 10-15cm2
  • south facing
  • shaded but in full view
  • over 5m above ground level
  • smelling of bees

All of which can easily be replicated using a National brood box with a solid floor. Or two stacked supers.

And – before you ask – a spare nuc box is too small to be optimal.

That doesn’t mean it won’t work as a bait hive, just that it won’t work as well as one with a volume of 40 litres 4.

Evolution has shaped the nest site selection process of honey bees. They have evolved to preferentially occupy cavities of about 40 litres.

Presumably, colonies choosing to occupy a smaller space (or those that didn’t choose a larger space 5 ) were restricted in the amount of brood they could raise, the consequent strength of the colony and the weight of stores they could lay down for the winter.

Get these things wrong and it doesn’t end well 🙁

A swarm occupying a nuc box-sized cavity would either outgrow it before the end of the season, potentially triggering another round of swarming, or fail to store sufficient honey.

Or both.

Over thousands of colonies and thousands of years, swarms from colonies with genetics that chose smaller cavities would tend to do less well. In good years they might do OK, but in bad winters they would inevitably perish.

Bait hive compromises

If you set out a nuc box as a bait hive, you’re probably not intending to leave the swarm in that box.

But the bees don’t know that. Their choices have been crafted over millenia to give them the best chance of survival.

All other things being equal they are less likely to occupy a nuc box than a National brood box.

Another day, another bait hive, another swarm …

For this reason I don’t use nuc boxes as bait hives.

However, I don’t recapitulate all the features the scout bees look for in a ‘des res’.

I studiously ignore the fact that bees prefer to occupy nest sites that are more than 5 metres above ground level.

This is a pragmatic compromise I’m prepared to make for reasons of convenience, safety and enjoyment.

Bees have probably evolved to favour nest sites more than 5 metres above ground level to avoid attention from bears. The fact that there are no bears in Britain, and haven’t been since the Middle Ages 6, is irrelevant.

The preference for high altitude nest sites was ‘baked into’ the genetics of honey bees over the millenia before we hunted bears 7 to extinction.

However, I ignore it for the following reasons:

  • convenience – I usually move occupied bait hives within 48 hours of a swarm arriving. It’s easier to do this from a knee height hive stand than from a roof ladder.
  • safety – I often move the bait hive late in the evening. Rather than risk disturbing a virgin queen on her mating or orientation flights (assuming it’s a cast that has occupied the bait hive) I move them late in the day. In the ‘bad old days’ when I often didn’t return from the office until late, this was sometimes in the semi-dark. Easy and safe to do at knee height … appreciably less so at the top of a ladder.
  • enjoyment – I can see the scout bees going about their business at a hive near ground level without having to get the binoculars out. Their behaviour is fascinating. If you’ve not watched them I thoroughly recommend it.

Scout bee activity

The swarming of honey bees is a biphasic process. In the first phase the colony swarms and forms a temporary bivouac nearby to the original nest site.

The two stage process of swarming

The scout bees search an area ~25 km2 around the bivouacked swarm for suitable nest sites. They communicate the quality and location of new nest sites by performing a waggle dance on the surface of the bivouac.

Once sufficient scouts have been convinced of the suitability of one of the identified nest sites the second phase of swarming – the relocation of the swarm – takes place.

Swarm of bees

Swarm of bees

However, logic dictates that the scout bees are likely to have already identified several potential new nest sites, even before the colony swarms and clusters in a bivouac.

There are only a few hundred scout bees in the swarmed colony, perhaps 2-3% of the swarm.

Could just a few hundred scouts both survey the area and reach a quorum decision on the best location within a reasonable length of time?

What’s a reasonable length of time?

The bivouacked swarm contains a significant amount of honey stores (40% by weight) but does not forage. It’s also exposed to the elements. If finding sites and reaching a decision on the best nest site isn’t completed within a few days the swarm may perish.

Which is why I think that scout bees are active well before the colony actually swarms.

Early warning systems

If scout bees are active before a colony swarms they could be expected to find and scrutinize my bait hive(s).

If I see them doing this I’m forewarned that a colony within ~3 km (the radius over which scout bees operate) is potentially making swarm preparations.

Since I’ll always have a bait hive or two within 3 km of my own apiaries I’ll check these hives at the earliest opportunity, looking for recently started queen cells.

Whether they’re my colonies or not, it’s always worth knowing that swarming activity has started. Within a particular geographic area, with similar weather and forage, there’s usually a distinct swarming period.

If it’s not one of my colonies then it soon might be 😉

So, in addition to just having the enjoyment of watching the scout bees at work, a clearly visible – ground level – bait hive provides a useful early warning system that swarming activity has, or soon will, start.

Questions and answers

Although talking about swarms and bait hives is enjoyable, as I’ve written before, the part of the talk I enjoy the most is the question and answer session.

And Tuesday was no exception.

I explained previously that the Q&A sessions are enjoyable and helpful:

Enjoyable, because I’m directly answering a question that was presumably asked because someone wanted or needed to know the answer 8.

Helpful, because over time these will drive the evolution of the talk so that it better explains things for more of the audience.

Actually, there’s another reason in addition to these … it’s a challenge.

A caffeine-fueled Q&A Zoom session

It’s fun to be ‘put on the spot’ and have to come up with a reasonable answer.

Many questions are rather predictable.

That’s not a criticism. It simply reflects the normal range of topics that the audience either feels comfortable asking about, or are interested in. Sometimes even a seemingly ‘left field’ question, when re-phrased, is one for which there is a standard answer. The skill in this instance is deciphering the question and doing the re-phrasing.

But sometimes there are questions that make you think afresh about a topic, or they force you to think about something you’ve never considered before.

And there was one of those on Tuesday which involved biphasic swarming and scout bee activity.

Do all swarms bivouac?

That wasn’t the question, but it’s an abbreviated form of the question.

I think the original wording was something like:

Do all swarms cluster in a bivouac or do some go directly from the original hive/location to the new nest site?

And I didn’t know the answer.

I could have made a trite joke 9 about not observing this because my own colonies swarm so infrequently 🙄

I could have simply answered “I don’t know”.

Brutally honest, 100% accurate and unchallengeable 10.

But it’s an interesting question and it deserved better than that.

So, thinking about it, I gave the following answer.

I didn’t know, but thought it would be unlikely. For a swarm to relocate directly from the original nest site the scout bees would need to have already reached a quorum decision on the best location. To do this they would need to have found the new nest site (which wouldn’t be a problem) and then communicate it to other scout bees, so that they could – in turn – find the site. Since this communication involves the waggle dance it would, by definition, occur within the original hive. Lots of foragers will also be waggle dancing about good patches of pollen and nectar so I thought there would be confusion … perhaps they always need to form a bivouac on which the scout bees can dance? Which explains why I think it’s unlikely.

In a Zoom talk you can’t ponder too long before giving an answer or the audience will assume the internet has crashed and they’ll drift off to make tea 11.

An attentive beekeeping audience … I’d better think fast or look stupid

You therefore tend to mentally throw together a few relevant facts and assemble a reasonable answer quite quickly.

And then you spend the rest of the week thinking about it in more detail …

Second thoughts

I still don’t know the answer to the question Do all swarms bivouac?”, but I now realise my answer made some assumptions which might be wrong.

I’ll come to these in a minute, but first let me address the question again with the help of the people who actually did the work.

I’ve briefly looked back through the relevant literature by Seeley and Lindauer and cannot find any mention of swarms relocating without going via a bivouac. I may well have missed something, it wouldn’t be the first time 12.

However, their studies are a little self-selecting and may have overlooked swarms that behaved like this.

Both were primarily interested in the waggle dance and the decision making process, they therefore needed to be able to observe it … most easily this is on the surface of the bivouac.

Martin Lindauer mainly studied colonies that had naturally swarmed, naming them after the location of the bivouac, and then studied the waggle dancing on the surface of the clustered swarm. In contrast, Tom Seeley created swarms by caging the queen and adding thousands of very well fed bees.

Absence of evidence is not evidence of absence.

So, what were the assumptions I made?

There were two and they both relate to confusion between waggle dancing foragers and scout bees.

  1. Swarming usually occurs during a strong nectar flow. Therefore there are likely to be lots of waggle dancing foragers in the hive at the same time the scouts are trying to persuade each other – using their own fundamentally similar – waggle dances.
  2. Bees ‘watching’ are unable to distinguish between scouts bees and foragers.

So, what’s wrong with these assumptions?

A noisy, smelly dance floor

Foragers perform the waggle dance on the ‘dance floor’. This is an area of vertical comb near the hive entrance. It’s position is not fixed and can move – further into the hive if the weather is cold, or even out onto a landing board (outside the hive) in very hot weather 13.

