Category Archives: Responsibility

Oxalic acid (Api Bioxal) preparation

This post updates and replaces one published three years ago (which has now been archived). The registered readership of this site has increased >200% since then and so it will be new to the majority of visitors.

It’s also particularly timely.

I will be treating my own colonies with oxalic acid in the next week or so.

Mites and viruses

Varroa levels in the hive must be controlled for successful overwintering of colonies. If you do not control the mites – and by ‘control’ I mean slaughter 😉 – the viruses they transmit to the overwintering bees will limit the chances of the colony surviving.

The most important virus transmitted by Varroa is deformed wing virus (DWV). At high levels, DWV reduces the lifespan of worker bees.

This is irrelevant in late May – there are huge numbers of workers and they’re only going to live for about 6 weeks anyway.

In contrast, reduced longevity is very significant in the winter where more limited numbers of overwintering bees must survive for months to maintain the colony through to the Spring. If these bees die early (e.g. in weeks, not months), the colony will dwindle to a pathetic little cluster and likely freeze to death on a cold winter night.

Game over. You are now an ex-beekeeper 🙁

To protect the overwintering bees you must reduce mite levels in late summer by applying an appropriate miticide. I’ve discussed this at length previously in When to treat? – the most-read post on this site.

I’d argue that the timing of this late summer treatment is the most important decision about Varroa control that a beekeeper has to make.

However, although the time for that decision is now long-gone, there are still important opportunities for mite control in the coming weeks.

In the bleak midwinter

Miticides are not 100% effective. A proportion of the mites will survive this late summer treatment 1. It’s a percentages game, and the maximum percentage you can hope to kill is 90-95%.

If left unchecked, the surviving mites will replicate in the reducing brood reared between October and the beginning of the following year. That means that your colony will potentially contain more mites in January than it did at the end of the late summer treatment.

Mid September

Late summer mite treatment and no midwinter treatment.

Over several years this is a recipe for disaster. The graph above shows modelled data that indicates the consequences of only treating in late summer. Look at the mite levels (in red, right hand vertical axis) that increase year upon year.

The National Bee Unit states that if mite levels exceed 1000 then immediate treatment is needed to protect the colony. In the modelled data above that’s in the second year 2.

In contrast, here is what happens when you also treat in “midwinter” (I’ll discuss what “midwinter” means shortly).

Two optimal treatments

Two optimal treatments

Mite numbers remain below 1000. This is what you are aiming for.

For the moment ignore the specific timing of the treatment – midwinter, late December etc.

Instead concentrate on the principle that determines when the second treatment should be applied.

During the winter the colony is likely to go through a broodless period 3.

When broodless all the mites in the colony must, by definition, be phoretic.

There’s no brood, so any mites in the colony must be riding around on the backs of workers.

A phoretic mite is an easy mite to kill 4.

A “midwinter” double whammy

A single oxalic acid based treatment applied during the winter broodless period is an ideal way to minimise the mite levels before the start of the following season.

Oxalic acid is easy to administer, relatively inexpensive and well-tolerated by the bees.

The combination – a double whammy – of a late summer treatment with an appropriate miticide and a “midwinter” treatment with oxalic acid should be all that is needed to control mites for the entire season.

However, “midwinter” does not mean midwinter, or shouldn’t.

Historically, winter mite treatments were applied between Christmas and New Year. It’s a convenient time of the year, most beekeepers are on holiday and it’s a good excuse to avoid spending the afternoon scoffing mince pies in front of the TV.

Or with the outlaws inlaws 😉

But by that time of year many colonies will have started brooding again.

With sealed brood, mites have somewhere to hide, so the treatment will be less effective than it might otherwise have been 5.

Why go to all the trouble of treating if it’s going to be less effective than it could be?

The key point is not the timing … it’s the broodlessness of the colony.

If the colony is broodless then it’s an appropriate time to treat. My Fife colonies were broodless this year by mid-October. This is earlier than previous seasons where I usually have waited until the first protracted cold period in the winter – typically the last week in November until the first week in December.

If they remain broodless this week I’ll be treating them. There’s nothing to be gained by waiting.

Oxalic acid (OA) treatment options

In the UK there are several approved oxalic acid-containing treatments. The only one I have experience of is Api-Bioxal, so that’s the only one I’ll discuss.