So, although the dance floor occupied by foragers isn’t immovable, it is defined. There’s lots of other regions of the comb that scouts could use for their communication i.e. there could be spatial separation between the forager and scout bee waggle dances.

Secondly, foragers provide both directional and olfactory clues about the identity and location of good sources of pollen and nectar. In addition to two alkanes and two alkenes produced by dancing foragers 14 they also carry back scents “acquired from the environment at or en route to the floral food source” which are presumed to aid foragers recruited by the waggle dancer to pinpoint the food source.

Importantly, non-dancing returning foragers do not produce these alkanes and alkenes. Perhaps the dancing scouts don’t either?

A dancing scout would also lack specific scents from a food source.

Therefore, at least theoretically, there’s probably a good chance that scout bees could communicate within the hive. Using spatially distant dances and a unique combination of olfactory clues (or their absence) scouts may well be able to recruit other scouts to check likely new nest sites.

All of which would support my view that bait hives provide a useful early warning system for colonies that are in the very earliest stages of swarm preparations … rather than just an indicator that there’s a bivouacked swarm in the vicinity.

But?

All this of course then begs the question … if the scout bees can communicate within the hive, why does the swarm need to bivouac at all?

The bivouac must be a risky stage in the already precarious process of swarming. 80% of wild swarms perish. At the very least it’s subject to the vagaries of the weather. Surely it would be advantageous to stay within the warm, dry hive until a new nest site is identified?

Apple blossom ...

Apple blossom … and signs that a bivouacked swarm perished here

This suggests to me that the bivouac serves additional purposes within the swarming process. A couple of possibilities come to mind:

  • the gravity-independent, sun-orientated waggle dancing 15 on the surface of the bivouac may be a key part of the decision making process, not possible (for reasons that are unclear to me) within the confines of the hive.
  • the bivouac acts to temporally coordinate the swarm. A swarm takes quite a long time to settle at the bivouac. Many bees leave the hive during the excitement of swarming but not all settle in the bivouac. Perhaps it acts as a sorting mechanism to bring together all the bees that are going to relocate, separate from those remaining in the swarmed colony?

Clearly this requires a bit more thought and research.

If your association invites me to discuss swarms and bait hives next winter I might even have an answer.

But, as with so many things to do with bees, knowing that answer will only spawn additional questions 😉


 

Going the distance

I’m going to continue with a topic related to the waggle dance this week.

This is partly so I can write about the science of how bees measure distance to a food source.

But it’s also to encourage those who didn’t read the waggle dance post to visit it. Weirdly it was only read by about 50% of the usual Friday/weekend readership and I suspect (from a couple of emails I received) that the weekly post to subscribers ended up in spam folders 1.

If you remember, the duration of the waggle phase of the dance – the straight-line abdomen-wiggling sashay across the ‘dance floor’ – indicates the distance from the nest to the desirable food source 2. The vigour of the wiggle indicates the quality of the source.

How do bees measure distance?

Karl von Frisch, the first to decode the waggle dance, favoured the so-called ‘energy hypothesis’. In this, the distance to a food source was determined by the amount of energy used on the outbound flight.

Does that seem logical?

Foragers forage randomly, but usually return directly

If correct, foragers would only be able to determine the energy used after their second trip to a food source. This presumes their first trip was longer as they searched the environment for something worth dancing about 3.

This would be an easy thing to test, though I’m not sure it was ever investigated 4.

As it happens, far better brains determined that the energy hypothesis was probably incorrect. Many of these studies explored how gravity influences the distances reported by dancing foragers.

Going up!

Bees use more energy when flying up. For example, when flying from ground level to the top of a tall building, when compared to level flight. Similarly, they use more energy flying if they have small weights attached to them 5.

A series of experiments, nicely reviewed by Harald Esch and John Burns 6, failed to provide good support for the energy hypothesis. There were lots of these studies, involving steep mountains, tall buildings or balloons, between the 1950’s and mid-80’s.

Interesting science, and no doubt it was a lot of fun doing the experiments.

For example, bees flying to a sugar feeder situated on top of a tall building dance to ‘report’ the same distance as bees from the same hive flying to a feeder at ground level adjacent to the same building.

Similarly, foragers loaded with weights do not overestimate the distance to a food source, as would be expected if the energy expended to reach it was being measured 7.

Interesting and entertaining science certainly, but none of it providing compelling support for the energy hypothesis

It’s notable that there is a rather telling sentence from the Esch & Burns review that states “While reading the original papers, one gains the impression that evidence supporting the energy hypothesis was favored over arguments against it”.

Ouch!

Splash landing

Although Von Frisch was a supporter of the energy hypothesis 8 he also published a study that provided evidence for our current understanding of how bees measure distance.

Bees generally don’t like flying long distances over water. Von Frisch provided two equidistant nectar sources, one of which was situated on the other side of a lake.

Bees flying over calm water underestimate distances

On very calm days the bees that flew across the lake under-reported the distance to the feeder. This underestimate was by 20-25% when compared to bees flying to an equidistant feeder overland.

Von Frisch commented “the bee’s estimation of distance is not determined through optical examination of the surface beneath her”.

He assumed that the mirror-like water surface provided no optical input as it contained no visual ‘clues’. After all, one calm patch of water looks much like any other. Von Frisch used this as an argument for the energy hypothesis.

He also noted that the bees generally flew very low over the water surface, often so low that they drowned 🙁

Perhaps these bees were flying dangerously low to try and find optical clues.

Such as their height above the surface?

Or perhaps the distance travelled?

Going with the flow

Having debunked the energy hypothesis, Esch & Burns proposed instead the optic flow hypothesis. This states that “foragers use the retinal image flow of ground motion to gauge feeder distance”.

Imagine optic flow as tripping a little odometer in the bee brain that records distance as her eyes observe the environment flashing past during flight. The clever thing about that is that the environment is variable. It’s not like counting off regularly spaced telegraph poles from a train window.

When flying, environmental objects that are nearby will move across her vision much faster than distant objects. Bees don’t have stereo vision, but instead use this speed of image motion to infer range.

Optic flow – the arrow size indicates the speed with which the object apparently moves, and hence its range

Esch & Burns returned again to tall buildings to provide supporting evidence for their optic flow hypothesis. They trained bees to fly between two tall buildings with 228 metres separating the hive and the feeder 9.

Returning foragers reported that the food source was only 125 metres away.

However, the bees didn’t make a direct flight. Instead they flew at altitude for 30-50 metres, descended to fly much lower, then ascended again to approach the feeder again at altitude.

Esch & Burns experiment to support the optic flow hypothesis

The interpretation here was that the high altitude flight provided insufficient optic flow to measure distance. The bees descend to get the visual input needed to judge distance, but it’s only for part of the flight … hence leading to under-reporting the distance separating the hive and feeder.

Tunnel vision

Jurgen Tautz 10 and colleagues trained bees to forage in a short, narrow tunnel 11. This elegant experiment provided compelling support for the optic flow hypothesis.

The tunnel was ~6 m long and with a cross sectional area of ~200 cm2 – big enough for a bee to fly along, but sufficiently narrow so that the bee would be closer to the ‘walls’ than in normal free flight. The walls and floor of the tunnel had a random visual texture. Only the end of the tunnel facing the hive was open.

The tunnel experiment.

These studies were conducted when the terms round and waggle were used to distinguish the dance induced by food sources <50 m and >50 m respectively from the hive 12. Rather than emphasise the shape of the dance I’ll just describe it as a >50 m or <50 m waggle dance.

‘Tunneling’ bees misreport distances

In the first tunnel experiment (1) the feeder was 35 m from the hive. 85% of dances indicated the feeder was <50 m away. However, when the feeder was moved to the opposite end of the tunnel (2) – still only 41 m from the hive – 90% of the dances indicated the feeder was >50 m away.

To test how the random pattern influenced the perceived distance the scientists used a third tunnel (3) lined with lengthwise stripes. In this instance – despite the feeder position being unchanged from experiment 2 – 90% of the dances indicated the feeder was <50 m away.

The stripes were predicted to ‘work’ in the same way as the smooth lake surface, providing no visual clues.

In the fourth experiment (4) the feeder was 6 m along a randomly patterned tunnel, which was placed just 6 m from the hive. Over 87% of dances indicated that the feeder was >50 m away.

Interpreting the waggle run

In open flight 13 there is usually an excellent correlation between the duration of the waggle run and the distance to a feeder (see the graph below 14 ). By extrapolation, the bees in experiments 2 and 4 ‘thought’ they had flown 230 m and 184 m respectively. In reality they had flown only 41 m and 12 m in these experiments.

Determining distances from waggle dance observation

How could the bees get it so wrong?

Increased optic flow

Tunnel-traversing bees fly just a few centimeters away from the visible ‘environment’.

As a consequence, at the same flight speed, they experience greater optic flow.

If, instead of driving around in your lumbering old van, you pack your hive tool in a Caterham 7 for the trip to the apiary you’d be well aware of what I mean.

Caterham 7 … check out that optic flow … then make another trip to collect the smoker

30 mph in a Toyota Hilux feels very much slower than 30 mph in a Caterham 7. This is largely because visual reference points, like the broken white lines between lanes in the road, appear in and disappear from your field of view much faster … because you’re much closer to them.

Because the tunnel dimensions were known it was possible to calculate the calibration of the bee’s odometer. Classically this would be defined in terms of metres of distance flown generating a particular waggle run length or duration.

These tunnel studies demonstrate that distance flown is not what calibrates the odometer. Instead it’s quantified indirectly in terms of the image motion experienced by the eye. Since environments vary the way to express this is the amount of angular image motion that generates a given duration of waggle.

And, using some mathematical trickery we don’t need to bother with 15, it turns out that this angular motion is only dependent upon distance flown, not the speed of flight.

This is important. Headwinds or tailwinds could change the speed of flight, but not the distance flown 16.

It’s all relative

It’s worth emphasising that the dance followers in experiments 2 (above) should still find the feeder.

The waggle dance would ‘instruct’ them to fly 230 m at the bearing indicated and they’d experience the same visual clues en route.

This means that they should still enter the narrow tunnel and experience increased optic flow because of the encroaching walls. But they’d be experiencing the same optic flow the initial dancing bee had experienced, so would not attempt to fly further down the tunnel.

This means that the optic flow experienced is context dependent. It is related to the environment the bees are foraging in.

This makes sense as the dancing bees and dance followers all occupy the same environment.

How do we know this? 17

Changing the environment

If we change the environment the dance followers search at the wrong distance.

I qualified the statement above when I said that the dance followers should still enter the tunnel and find the feeder.

Actually, most recruits will miss the tunnel entrance – remember it’s smaller that a sheet of A5 paper. At 35 m distance a bee would have to get the bearing correct to about 0.16° to enter the tunnel 18.

So the bees that do not enter the tunnel experience a different environment.

Where do they search for the feeder?

They search at the distance indicated by the waggle duration … so bees that missed the tunnel entrance in experiment 2 (above) would have searched for the feeder 230 m from the hive. Similarly, the dance followers in experiment 4 would have searched 184 m away 19

Context dependent dance calibration

And, finally, the calibration of the odometer depends upon the environment.

Odometer calibration depends upon the environment

If the environment experienced by the dancing bee en route to the feeder in experiments 2 and 4 is different, then it generates a different relationship between waggle run duration and distance.

For example, if one feeder was across a closely mown lawn and the other was across dense shrubby woodland, they would each generate a unique optic flow, so changing the image motion experienced, and hence the waggle run generated.

In the diagram above, you shouldn’t use dance calibration for bees trained to direction A to determine the distance bees going in direction B would forage.

Phew!

Optic flow, waggle dancing and implications for practical beekeeping

None 😉

At least, none that I can think of.

A Caterham 7 isn’t an ideal car for a beekeeper but would be a lot of fun to help you understand optic flow 😉

Most of us keep our bees in mixed environments. Your apiary isn’t situated with a cliff edge on one side and an unbroken prairie on the other. Since the environment is mixed, the waggle dance calibration is not going to be wildly different, whichever way the bees fly off in. You can therefore use an approximate figure of 1 second per kilometre to estimate the the distance at which your bees are foraging, irrespective of the direction they go.


Notes

Most of the referenced studies are at least two decades old. Honey bees have remained a fertile research tool for neurobiologists. Our understanding of honey bee vision continues to improve. However, I cannot discuss any of these more recent studies with reference to optic flow. Anyway, just because they’re old doesn’t make the experiments any less elegant or interesting 🙂

 

The waggle dance

Ask a non-beekeeper what they know about bees and you’ll probably get answers that involve honey or stings.

Press them a little bit more about what they know about other than honey and stings and some will mention the ‘waggle dance’. 

Karl von Frisch

That the waggle dance is such a well-known feature of honey bee biology is probably explained by two (related) things; it involves a relatively complex form of communication in a non-human animal, and because Karl von Frisch – the scientist who decoded the waggle dance – received the Nobel Prize 1 for his studies in 1973.

Von Frisch did not discover the waggle dance. Nicholas Unhoch described the dance at least a century before Von Frisch decoded the movement, and Ernst Spitzner – 35 years earlier still – observed dancing bees and suggested they were communicating odours of food resources available in the environment.

Inevitably, Aristotle also made a contribution. He described flower constancy 2 and suggested that foragers could communicate this to other bees.

Language and communication are important. The development of language in early humans almost certainly contributed to the evolution of our culture, society and technology. Communication in non-human animals, from the chirping of grasshoppers to the singing of whales, is of interest to scientists and non-scientists alike.

It is therefore unsurprising that the ‘dance language’ of honey bees is also of great interest. Although not a ‘language’ in the true sense of the word, Von Frisch described the symbolic language of bees as “the most astounding example of non-primate communication that we know” over 50 years ago. This still applies.

The waggle dance

The waggle dance usually takes place in the dark on the vertical face of a comb in the brood nest, usually close to the nest entrance. The dance is performed by a successful forager i.e. one that has located a good source of pollen, nectar or water, and provides information on the presence, the quality, identity, direction and distance of the source, so enabling nest-mates to find and exploit it.

The dance consists of two phases:

  1. The figure of eight-shaped ‘return phase’ in which the bee circles back, alternately clockwise and anticlockwise, to the start of …
  2. The ‘waggle phase’, which is a short linear run in which the dancer vigorously waggles her abdomen from side to side.

The direction of the food source is indicated by the angle of the waggle phase from gravity i.e. a vertical line down the face of the comb. This angle (α in the figure below) indicates the bearing from the direction of the sun that needs to be followed to reach the food source. 

For example, if the dancer performs a waggle phase vertically down the face of the comb, the food source must be opposite the current position of the sun.

The waggle dance

The distance information is conveyed by the duration of the waggle phase. The longer this run is, the more distant the source. A run of 1 second duration indicates the food source is about 1 kilometre away.

The quality of the food source is indicated by the vigour of the waggling during the waggle phase and the speed with which the return phase is conducted. 

Surely it can’t be that simple?

Yes, it can.

What I’ve described above allows you to interpret the waggle dance sufficiently well to know where your bees are foraging.

Next time you lift a frame from a hive and see a dancing bee, circling around in a little cleared ‘dance floor’ surrounded by a group of attentive workers, try and decode the dance.

Remember that the dance is performed with relation to gravity in the darkened hive. You’re looking to identify the angle from a vertical line up the face of the brood comb to determine the direction from the sun.

Time a few waggle phases (one elephant, two elephants etc.) and you’ll know how far away the food source is.

Really, it’s that simple?

Of course not 😉

The waggle dance was decoded more than half a century ago and remains an active subject for researchers interested in animal communication.

What you’ll miss in your observations is an indication of the type of nectar or pollen resource that the dancing bee is communicating. The dancing worker carries the odour of the food source and may also regurgitate nectar, presumably helping those ‘watching’ (remember, it’s dark … nothing to see here!) determine the type of resource to look for when they leave the hive.

You will also be unable to detect the pulsed thoracic vibrations that the dancing bee produces. These are also indicators of the quality of the food source; better (e.g. higher sucrose content) resources elicit increased pulse duration, velocity amplitude and duty cycle, though the number of pulses is related to the duration of the waggle phase, and so is another potential indicator of distance.

Inevitably, there are also pheromones involved.

There always are 😉

The dancing bee produces two alkanes, tricosane and pentacosane, and two alkenes, Z-(9)-tricosene and Z-(9)-pentacosene. These appear to stimulate foraging activity 3.

But it’s cloudy … or rain stops play … or nighttime

What happens to dancing bees if foraging is interrupted, for example by poor weather or night? 

The dancing bee continues to change the angle of the waggle phase as the sun moves across the sky. This means that a dancing bee will correctly signal the direction to the food source, even if they have not left the hive for several hours.

During their initial orientation flights they learn the sun’s azimuth as a function of the time of day, and use this to compensate for the sun’s time-dependent movement.

Some bees even dance during the night, in which case the watching workers must presumably make their own compensations for the time that has elapsed since the dance 4.

And what happens if the sun is obscured … by clouds, or buildings or dense woodland? How can those directions be followed?