I also give an overview of the historical method of preparing oxalic acid as it has a bearing on the amount of Api-Bioxal used and will help you (and me) understand the maths.

OA can be delivered by vaporisation (sublimation), or by tricking (dribbling) or spraying a solution of the chemical.

I’ve discussed vaporisation before so won’t rehash things again here.

Trickling has a lot to commend it. It is easy to do, very quick 6 and requires almost no specialised equipment, either for delivery or personal protection (safety).

Trickling is what I always recommend for beginners. It’s what I did for years and is a method I still regularly use.

The process for trickling is very straightforward. You simply trickle a specific strength oxalic acid solution in thin syrup over the bees in the hive.

Beekeepers have used oxalic acid for years as a ‘hive cleaner’, as recommended by the BBKA and a range of other official and semi-official organisations. All that changed when Api-Bioxal was licensed for use by the Veterinary Medicines Directorate (VMD).

Oxalic acid and Api-Bioxal, the same but different

Api-Bioxal is the VMD-approved powdered oxalic acid-containing miticide. It is widely available, relatively inexpensive (when compared to other VMD-approved miticides) and very easy to use.

Spot the difference ...

Spot the difference …

It’s very expensive when compared to oxalic acid purchased in bulk.

Both work equally well as both contain exactly the same active ingredient.

Oxalic acid.

Api-Bioxal has other stuff in it (meaning the oxalic acid content is a fraction below 90% by weight) and these additives make it much less suitable for sublimation. I’ll return to these additives in a minute or two. These additives make the maths a bit more tricky when preparing small volumes at the correct concentration – this is the purpose of this post.

How much and how strong?

To trickle or dribble oxalic acid-containing solutions you’ll need to prepare it at home, store it appropriately and administer it correctly.

I’ve dealt with how to administer OA by trickling previously. This is all about preparation and storage.

The how much is easy.

You’ll need 5ml of oxalic acid-containing solution per seam of bees. In cold weather the colony will be reasonably well clustered and its likely there will be a maximum of no more than 8 or 9 seams of bees, even in a very strong colony.

Hold on … what’s a seam of bees?

Three seams of bees

Looking down on the colony from above, a seam of bees is the row visible between the top bars of the frames.

So, for every hive you need 5ml per seam, perhaps 45ml in total … with an extra 10% to cover inevitable spillages. It’s not that expensive, so don’t risk running out.

And the strength?

The recommended concentration to use oxalic acid at in the UK has – for many years – been 3.2% w/v (weight per volume) in 1:1 syrup. This is less concentrated than is recommended in continental Europe (see comments below on Api-Bioxal).

My advice 7 – as it’s the only concentration I’ve used – is to stick to 3.2%.

Calculators at the ready!

The oxalic acid in Api Bioxal is actually oxalic acid dihydrate. Almost all the powdered oxalic acid you can buy is oxalic acid dihydrate.

The molecular formula of oxalic acid is C2H2O4. This has a molecular weight of 90.03. The dihydrated form of oxalic acid has the formula C2H2O4.2H2O 8 which has a molecular weight of 126.07.

Therefore, in one gram of oxalic acid dihydrate powder (NOT Api Bioxal … I’ll get to Api Bioxal in a minute! Have patience Grasshopper) there is:

90.03/126.07 = 0.714 g of oxalic acid.

Therefore, to make up a 3.2% oxalic acid solution in 1:1 syrup you need to use the following recipe, or scale it up as needed.

  • 100 g tap water
  • 100 g white granulated sugar
  • Mix well
  • 7.5 g of oxalic acid dihydrate

The final volume will be 167 ml i.e. sufficient to treat over 30 seams of bees, or between 3 and 4 strong colonies (including the 10% ‘just in case’).

The final concentration is 3.2% w/v oxalic acid

(7.5 * 0.714)/167 * 100 = 3.2% 9.

Check my maths 😉

Recipe to prepare Api-Bioxal solution for trickling

Warning – the recipe on the side of a packet of Api-Bioxal makes up a much stronger solution of oxalic acid than has historically been used in the UK. Stronger isn’t necessarily better. The recipe provided is 35 g Api-Bioxal to 500 ml of 1:1 syrup. By my calculations this recipe makes sufficient solution at a concentration of 4.4% w/v to treat 11 hives. 