Under these circumstances the foraging bee detects the position of the sun by the pattern of polarised light in the sky. 

Scout bees

The waggle dance is also performed by scout bees on the surface of a bivouacked swarm. In this instance it is used to communicate the quality, direction and distance of a new potential nest site. 

Swarm of bees

Swarm of bees

The intended audience in this instance are other scout bees, rather than the general forager population 5. These scouts use a quorum decision making process to determine the ‘best’ nest site in the area to which the bivouacked swarm eventually relocates.

The shape of the bivouac often lacks a true vertical surface. However, since it’s in the open the dancing bees can orientate the waggle run directly with relation to the sun’s direction, rather than to gravity.

Under experimental conditions the dancing bee can communicate the presence and quality of a food source on a horizontal comb, but – with no reference to gravity – all directional information is lost 6.

The round dance

The duration of the waggle phase is related to the distance from the nest to the food source. Therefore the recognisable waggle dance tends to get difficult to interpret for sources very close to the nest.

It used to be thought that there was a distinct directionless dance (the ’round dance’) for these nearby i.e. 10-40 metres, food sources. However, more recent study 7 suggests that dancers were able to convey both distance and direction information irrespective of the separation of nest and food source. This indicates that bees have just one type of dance for forager recruitment, the waggle dance.

Do all bees communicate using a waggle dance?

There are a very large number of bee species. In the UK alone there are 270 species, 250 of which are solitary.

There’s a clue.

Solitary bees are like me at a disco … they have no one to dance with 🙁

I’ll cut to the chase to help you erase that vision.

The only bees that use the waggle dance are honey bees. These all belong to the genus Apis.

They include our honey bee, the western honey bee (Apis mellifera), together with a further seven species:

  1. Black dwarf honey bee (Apis andreniformis)
  2. Red dwarf honey bee (Apis florea)
  3. Giant honey bee (Apis dorsata)
  4. Himalayan giant honey bee (Apis laboriosa
  5. Eastern honey bee (Apis cerana)
  6. Koschevnikov’s honey bee (Apis koschevnikovi)
  7. Philippine honey bee (Apis nigrocincta)

Dancing and evolution

Dwarf honey bees nest in the open on a branch and dance on the horizontal surface of the nest. The waggle run is orientated ‘towards’ the food source. Apis dorsata is also an open-nesting bee, but forms large vertically-hanging combs. It dances relative to gravity, and indicates the direction by the angle of the waggle run in the same way that A. mellifera does.

The cavity nesting bees, A. cerana, A. mellifera, A. koschevnikovi, and A. nigrocinta produce the most developed form of the dance.

The dances of A. mellifera and A. cerana are sufficiently similar that they can follow and decode the dance of the other.

The complexity of the nest site and the waggle dance reflects the evolution of these bee species. The earliest to evolve (i.e. the most primitive), A. andreniformis and florea, have the simplest nests and the most basic waggle dance. In contrast, the cavity nesting species evolved most recently, form the most complex brood nests and have the most derived waggle dance.

When and why did the waggle dance evolve?

Assuming that the waggle dance did not independently evolve (there’s no evidence it did, and ample evidence due to its similarity between species that it evolved only once) it must have first appeared at least 20 million years ago, when extant honey bee species diverged during the early Miocene.

The ‘why’ it evolved is a bit more difficult to address.

Behavioural changes often arise in response to the environment in which a species evolves.

Bipedalism in non-human primates (like the australopithecines) is hypothesised to have evolved in part due to a reduction in forest cover and the increase in savannah. Apes had to walk further between clumps of trees and bipedalism offered greater travel efficiency.

Perhaps the waggle dance evolved to exploit a particular type or distribution of food reserves?

In this regard it is interesting that the ‘benefit’ of waggle dance communication varies through the season.

If you turn a hive on its side the combs are horizontal 8. Under these conditions the dancing bees can communicate the presence and quality of a food source. However, they cannot communicate its location (either direction or distance).

No directional or distance information is now available

In landmark studies Sherman and Visscher 9 showed that, at certain periods during the season, the absence of this positional information did not affect the weight gain by the hive i.e. the foraging efficiency of the colony.

They concluded that during these periods forage must be sufficiently abundant that simply stimulating foraging was sufficient. Remember those alkanes and alkenes produced by dancing bees that do exactly that?

Tropical habitats

This observation, and some elegant experimental and modelling studies, suggest that dancing is beneficial when food resources are: 

  • sparsely distributed – therefore difficult (and energetically unfavourable) to find by individual scouting
  • clustered or short-lived resources – when it’s gone, it’s gone
  • distributed with high species richness – if there’s a huge range of flowers, which are the most energetically rewarding (sugar-rich) to collect nectar from?

One of the experimental studies that contributed to these conclusions (though there’s still controversy in this area) was the demonstration that waggle dancing was beneficial in a tropical habitat, but not in two temperate habitats. This makes sense, as food resources have different spatiotemporal distribution in these habitats. Tropical habitats are characterised by clustered and short-lived resources.

Therefore the suggestion is that the waggle dance of Apis species evolved, presumable early in the speciation of the genus, in a tropical region where food resources were patchily distributed, available for only limited period and present alongside a wide variety of other (less good) choices.

For example, like individual trees flowering in a forest …

Finally, it’s worth noting that there is evidence that bees that dance are able to successfully exploit food resources further away than would otherwise be expected from their body size.

This also makes sense.

It’s much less risky flying off over the horizon if you know there’s something to collect once you get there 10.


Notes

If you arrived here from my Twitter feed (@The_Apiarist) you’ll have seen the tweet started with the words “Dance like nobody’s watching”, words that are often attributed to Mark Twain. 

The full quote is something like “Dance like nobody’s watching; love like you’ve never been hurt. Sing like nobody’s listening; live like it’s heaven on earth”.

Pretty sound advice.

But it’s not by Mark Twain. It’s actually from a country music song by Susanna Clark and Richard Leigh. This was first released on the Don Williams album Traces in 1987. So only about 90 years out 😉 

Smell the fear

With Halloween just around the corner it seemed appropriate to have a fear-themed post.

How do frightened – or even apprehensive – people respond to bees?

And how do bees respond to them?

Melissophobia is the fear of bees. Like the synonym apiphobia, the word is not in the dictionary 1 but is a straightforward compounding of the Greek μέλισσα or Latin apis (both meaning honey bee) and phobos for fear.

Melissophobia is a real psychiatric diagnosis. Although people who start beekeeping are probably not melissophobic, they are often very apprehensive when they first open a colony.

If things go well this apprehension disappears, immediately or over time as their experience increases.

If things go badly they might develop melissophobia and stop beekeeping altogether.

Even relatively experienced beekeepers may be apprehensive when inspecting a very defensive colony. As I have discussed elsewhere, there are certain times during the season when colonies can become defensive. These include when queenless, during lousy weather or when a strong nectar flow ends.

In addition, some colonies are naturally more defensive than others.

Some could even be considered aggressive, making unprovoked attacks as you approach the hive.

A defensive response is understandable if the colony is being threatened. Evolution over eons will have led to acquisition of appropriate responses to dissuade natural predators such as bears and honey badgers.

I’m always careful (and possibly a little bit apprehensive) when looking closely at a completely unknown colony – such as these hives discovered when walking in the Andalucian hills.

If Carlsberg did apiaries ...

Apiary in Andalucia

How do bees detect things – like beekeepers or bears – that they might need to mount a defensive response against?

Ignore the bear

Bees have four senses; sight, smell, touch and taste. Of these, I’ve briefly discussed sight previously and they clearly don’t touch or taste an approaching bear 2 … so I’ll focus on smell.

Could they use smell to detect the scent of an approaching human or bear that is apprehensive of being stung badly?

Let’s forget the grizzly bear 3 for now. At over 200 kg and standing 2+ metres tall I doubt they’re afraid of anything.

Let’s instead consider the apprehensive beekeeper.

Do bees respond to the smell of a frightened human (beekeeper or civilian)?

This might seem a simple question, but it raises some interesting additional questions.

  • Is there a scent of fear in humans?
  • Can bees detect this smell?
  • Have bees evolved to generate defensive responses to this or similar smells?

If two beekeepers inspect the same colony and one considers them aggressive and the other does not, is that due to the beekeepers ‘smelling’ different?

I don’t know the answers to some of these questions, but it’s an interesting topic to think about the stimuli that bees have evolved to respond to.

The scent of fear

This is the easy bit.

Is there a distinctive scent associated with fear in humans?

The Scream by Edvard Munch (1895 pastel version)

Using some rather unpleasant psychological testing researchers have determined that there is a smell produced in sweat secretions that is associated with fear. Interestingly, the smell alone appears not to be detectable. The female subjects tested 4 were unable to consciously discriminate the smell from a control neutral odour.

However, the ‘fear pheromone’ alone caused changes in facial expression associated with fright and markedly reinforced responses to visual stimuli that induced fear.

Females could respond to the fear pheromone produced by males (and vice versa) and earlier MRI studies (involving significantly less unpleasant experiments) had shown that this smell was alone able to induce changes in the amygdala, the region in the brain associated with emotional processing.

So, there is a scent of fear in humans. We can’t consciously detect it, but that doesn’t make it any less real.

Can bees detect it?

Can bees smell the scent of fear?

This is where things get a lot less certain.

I’m not aware that there have been any studies on whether bees can definitively identify the fear pheromone produced by humans.

To conduct this study in a scientifically-controlled manner you would need to know precisely what the pheromone was. It would then be tested in parallel with one or several irrelevant, neutral or related (but different) compounds. In each instance you would have to identify a response in the bee that indicated the fear pheromone had been detected.

All of which is not possible as we don’t definitely know what the fear pheromone is chemically.

We do know it’s present in the sweat of frightened humans … but that’s about it. This makes the experiment tricky. Comparisons would also have to be made with sweat secretions present in the same 5 human when not frightened.

And what response would you look for? Usually bees are trained to respond in a proboscis extension test. In this a bee extends its proboscis in response to a recognised smell or taste.

But, as none of this has been done, there’s little point in speculating further.

So let’s ask the question the other way round.

Would bees be expected to smell the scent of fear?

Smell is very significant to bees.

They have an extremely sensitive sense of smell, reflected in their ability to detect certain molecules as dilute as one or two parts per trillion. Since many people struggle with visualising what that means it’s like detecting a grain of salt in an Olympic swimming pool 6.

Part of the reason we know that smell is so important to bees is because evolution has provided them with a very large number of odorant receptors.

Odorant receptors are the proteins that detect smells. They bind to chemical molecules from the ‘smell’ and these trigger a cellular response of some kind 7. Different odorant receptors have different specificities, binding and responding to the molecules that are present in one or more odours.

Odorant receptor diversity and sensitivity

Bees have 170 odorant receptors, more than three times the number in fruit flies, and double that in mosquitoes. Smell is clearly very important to bees 8.

This is perhaps not surprising when you consider the role of odours within the hive. These include the queen and brood pheromones and the chemicals used for kin recognition 9.

In addition, bees are able to find and use a very wide range of plants as sources of pollen and nectar and smell is likely to contribute to this in many ways.

Finally, we know that bees can detect and respond to a wide range of other smells. Even those present at very low levels which they may not have been exposed to previously. For example Graham Turnbull and his research team in St Andrews, in collaborative studies with Croatian beekeepers, are training bees to detect landmines 10 from the faintest ‘whiff’ of TNT they produce. This deserves a post of its own.

So, while we don’t know that bees could detect a fear pheromone, there’s a good chance that they should be able to.

Evolution of defensive responses

We’re back to some rather vague arm waving here I’m afraid.

In a rather self-fulfilling manner we don’t know if bees have evolved a defensive response to the fear pheromone of humans as – for reasons elaborated above – we don’t actually know whether they do respond to the fear pheromone.

We could again ask this question in a slightly different way.

Might bees be expected to have evolved a defensive response to the fear pheromone?

Long before we developed the poly nuc or the fiendishly clever Flow Hive, humans have been attracted by honey and have exploited bees to harvest it.

The ancient Egyptians kept bees in managed hives over 5000 years ago.

However, we can be reasonably certain that humans provided suitable nesting sites (which we’d now call bait hives) to attract swarms from wild colonies well before that.

But we’ve exploited bees for tens or hundreds of thousands of years more than that.

The ‘Woman(Man) of Bicorp” honey gathering (c. 8000 BC)

There are examples of Late Stone Age (or Upper Paleolithic c. 50,000 to 10,000 years ago) rock art depicting bees and honey from across the globe, with some of the most famous being in the Altamira (Spain) cave drawings from c. 25,000 years ago.

Survival of the fittest

And the key thing about many of these interactions with honey bees is that they are likely to have been rather one-sided. Honey hunting tends to be destructive and results in the demise of the colony – the tree is felled, the brood nest is ripped apart, the stores (and often the brood) are consumed.

None of this involves carefully caging the queen in advance 🙁

This is a strong selective pressure.

Colonies that responded earlier or more strongly to the smell of an apprehensive approaching hunter gatherer might be spared. These would survive to reproduce (swarm). Literally, the survival of the fittest.

All of this would argue that it might be expected that bees would evolve odorant receptors capable of detecting the fear pheromone of humans.

There’s no fire without smoke

There are (at least) two problems with this reasoning.

The first problem is that humans acquired the ability to use fire. And, as the idiom almost says, there’s no fire without smoke. Humans were regularly using fire 150-200,000 years ago, with further evidence stretching back at least one million years that pre-humans (Homo erectus) used fire.

And, if they were using fire you can be sure they would be using smoke to ‘calm’ the bees millenia before being depicted doing so in Egyptian hieroglyphs ~5,000 years ago.

It seems reasonable to expect that the use of smoke would mask the detection of fear pheromones, in much the same way that it masks the alarm pheromone when you give them a puff from your trusty Dadant.

The other problem is that it might be expected that the Mesolithic honey hunters had probably ‘got the job’ precisely because they weren’t afraid of bees. In extant hunter gatherer communities it’s known that there are specialists that have a particular aptitude for the role. Perhaps these beekeepersrobbers produce little of no fear pheromone in the first place?

What about other primates?

It’s well know that non-human primates (NHP’s), like chimpanzees and bonobo, love honey. They love it so much that they are responsible for an entire research area studying tool use by chimps.

Bonobo ‘fishing’ for termites using a tool (I couldn’t find a suitable one robbing honey)

Perhaps NHP’s produce a fear pheromone similar to that of humans? Since they haven’t learned to use fire (and they are very closely related to humans) bees may have evolved to respond to primate fear pheromone(s), and – by extension – to those of humans.

However, chimpanzees and related primates prefer to steal honey from stingless bees like Meliponula bocandei. The only information I could find suggested they avoided Apis mellifera, or “used longer sticks as tools“.

Perhaps not such a strong selective pressure after all …

More arm waving

A lot of the above is half-baked speculation interspersed with a smattering of evolutionary theory.

Bees clearly respond in different ways to different beekeepers. I’ve watched beekeepers retreat from a defensive colony which – later on the same training day – were beautifully calm when inspected by a different beekeeper.

Trainee beekeepers

Trainee beekeepers

Although this might have been due to differences in the production of fear pheromones, it’s clear that the bees are also using other senses to detect potential threats to the colony.

Look carefully at how outright beginners, intermediate and expert beekeepers move their hands when inspecting a colony.

The tyro goes slow and steady. Everything ‘by the book’. Not calm, but definitely very controlled.

The expert goes a lot faster. However, there’s no banging frames down, there are no sudden movements, the hands move beside the brood box rather than over it. Calm, controlled and confident.

In contrast, although the “knowing just enough to be dangerous” intermediate beekeeper is confident, they are also rushed and a bit clumsy. Hands move back and forwards over the box, movements are rapid, frames are jarred … or dropped. A bee sneaks inside the cuff and stings the unprotected wrist. Ouch!

“That’s an aggressive colony. Better treat it with care.”

You see what I mean about arm waving?

I strongly suspect movement and vibration trigger defensive responses to a much greater extent than the detection of fear pheromones in humans (if they’re detected at all).

Closing thoughts

You’ll sometimes read that bees respond badly to aftershave or perfumes. This makes sense to me only if the scent resembles one that the bees have evolved a defensive response against.

Don’t go dabbing Parfum de honey badger behind your ears before starting the weekly inspection.

Mellivora capensis – the honey badger. Believe me, you’re not worth it.

But why would they react aggressively to an otherwise unknown smell?

After all, they experience millions of different – and largely harmless – smells every day. Bees inhabit an environment that is constantly changing. One more unknown new scent does not immediately indicate danger. There would be an evolutionary cost to generating a defensive response to something that posed no danger.

And a final closing thought for you to dwell on …

Humans have probably been using fire to suppress honey bee colony aggression for hundreds of thousands of years.

Why haven’t bees evolved defensive responses to the smell of smoke? 11

Happy Halloween 🙂


 

Diutinus bees

Diutinus is Latin for long-lasting.

Diutinus bees are therefore long-lasting bees. These are the bees that, in temperate regions, maintain the colony through the winter to the warmer days of spring.