There’s an additional complication when preparing an Api-Bioxal solution for trickling. This is because Api-Bioxal contains two additional ingredients – glucose and powdered silica. These cutting agents account for 11.4% of the weight of the Api-Bioxal. The remaining 88.6% is oxalic acid dihydrate.

Using the same logic as above, 1g of Api-Bioxal therefore contains:

(90.03/126.07) * 0.886 = 0.633 g of oxalic acid.

Therefore, to make up 167 ml of a 3.2% Api-Bioxal solution you need to use the following recipe, or scale up/down appropriately:

  • 100 g tap water
  • 100 g white granulated sugar
  • Mix well
  • 8.46 g of Api-Bioxal

Again, check my maths … you need to add (7.5 / 0.886 = 8.46) grams of Api-Bioxal as only 88.6% of the Api-Bioxal is oxalic acid dihydrate.

Scaling up and down

8.46 g is not straightforward to weigh – though see below – and 167 ml may be too much for the number of hives you have. Here’s a handy table showing the amounts of Api-Bioxal to add to 1:1 syrup to make up the amount required.

Api-Bioxal recipes for 3.2% trickling in 1:1 syrup

The Api-Bioxal powder weights shown in bold represent the three packet sizes that can be purchased.

I don’t indicate the amounts of sugar and water to mix to make the syrup up. I’ll leave that as an exercise for the reader … remember that 100 g of sugar and 100 ml of water make 167 ml of 1:1 (w/v) syrup.

Weighing small amounts of Api-Bioxal

The amount of Api-Bioxal used is important. A few grams here or there matter.

If you are making the mix up for a limited number of hives you will have to weigh just a few grams of Api-Bioxal. You cannot do this on standard digital kitchen scales which work in 5 g increments.

Buy a set of these instead.

Digital scales … perfect for Api-Bioxal (and yeast)

These cost about a tenner and are perfect to weigh out small amounts 10 of Api-Bioxal … or yeast for making pizza dough.

A few words of caution

I don’t want to spoil your fun but please remember to take care when handling or using oxalic acid, either as a powder or when made up as a solution.

Oxalic acid is toxic

  • The lethal dose for humans is reported to be between 15 and 30 g. It causes kidney failure due to precipitation of solid calcium oxalate.
  • Clean up spills of powder or solution immediately.
  • Take care not to inhale the powder.
  • Store in a clearly labelled container out of reach of children.
  • Wear gloves.
  • Do not use containers or utensils you use for food preparation. A well rinsed plastic milk bottle, very clearly labelled, is a good way to store the solution prior to use.

Storage

Storage of oxalic acid syrup at ambient temperatures rapidly results in the acid-mediated breakdown of sugars (particularly fructose) to generate hydroxymethylfurfural (HMF). As this happens the colour of the oxalic acid-containing solution darkens significantly.

This breakdown happens whether you use oxalic acid or Api-Bioxal.

Stored OA solution and colour change

Stored OA solution and colour change …

HMF is toxic to honey bees at high concentrations. Studies from ~40 years ago showed that HMF concentrations below 30 mg/l were safe, but above 150 mg/l were toxic 11.

At 15°C HMF levels in OA solution can reach 150 mg/l in a little over a week. At room temperature this happens much faster, with HMF levels exceeding 150 mg/l in only 2-3 days. In the dark HMF levels build up slightly less quickly … but only slightly 12.

Therefore only make up OA solutions when you need them.

If you must store your oxalic acid-containing syrup for any length of time it should be in the fridge (4°C). Under these conditions HMF levels should remain well below toxic levels for at least one year. However, don’t store it for this long … use it and discard the excess.

Or prepare excess and share it with colleagues in your beekeeping association.

Don’t use discoloured oxalic acid solutions as they’ve been stored incorrectly and may well harm your bees.

Another final few words of caution

I assume you don’t have a fridge dedicated to beekeeping? That being the case please ensure that the bottle containing stored oxalic acid is labelled clearly and kept well out of the reach of children.


Notes

A quick trawl through the Veterinary Medicines Directorate database turns up several oxalic acid-containing solutions for managing Varroa. These include:

  • Oxuvar – approved for trickling or spraying, an aqueous solution of oxalic acid to which you add glucose if you intend to use it for trickling.
  • Oxybee – approved for trickling (and possibly other routes, but the paperwork was a minefield!), contains oxalic acid, glycerol and essential oils and is promoted as having a long shelf life.
  • VarroMed – approved for trickling, contains oxalic acid and formic acid and can be used throughout the year in one way or another.