I’ve discussed the importance of these bees recently., and I’ve regularly made the case that protecting these ‘long-lived’ bees from the ravages of Varroa-vectored viruses is critical to reduce overwintering colony losses.

Winter is coming …

In most cases the adjective diutinus is replaced with ‘winter’, as in winter bees; it’s a more familiar term and emphasises the time of year these bees are present in the hive. I’ll generally use the terms interchangeably in this post.

Diutinus does not mean winter

From a scientific standpoint, the key feature of these bees is that they can live for up to 8 months, in contrast to the ~30 days a worker bee lives in spring or summer. If you are interested in what induces the production of long-lived bees and the fate of these bees, then the important feature is their longevity … not the season.

Furthermore, a proper understanding of the environmental triggers that induce the production of long-lived bees might mean they could be produced at other times of the season … a point with no obvious practical beekeeping relevance, but one we’ll return to in passing.

It’s worth emphasising that diutinus bees are genetically similar to the spring/summer bees (which for convenience I’ll refer to as ‘summer bees’ for the rest of the post). Despite this similarity, they have unique physiological features that contribute to their ability to thermoregulate the winter cluster for months and to facilitate spring build-up as the season transitions to spring.

What induces the production of winter bees? Is it a single environmental trigger, or a combination of factors? Does summer bee production stop and winter bee production start? What happens at the end of the winter to the winter bees?

Segueing into winter bee production 

The graph below shows the numbers of bees of a particular age present in the hive between the end of August and early December.

Colony age structure from August to December – see text for details

Each distinct colour represents bees reared in a particular 12 day ‘window’. All bees present before the 31st of August are blue. The next 12 day cohort of bees are yellow etc. The area occupied by each colour indicates the number of bees of a particular age cohort.

Note that egg laying (black) is negligible between early October and late November when it restarts.

The graph shows that that there is no abrupt change from production of summer bees to production of winter bees.

For example, about 95% of the blue bees have disappeared by December 1. Of the yellow bees, which first appeared in mid-September, about 33% are present in December. Finally, the majority of the lime coloured bees, that first put in an appearance in early October, are present at the end of December.

The colony does not abruptly stop producing short-lived summer bees on a particular date and switch to generating long-lived ‘diutinus’ winter bees. Instead, as late summer segues into early autumn, fewer short lived bees and more long lived bees are produced. 

Note that each cohort emerge from eggs laid 24 days earlier. The orange cohort emerging from 24/09 to 05/10 were laid within the first two weeks of September. This emphasises the need to treat early to reduce mite levels sufficiently to protect the winter bees.

Winter bees are like nurse bees but different

Before we consider what triggers the production of diutinus bees we need to discuss how they differ from summer bees, both nurses and foragers.

Other than being long-lived what are their characteristics?

Interaction of key physiological factors in nurse (green), forager (red) and winter bees (blue). Colored disks indicate the relative abundance of each factor.

The four key physiological factors to be considered are the levels of juvenile hormone (JH), vitellogenin (Vg) and hemolymph proteins and the size of the hypopharyngeal gland (HPG).

As summer nurse bees transition to foragers the levels of JH increases and Vg decreases. This forms a negative feedback loop; as Vg levels decrease, JH levels increase. Nurse bees have high levels of hemolymph proteins and large HPG, the latter is involved in the production of brood food fed to larvae.

So if that describes the summer nurse bees and foragers, what about the winter bees?

Winter bees resemble nurse bees in having low JH levels, high levels of VG and hemolymph proteins and large HPG’s. 

Winter bees differ from nurse bees in being long lived. A nurse bee will mature into a forager after ~3 weeks. A winter bee will stay in a physiologically similar state for months.

There have also been time course studies of JH and Vg levels through the winter. In these, JH levels decrease rapidly through October and November and are at a minimum in mid-January, before rising steeply in February and March.

As JH levels rise, levels of Vg and hemolymph proteins decrease and the size of the HPG decreases i.e. as winter changes to early spring winter bees transition to foragers.

Now we know what to look for (JH, Vg levels etc) we can return to think about the environmental triggers that cause these changes.

No single trigger

In temperate regions what distinguishes winter from autumn or spring? 

Temperatures are lower in winter.

Daylength (photoperiod) is shorter in winter.

There is less pollen and nectar (forage) available in winter.

Under experimental conditions it’s quite difficult to change one of these variables without altering others. For example, shifting a colony to a cold room (i.e. lowering the ambient temperature to <10°C) leads to a rapid decrease in JH levels (more winter bee-like). However, the cold room was dark, so perhaps it was daylength that induced the change? Alternatively, a secondary consequence of moving the colony is that external forage was no longer available, which could account for the changes observed.

And forage availability will, inevitably, influence brood rearing.

Tricky.

Reducing photoperiod alone does induce some winter bee-like characteristics, such as increases in the protein and lipid content of the fat bodies. It also increases resistance to cold and starvation. It can even cause clustering at elevated (~19°C) temperatures. However, critically, a reduced photoperiod alone does not appear to make the bees long lived. 

Remember also that a reduced photoperiod will limit foraging, so reducing the nutritional status of the colony. This is not insignificant; pollen trapping 2 in the autumn accelerates the production of winter bees.

But again, this may be an indirect effect. Reduced pollen input will lead to a reduction in brood rearing. Feeding pollen to broodless winter colonies induces egg-laying by the queen.

Brood, brood pheromones and ethyl oleate

One of the strongest clues about what factor(s) induces winter bee production comes from studies of free-flying summer colonies from which the brood is removed. In these, the workers rapidly change to physiologically resemble winter bees 3.

How does the presence of brood prevent the generation of diutinus bees?

There are some studies which demonstrate that the micro-climate generated in the colony by the presence of brood – elevated temperature (35°C) and 1.5% CO2 – can influence JH levels. 

However, brood also produces pheromones – imaginately termed brood pheromone – which does all sorts of things in the colony. I’ve discussed brood pheromone previously in the context of laying workers. The brood pheromone inhibits egg laying by worker bees.

Brood pheromone also contributes to a enhancement loop; it induces foraging which results in increased brood rearing and, consequently, the production of more brood pheromone.

One way brood pheromone induces foraging is by speeding the maturation of middle-aged hive bees into foragers. Conversely, when raised in the absence of brood, bees have higher Vg levels, start foraging later and live longer.

But it’s not only brood that produces pheromones.

Workers also produce ethyl oleate, a pheromone that slows the maturation of nurse bees, so reducing their transition to foragers.

A picture is worth a thousand words

All of the above is quite complicated.

Individual factors, both environmental and in the hive, have direct and indirect effects. Experimentally it is difficult to disentangle these. However, Christina Grozinger and colleagues have produced a model which encapsulates much of the above and suggests how the production of winter bees is regulated. 

Proposed model for regulation of production of winter bees.

During autumn there is a reduction in forage available coupled with a reduced daylength and lower environmental temperatures. Consequently, there is less foraging by the colony. 

Since more foragers are present within the hive, the nurse bees are exposed to higher levels of ethyl oleate, so slowing their maturation.

There’s less pollen being brought into the colony (reduced nutrition), so brood production decreases and so does the level of brood pheromone. The reduced levels of brood pheromone also reduces nurse bee maturation.

As shown in the diagram, all of these events are in a feedback loop. The reduction in levels of brood pheromone further reduces the level of foraging … meaning more foragers are ‘at home’, so increasing the effects of ethyl oleate.

All of these events have the effect of retarding worker bee maturation. The workers remain as ‘nurse-like’ long-lived winter bees.

Is that all?

The difference between nurse bees and winter bees is their longevity … or is it?

In the description above, and in most of the experiments conducted to date, the key markers of the levels of JH, Vg and hemolymph proteins, and the size of the HPG, are what has been studied. 

I’d be astounded if there are not many additional changes. 

Comparison of workers and queen bees have shown a large range of epigenetic changes induced by the differences in the diet of young larvae 4. Epigenetic changes are modifications to the genetic material that change gene expression.

I would not be surprised if there were epigenetic changes in winter bees, perhaps induced by alteration of the protein content of their diet as larvae, that influence gene expression and subsequent longevity. Two recent papers suggest that this may indeed happen; the expression of the DNA methyltransferases (the enzymes that cause the epigenetic modifications) differs depending upon the demography of the colony 5 and there are epigenetic changes between the HPG in winter bees and bees in spring 6.

Clearly there is a lot more work required to fully understand the characteristics of winter bees and how they are determined.

Don’t forget …

It’s worth emphasising that the local environment (forage and weather in particular) and the strain of the bees 7 will have an influence on the timing of winter bee production.