I’ve not read the documentation provided with these and so don’t know the precise concentration of oxalic acid they contain. It will be listed as an active ingredient. I have not used these products. As with everything else on this site, I only write about methods or products I am familiar with. I therefore cannot comment on their relative efficacy compared to Api-Bioxal, to Apivar or to careful siting of your hives in relation to ley lines … or 5G phone masts.

 

Long distance beekeeping

This post was originally entitled ‘lockdown beekeeping’. I changed it in the hope that, at some point in the future, we’ve all forgotten lockdown and are back to the ‘old normal‘. Instead, long distance beekeeping, better summarises the topic and might rank better in future Google searches …

But before I start, here’s some general advice …

Don’t do as I do, do as I say (elsewhere on this site 😉 )

I don’t think what I’m going to describe below was anything like ideal. In the end it worked out pretty well, but probably as much from luck as judgement. I’d do it again if I had to, but I’d prefer not to. I don’t think it is a workable solution for effective beekeeping in anything other than exceptional circumstances.

But 2020 has been an exceptional circumstance …

Mid-March madness

It was abundantly clear in very early March that a lockdown was inevitable 1 to restrict the spread of Covid-19. All the numbers were going in the wrong direction and other countries were already imposing quite draconian restrictions to control virus transmission 2.

I had speaking engagements with Oban & District BKA on the 12th and at the SNHBS event at Kinross on the 14th and, on the following day, I disappeared to my bolthole on the remote west coast of Scotland. 

The wild west

I decided to simply abandon the bees in Fife for at least a month while the country came to terms with movement restrictions, supermarket food deliveries, protecting the NHS and ‘working from home’.

On the day I left I checked that colonies were not too light, that the entrances were clear and that the roofs were secure and everything was strapped down.

March is too early to do anything with bees in Fife and my first inspections are usually not until mid/late April in a normal year, and even early May if there’s been a cold Spring. I therefore had a month to plan for the season ahead, with the expectation that I would have to manage the bees with the minimum possible number of visits for the next few months.

Planning

The beekeeping season contains a number of ‘moveable fixtures’.

By that I mean that certain things happen every season, but the time when they happen is not fixed. The timing depends upon the weather which, in turn, influences forage availability. It depends upon the strength of the colony, the location of the apiary and – for all I know – the phase of the moon.

Warm springs can lead to swarming by the end of April. Conversely, cold springs delay events. Dry summers generally put paid to the lime nectar and a protracted June gap can leave colonies starving in the middle of the season.

In the previous post I called these moveable fixtures the unknown knowns.

The variable timing of these moveable fixtures influences colony management by the beekeeper; this includes the spring honey harvest, swarm control and the summer honey harvest. In addition, it includes more mundane things like comb exchange, feeding the colony up for winter and Varroa management.

Bees and beekeeping are influenced by the environment, not the calendar 3.

The UK government imposed a nationwide lockdown on the 23rd of March 2020. Movement restrictions were imposed, including the distance you could travel from where you live.

Exemptions were made for allowed activities and, after lobbying from national associations and others, beekeeping was included as an exempt activity. Notwithstanding this, it was not going to be practical to conduct the usual weekly inspections from April until late July.

First inspections

I returned to Fife to conduct the first inspections in the third week of April. The spring was well advanced and the strong colonies were really booming. The overwintered nucs had built loads of brace comb in the space over the top bars and urgently needed to be moved to a full hive.

Overwintered nuc with brace comb

There were about 20 colonies spread between my two main apiaries. All were checked for space/strength, temper and the presence of a laying, marked and clipped queen 4. I didn’t have time to mollycoddle any weak colonies so these (having checked they were healthy) were united with nearby strong colonies.

Safely back in the hive

In addition, I didn’t have the luxury of time to see if poorly behaved colonies might pick up later in the season. To be frank, I had more colonies than I needed (or could easily cope with). With the need for swarm control looming, I decided to reduce colony numbers by uniting de-queened aggressive colonies with others in the same apiary. There were only a couple of these (identified the previous season and seemingly unimproved after the winter) … but every little bit helps.

United colonies, three supers, strapped up well … 25th April 2020

Finally, with the oil seed rape about to flower, I added three supers to the majority of the colonies. In a normal season these would have been added incrementally as needed. This year I had to assume (or hope) they might need them.