Last week I discussed a colony in my bee shed that had very little brood on the 2nd of October (less than one side of one frame). When I checked the colonies last weekend (11th) there were almost no bees flying and no pollen coming in. A colleague checked an adjacent colony on Monday (13th) and reported it was completely broodless. These bees are ‘local mongrels’, selected over several years to suit my beekeeping.

Early autumn colonies

In contrast, my colonies on the west coast are still busy. These are native black bees. On the 14th they were still collecting pollen and were still rearing brood. 

The calendar dates in the second figure (above) are therefore largely irrelevant.

The transition from summer bees to the diutinus winter bees will be happening in your colonies, sooner or later. I suspect it’s already completed in my Fife bees.

Whether genetics or environment has a greater influence on winter bee production remains to be determined. However, I have previously described the good evidence that local bees are better adapted to overwintering colony survival.

To me, this suggests that the two are inextricably linked; locally selected bees are better able to exploit the environment in a timely manner to ensure the colony has the winter bees needed to get the colony through to spring.


 

More gentle beekeeping

I’ve done less beekeeping this year than any time in the past decade. The Covid-19 lockdown enforced changes to the way we live and work, meaning my contact with the bees has been ‘big and infrequent’ rather than ‘little and often’. 

‘Big and infrequent’ meaning a day or three of intense activity every month or so. I’ll write about this once the season is over as it has meant that the season has, in many ways, been very unrewarding … 🙁

… but nevertheless quite successful 🙂

23,000 iced buns

With the season winding to a close, now is the time to remove the supers of summer honey and prepare to feed the colonies for winter. 

Which means a couple of days of very heavy lifting.

I buy fondant in bulk as it stores well until it is needed. This year ‘bulk’ meant over 400 kg which, based upon this recipe, is enough for over 23,000 iced ‘finger’ buns 1. That’s too much to fit in my car (fondant or finger buns 😉 ), so entailed two trips and manhandling the boxes twice – from the pallet to the car and from the car to the shed.

Load 1 of 2 … there’s more in the passenger footwell!

During all that lifting and carrying I focus on the thought that fondant has a lower water content than syrup (~78% sugar vs ~60% for syrup) so I need to feed less weight to get the same amount of sugar into the hive.

And there’s no preparation needed or fancy (expensive) feeders to store for the rest of the year. 

As convenience foods go, it’s very convenient.

But after a dozen or two blocks, also very heavy 🙁

Beekeeper’s back

There’s a bittersweet irony to the honey harvest.

The more backbreakingly exhausting it is, the better it is. 

Not so much there’s no gain without pain” as “the more pain, the more gain”.

I have two main apiaries about 15 miles apart in Fife. I checked the hives in the first apiary and was disappointed to find the supers were mostly empty. This is a site which usually has good summer forage. The OSR had yielded well in the spring, but the colonies had then all had pre-emptive splits for swarm control, before being united back prior to the main flow.

Which appears not to have happened 🙁

I put clearers on the hives and returned the following day to collect a pathetically small number of full supers. There were some uncapped and part-filled frames, some of which contained fresh nectar 2 which I pooled together in the smallest number of supers possible.

I placed these above the floor but underneath the brood boxes.

This is termed nadiring, which isn’t actually a real word according to the OED. Nadir means the lowest point, but in the 17th Century (now obsolete and probably only used by beekeepers) nadir meant a point directly beneath an object.

The hope and expectation here is that the bees will find the stores beneath the cluster and move it up into the brood box, prior to me treating and feeding them up for winter.

Quick fix clearer board – hive side

On the same day I placed clearers underneath the (much heavier) supers in my second apiary. Actually, under about half the hives as I don’t have enough clearers for all the hives at once, even with a few Correx and gaffer tape bodged efforts to supplement them (shown above).

Clearing supers

I’ve discussed these clearers previously. With no moving parts and a deep rim on the underside the bees move down quickly. It’s not unusual to find the full 5cm depth full of bees the following morning.

Lots of bees

These bees have to be gently shaken back into the hive before replacing the crownboard and roof. This is easy on a calm, warm day with placid bees, but can be a little traumatic for everyone concerned if those three key ingredients are missing.

More lifting 🙁

Filled supers usually weigh between 37 and 50 lb (17-23 kg) each 3. Therefore, moving a dozen from the hives to the car and the car to the honey warming cabinet involves manually lifting about half a metric tonne. 

And that doesn’t include shaking off the few remaining bees which remain on individual frames. It’s not only my back that aches after this, but my fingers as well. Beekeeping, not such a gentle art as some might think.

I’ve previously noticed that more bees tend to remain in the supers if the colony is queenless.

This year the only queenless colony I found was also honeyless 🙁 

There was no need for the bees to remain in the supers … and no real evidence they’d been there in the first place.

This colony had a late queen mating fail (or perhaps lost on a mating flight) so I’ll unite it with a strong colony at the same time as I feed them and treat them for mites.

There’s obviously no point in feeding and treating before uniting or I’d jeopardise the reputation some beekeepers (including me 😉 ) have for being incredibly mean financially astute.

Lugless …

While shaking bees off one frame a lug broke. It’s a lovely frame of capped lime honey. Not close to show quality but pretty respectable all the same. I could scrape it back to the mid-rib and filter the honey or cobble together some sort of nail in place of the lug so I could spin it in the extractor. Instead I’m going to give it to friends who love honey direct from the comb … I’ll let them work out how to hang or stand it at the breakfast table.

The recovered supers were stacked on my honey warming cabinet set to 40°C. By the time heat losses are taken into account this maintains the supers at about 35°C, making the honey much easier to extract.

I usually rotate the stacks top to bottom and bottom to top a day before extracting. More lifting 🙁

Back in the apiary, the freed up clearers were placed under the supers on the remaining hives for collection the following day.

Storm Francis

Storm Francis only really arrived on the east coast of Scotland on Tuesday. It was windy and wet, but nothing like the pounding west Wales received. 

However, on early Tuesday morning when I arrived at the apiary it was wet.

Very wet.

There are few more demoralising sights than an apiary in really grey, wet and miserable conditions.

It was wetter and more miserable than this photo suggests …

There’s work to do and hives to open. Every single bee is ‘at home’. You know you’re going to get wet. It’s too blustery to use an umbrella and, anyhow, social distancing means there’s no-on there to hold one. 

Cold, clammy and heavy … a wet bee suit

The one saving grace is that the bees were incredibly calm.

I’d like to think they’ve been selectively bred over the years to be placid and well behaved, and that my skills as a beekeeper have been honed to the point where they barely know I’m there.

Hogwash.

It was so wet that they caused as little trouble as possible so that I got the roof back on the hive with the minimal delay 😉

Stings

Joking aside, these bees are calm and well behaved. Despite the flow being effectively over they haven’t become defensive. The majority of the colonies are very strong and they’re not being troubled by wasps, though these are searching out spilt honey and stores wherever possible. 

Our colonies in the bee shed are used for research and used to provide larvae and pupae for experiments. Members of my research team harvest brood when needed and, because they aren’t hugely experienced beekeepers, it’s important that the bees are not stroppy.

During the week I commented to a friend that I didn’t think I’ve been stung all season.

There may have been one of those glancing blows to a nitrile glove, but nothing that actually caused any pain or inconvenience.

Partly this is because I’ve done less beekeeping, but it also reflects repeated replacement of queens from stroppy colonies with selected calmer bees over past seasons. 

Aggressive bees do not collect more nectar. They are a menace to non-beekeepers and thoroughly unpleasant to work with. Fortunately, aggression is a relatively easy trait to select against and you can quickly see an improvement in colonies over just a couple of seasons.

Of course, I spoke too soon …

I lifted the lid on a stack of boxes containing old brood frames for melting down. To my complete surprise and considerable pain, I was greeted by a frenzied blitzkrieg of angry wasps.

Bang, bang, bang, bang, bang … BANG!

Five stings in less time than it takes to say it.

The final BANG was self inflicted as I hit the side of my head to try and squish a wasp before it burrowed into my ear and stung me.

Partial success … I crushed the wasp, but only after it had stung me on the cartilaginous pinna of my ear 🙁

I don’t know which hurt more … the sting or the blow to the side of my head.

These days I no longer bother setting wasp traps in my apiaries, instead relying on strong colonies (and reduced entrances or kewl floors) for defence. However, I’ve discovered that a strong washing up detergent spray is a good deterrent if wasps are getting into stacks of stored boxes. Spray the stripy blighters, stand back and let it do its work before blocking access with whatever you have to hand 4.

More bittersweet season endings

After about four days of intense beekeeping I’d removed all the supers, extracted the honey, collected the fondant, fed and treated all the colonies.