Swarm control

On my return to the west coast the spring was warming up. The primroses were looking fantastic and we had several weeks of outstanding weather.

Primroses – late April 2020

I enjoyed the good weather and spent the time fretting about the timing of swarm control.

My colonies tend to make swarm preparations between mid-May and the first week of June – a good example of a moveable fixture.

A priority this year was not to lose any swarms.

I did not want to inconvenience other beekeepers (or civilians’ 5) with swarms I managed to lose by ineptly doing my beekeeping from the other side of the country.

With most people trying to keep themselves isolated, 30,000 bees moving into a chimney would be a lot more than unwelcome.

Even in a normal year I do my very best not to lose swarms, and this was anything but a normal year.

I therefore decided to conduct pre-emptive swarm control on every colony in the third week of May. ‘Pre-emptive’ meaning that, whether the colonies showed any signs of swarming or not, I’d remove the queen and let them rear another.

Colonies do not swarm every year. Every now and again a strong colony of mine will show no inclination to swarm. These are great … I just pile another super or two on top and am thankful not to have to intervene.

However, strong colonies are more than likely to swarm and I didn’t feel I had the luxury of waiting around to find which wanted to and which didn’t.

A swarm in May (and how I avoided it … )

With the exception of a couple of our research colonies that seemed to be on a ‘go slow’ I treated all my colonies in the same way.

I used the nucleus method of swarm control. I removed the queen and one frame of emerging brood and put them into a 5 frame nuc box with a frame of foundation or drawn comb and a frame of stores. To ensure there were sufficient bees in the box I then shook in another frame of bees before sealing them up for transport.

All the nucs were moved to distant apiaries so there was no risk of bee numbers being depleted as they returned to the original hive.

And then there were three … nucs for pre-emptive swarm control

The parental colonies were left for 6 days and then checked for queen cells.

Ideally this should have been 7 days. By this time there would be no larvae young enough to generate additional queen cells from. However, there was a large storm moving in from the west and it was clear that there would be no possibility of doing any beekeeping while it moved through.

I therefore checked on the sixth day, knocked back all the queen cells, leaving just one good one, and then scarpered back to the west coast (meeting the storm en route).

However, before I disappeared I also checked all the nucs. All were doing fine. There was a good nectar flow and they had already drawn and laid up the frame out I’d given them. I therefore added two foundationless frames flanking the central frame. With frames either side these are usually drawn straight and true.

New comb with queen already laying it up

If you give the bees lots of foundationless frames together, particularly if the hive isn’t perfectly level, they will often make a real mess of drawing the comb out. By interleaving the new frames with those that were already drawn the bees are forced to maintain the required bee space on either side, so usually draw the frame out satisfactorily.

Getting the timing right … at least partly

When I left Fife on the 22nd of May the OSR was in full flower. It would finish sometime in early June.

My next dilemma was to time the following visit for the spring honey harvest. Too soon and the frames wouldn’t be capped. Too late and, being OSR, it might start to crystallise in the comb.

But I also wanted to deal with all the requeening colonies during the same visit and all of the nucs.

I’ve previously discussed the time it takes for a new queen to develop, emerge, mature, mate and start laying. It always takes longer than you’d like. The absolute minimum time is about two weeks, but it usually takes longer. Ideally I wanted to go through all the requeening colonies, find, mark and clip the queens or re-unite (with the nuc) those that had failed.

At the same time, with a strong nectar flow and a strongly laying queen, there was a real risk that the nucs were going to get overcrowded very fast. The longer they were left, the more chance that they would think about swarming.

I employed a number of local spies (beekeeping friends in the area) and queried them repeatedly 6 about the state of the OSR. Shortly after it finished, I returned to take off the spring honey.

A minor catastrophe

It was the 10th of June; this was exactly 20 days since leaving the requeening colonies with a single freshly-sealed queen cell.

I’ve previously mentioned that one of my apiaries is rather exposed to strong westerlies. Despite the wind-reduction netting and the rapidly growing willow hedge, this apiary had been really hammered by the storm on the 22nd/23rd of May.

Nuked nucs

Two nucs had lost their lids and crownboards and a full strapped-up hive had been blown over, denting the fence on its descent but remaining more or less intact.

How is the queen supposed to find the entrance?