I’ll deal with feeding and treating next week (if I remember) but now need to rest my weary back and fingers … over the week I estimate I’ve lifted a cumulative total of 1200 kg of fondant and at least the same amount again of supers. 

The hives are now busy chucking out drones so they have fewer mouths to feed over the winter.

It’s a tough life being a drone in late August … but not for much longer

But to end on a more uplifting note, the honey crop was pretty good this summer 🙂


 

Orientation flights

Part of the reason for the success of honey bees is the division of labour between workers of different ages. Young workers (hive bees) clean the cells, nurse larvae and look after the queen. Older workers are foragers, collecting pollen and nectar (and water) from across the landscape.

To be successful, foragers need to know where to look and how to return.

The ‘where to look’ is partly accounted for by the well-known waggle dance 1.

In this post I’m going to discuss the second component of successful foraging – the homing ability of foragers.

More specifically, I’m going to discuss how the bee first learns about the location of the hive. 

Orientation flights

Bees do not instinctively know where the hive (or the tree they are nesting in for a wild colony) is located. They have to learn this before embarking on foraging trips to collect nectar or pollen.

This learning takes the form of one (or usually several – as we shall see) orientation flights. These enable the bee to memorise the precise location of the hive with relation to geographic landmarks. On subsequent foraging flights the bees use these landmarks to return to the hive.

Orientation flight have a characteristic appearance …

… and are very nicely described in the introduction to a paper by Capaldi and Dyer 2:

An orientation flight at the nest entrance begins as a departing bee turns and hovers back and forth, turning in short arcs, apparently looking at the hive entrance. Then, the bee increases the size of the arcs until, after a few seconds, she flies in circles while ascending to heights of 5–10 metres above the ground. This spiraling flight takes the bee out of sight of human observers. She returns a few minutes later, always without nectar or pollen.

Which I couldn’t have written any better, so have reproduced verbatim.

There are a number of features of the orientation flight that are immediately obvious from this description (which all beekeepers will recognize). These include:

  • A ‘local’ component, in the immediate vicinity of the hive
  • Wider ranging flight at a greater altitude and a longer distance
  • Direct observation does not allow the location, duration or track of these distant flights to be monitored
  • The bee returning from the orientation flight does not bring pollen or nectar with her

Do orientation flights allow orientation?

How do we know that these flights enable the bee to learn where the hive is located?

Early studies conducted by Becker (1958) showed that bees captured after a single orientation flight and then re-released up to 700 metres away from the hive could find their way ‘home’. In contrast, bees that had not gone on an orientation flight before were, by definition, disoriented and did not return to the hive.

However, the percentage that returned after undertaking a single orientation flight was related to the distance of the release point, and was never more than ~60% (at 200 metres). 

In contrast, reorienting older foragers (for example, as happens after moving a hive to a new location) were much better (~90%) at returning to the hive after a single reorientation flight. 

Capaldi and Dyer extended these early studies by Becker to investigate the impact of the visibility of local landmarks on orientation and reorientation, and also measured the speed with which bees returned after being displaced.

Landmarks

These studies showed that a single orientation flight allowed bees to identify the landmarks in the immediate vicinity (100 – 200 m) of the hive. When released from more distant locations, returning flights were faster and more successful (i.e. fewer lost bees) when the bees had sight of the landmarks in the vicinity of the hive.

The hive itself was effectively invisible except at very short ranges. This makes sense for a tree-nesting animal. One tree looks much the same as another 3, but if you learn that the nest is in the tree between the very tall conifer and the long straight hedgerow – two features visible from hundreds of metres distant – then orientation is straightforward.

This suggests that apiaries located near distinctive landscape features may be preferable in terms of increased returning forager rates.

“Distinctive” as far as an orienting worker bee is concerned, which may not be the same as distinctive to the beekeeper of course 😉

Reorienting bees (compared to first flight bees) took longer to explore the environment and were better at returning. Either these bees learn differently (a distinct possibility) or their prior experience in the wider landscape gives them an advantage when the hive is relocated.

Where do you go to my lovely?

The early studies by Becker and those by Dyer and colleagues defined many of the parameters that characterise orientation flights. What they did not do is show where the bees actually go during the orientation flights?

Do they just zoom around randomly?

Do they fly ever-increasing spirals?

Perhaps they perform some sort of grid search, exploring individual landscape features carefully for future reference?

Recent developments with harmonic radar have allowed tracking of individual bees during orientation flights over hundreds of metres. These have provided further insights into the process.

Because harmonic radar is also relevant to other studies of honey bee flight – for example, the impact of neonicotinoids on foraging ability – I’ll digress slightly from orientation flights to describe the technology.

Harmonic radar

Harmonic radar has revolutionised tracking studies of insects in much the same way as GPS tags have provided unique insights into bird migration (or, for that matter, shark migration).

The radar system has two components. The insect is tagged with a tiny antenna attached to a Schottky diode (together termed the transponder). The transmitter/detector is a ground-based scanner that transmits the radar signal. This is used as the energy source by the diode which re-emits a harmonic of the original signal which can then be detected.

Tagged bumble bee (left) and harmonic radar detector (right)

The transponder weighs less than a normal pollen load, though presumably there is some wind resistance from the antenna. In studies of bees with and without transponders fitted the orientation flights were of a similar duration, suggesting any wind resistance didn’t appreciably impact the flying ability of the bee.

Orientation (a-c) and foraging (d) flights monitored by harmonic radar.

 

Orientation flights 4 were taken by bees between 3 and 14 days post-emergence, with the mean onset of foraging being 14 days post-emergence.

Bees took between 1 and 18 orientation flights, though there wasn’t a direct relationship between the number of flights and the age of the bee, suggesting they may learn at different rates.

Initial orientation flights were generally in the immediate vicinity of the hive. Older workers – pre-foraging – ventured further afield. More recent studies have addressed this in greater detail (see below).

Orientation flights were distinctly different from foraging flights. The former were slower and less direct. The ground speed of orienting bees was ~3.6 m/s in contrast to foragers who flew at ~5.6 m/s and, as shown in D above, foraging flights were very much ‘there and back’ straight lines.

Venturing forth …

A more recent study 5 has used harmonic radar to investigate multiple orientation flights by individual bees, effectively analysing how the bee explores the landscape as it ages towards a forager.

This was a remarkable study. It involved addition and subsequent removal of the transponder from 115 individual bees during 184 orientation flights. When the orienting bee returned they recaptured it, removed the transponder and allowed it to reenter the hive. When it reappeared for another orientation flight they reattached the transponder.

Anyone complaining about their inability to mark queens 6 should do this as a training exercise 😉

The scientists also recorded several foraging flights of a smaller number of the same bees, to allow comparison with their behaviour during orientation flights.

Orientation and foraging flights of five individual bees.

Flights were defined as short or long range, but long range orientation flights were still significantly shorter than foraging flights.

  • Short range flights were made in poor weather and familiarised the bees with the immediate vicinity of the hive.
  • Consecutive long range flights reduced in duration as the bees learnt about the immediate hive vicinity i.e. the long range flights included some local exploring at first as well.
  • Orientation flights explored different areas of the landscape, rather than focusing on one sector.
  • Subsequent foraging flights involved areas that the bees may have never visited during orientation flights.
  • Some very long duration foraging flights may involve a degree of exploration, though it’s not clear whether this is truly orientation, or actual scouting activity.

Not all bees performed short and long range flights though early long range lights did involve local exploration as well. 

Ground clues and conclusions

The final part of this study investigated the influence of visual landscape features on orientation flights. This deserves a post in its own right as the techniques are quite involved.

Essentially they generated heat maps of the flights overlaid onto the geography. Using this approach they determined that some features visible from the air e.g. borders between grassland and a track, influenced the direction of flight and hence the orientation flights. 

There are additional studies of the influence of visible landmarks on bee flight which I’ll return to at some point in the future.

Again, like the comment made above about visible landmarks, it suggests to me that apiaries situated near such distinctive features may aid orientation and subsequent homing flights by honey bees.

When you next stand by your hive entrance on a warm, sunny afternoon and watch young workers flying to and fro across the entrance before spiralling up and away out of sight, you’ll know that it is an essential component of their training to be effective foragers.

They don’t forage for long – perhaps three weeks at most – but they are very effective, partly because they know where to return to.


Notes

Where do you go to my lovely? was the title of a rather syrupy (my blog, my opinion! … Apologies if it’s a favourite of yours 😉 ) song by Peter Sarstedt in 1969. It’s notable for some quite clever rhyming lyrics and a particularly dodgy mustache he sports in the YouTube video. (I’m just linking it, rather than embedding just because of the mustache).

It has nothing to do with bees.