The apiary hadn’t been checked since my last visit, so I’m assuming the damage happened during the storm in late May. That being the case, the nucs would have been open to the elements for about 18 days. Amazingly, both still contained laying queens and – despite looking a little the worse for wear – eventually recovered.

In contrast, the strapped up hive was not ‘open to the elements’. It had fallen entrance-first onto the ground. I think a few bees could fly from a gap where the ground didn’t quite block the entrance, but I was more concerned about getting them upright again to check too carefully.

Despite my best efforts I failed to find a queen in this hive. My frames are arranged ‘warm way’, so all the frames had slid together when the hive fell and it’s possible the queen didn’t survive 7.

Spring honey, nucs and queens

The spring honey harvest went well. The OSR frames were mostly capped. Those that weren’t could still be extracted as the honey would not shake out of the frame.

A fat frame of spring honey

It was my best year for spring honey since returning to Scotland in 2015. With the exception of that one big storm the weather had been pretty good and the bees had had ample opportunity to be out foraging.

However, although a few of the colonies had newly mated and laying queens, the majority did not. In most of them I found evidence that there would be a laying queen sometime soon … I usually infer this from the presence of ‘polished’ cells in the centre of the one or two of the central frames in the hive. This gave me confidence that there was likely to be an unmated, or just mated, queen in the box. There’s nothing much to be gained from actually finding her, so I would have to be a bit more patient.

Just as these things cannot be rushed, an overcrowded nuc cannot be ignored.

Almost all the nucs were fast running out of space. I therefore removed 2-3 frames of brood from each and replaced them with fresh frames. I used the frames of brood to boost the honey production colonies that were ‘busy’ requeening.

Mid-June and the foxgloves are in flower

By the 14th of June I was back on the west coast.

Late June rearrangements

I returned a fortnight later for a very busy couple of days of beekeeping.

By this time the summer nectar flow was starting. The nucs, even those ‘weakened’ by removing brood, were busy filling spaces with brace comb.

Comb in feeder

All of the requeening colonies were checked for a laying queen. A handful had failed, disappeared or whatever and now looked queenless. These were requeened by uniting them with a nuc containing the ‘saved’ queen from earlier in the season.

What could be simpler? That’s one of the main attractions of this method of swarm control.

The colonies with the first of the new laying queens were doing really well, with lovely fresh frames of wall-to-wall brood. It’s only after a queen has laid up a full frame or two that you get a proper impression of her quality. I can never properly judge this in the tiny little frames of a mini-mating nuc, so – despite the extra resources (bees, frames, boxes) needed – prefer to get queens mated and laying in hives with full-sized frames.

Good laying pattern

The remaining ‘unused’ nucs were all expanded up to full hives and given a super. All the strong colonies in the apiaries were again given three supers and left to get on with things.

Expanded nucs on the left, production hives on the right

It was a backbreaking few days, particularly because I spent the evenings jarring honey 8, but it left the apiaries in a good state for the summer nectar flow.

Summer honey

The only beekeeping I did in July was on the west coast of Scotland. I moved a couple of nucs up to full hives and, since the heather wasn’t yet in full flower, I gave them each a gallon or so of thin syrup to encourage the bees to draw comb to give the queen space to lay.

Welcome to your new home … nuc ‘promoted’ to hive with contact feeder in place

I finally returned to Fife to take the summer honey off in late August. I’ve recently posted a brief description of clearing supers during Storm Francis so won’t repeat it here.

In four days I removed all the supers and extracted the honey, fed and treated the bees for the winter, and left the colonies strapped up securely for … goodness knows when.

The summer honey harvest was unusual. One of my apiaries did fantastically well, more than the last two seasons combined, and by far my best year since 2015.

The other apiary was just slightly worse than … utterly pathetic.

This second apiary is usually very reliable. The forage in the area has been dependable and, in some years, the lime has yielded very well. However, not this year and, since I wasn’t about, I don’t know why.

I did it my way … but it wasn’t very satisfying

That last paragraph rather neatly sums up the 2020 beekeeping season.

Overall the season must be considered a success; I didn’t lose any swarms, the majority of colonies were requeened successfully, all of the colonies are going into the winter strong, fed and treated, and the overall honey crop was very good.

However, it’s all been done ‘remotely’, both literally and figuratively. I’ve not felt as though I’ve been able to watch the season and the colonies develop together. I don’t feel as though I was ‘in tune’ with what was happening in the hives. I can’t explain why some things worked well and other things – like the apiary with no honey 🙁 – failed miserably.

My notes are perfunctory at best, “+3 supers, Q laying well”, and contain none of the usual asides about what’s happening in the environment. There’s no indication of what was flowering when, whether the year was ‘early’, ‘late’, or ‘about normal’, when the migrant birds arrived or left.

I’ve done less beekeeping this year than in any year in at least a decade. Since I rather like beekeeping, this means it has been a bit of a disappointment. Since I’ve spent less time with the bees, and I’ve been so rushed when I have been working with them, I feel as though I’ve learnt less this year than normal.

What didn’t get done?

With irregular and infrequent visits some things were simply ignored this season.

I did very little Varroa monitoring. With the Apivar strips now in it’s clear that some hives have higher Varroa counts than I’ve seen in the last few years 9. However, not all of them. Some colonies appear to have extremely low mite loads.

We finally managed to check the levels of deformed wing virus in our research colonies quite late in the season once the labs partially reopened. The levels were reassuringly low. This strongly suggests that the mite levels are not yet at a point threatening the health of the colonies.

I’ve singularly failed to do much in the way of brood comb exchange this season. This means I’m going to have to take a bit more care next year to cycle out the old, dark frames and replace them with brand new ones.

Here’s one I did manage to replace

Again, not the end of the world, but ‘bad beekeeping’ all the same.

As I’m putting the finishing words together for this post the government is re-introducing further curfews and restrictions … maybe next year will be more of the same?


 

Trees for bees

The pollen and nectar sources available to bees depend upon the time of the year and the area of the country. The bees will enthusiastically exploit what’s available, but will struggle if there’s a dearth of either.

For much of this year I’ve been living on the remote west coast of Scotland, in an area with a very low population density and an even lower density of beekeepers … by my calculations less than 1 per 25 km2.

It’s very different from Fife (on the east coast of Scotland). It’s warmer and wetter here and there is almost no arable farming. One or two of the crofts on the coast might grow a bit of barley or wheat, but the few fields tend to be used for grazing and hay production. There’s probably no oil seed rape within 50 miles.

And there’s also no Varroa 🙂 … but I’ll discuss that another time.

Trees – in this case providing shelter from the westerlies – and bees

It goes without saying, since I’m spending so much time here, I now have bees here 🙂

Triffids and mad honey

The primary nectar source for honey is heather, which doesn’t yield until August. I have less than zero experience with heather honey – other than on toast – so have a lot to learn.

The land is on the edge of moorland with a mix of larch and scots pine, with a shrubby understorey of birch and some rowan. It’s awash with wildlife; pine marten, eagles, crossbills and the elusive Scottish wildcat 1.

Pine marten raiding the bird table

However, at least until a year or two ago, much of the land was covered in a triffid-like invasive mass of rhododendron. Swathes of the west of Scotland and Ireland are blighted by this shrub which was first introduced as an ornamental plant in the 18th Century.

Rhododendron as far as the eye can see – now cleared and planted with hazel and rowan

I’m biased, but I’d argue that rhododendron has no redeeming features. It seeds itself everywhere and smothers all other groundcover, leaving a near sterile environment. It’s terrible for wildlife. The flowers are briefly showy but not hugely attractive, either to me or to bees – whether wild or managed.

Oh yes, and the nectar produces hallucinogenic honey. I’ve even less experience of this than I do of heather honey … but in this case I have no desire to learn more.

So, I’ve been slowly clearing the rhododendron and replanting the cleared areas.

Trees for Life

A friend who used to keep bees in this are a few years ago commented that there was a shortage of early season pollen, meaning that colonies could sometimes struggle to build up. A colony that fails to build up well early in the season will struggle to reproduce i.e. swarm.

Of course, like most beekeepers, I don’t really want my bees to swarm.

However, I do want my colonies to be strong enough to want to swarm. That way, there will be loads of foragers to exploit the heather from late July. In addition, I’m particularly interested in queen rearing and building my stocks up, and for both these activities I need the colonies to have good access to pollen and nectar … and to be big and strong.

With no agriculture to speak of there are also no pesticides. Perhaps as a consequence of this there are a very large number of bumble bees about. These give me hope that there might actually be sufficient pollen, but more can only be beneficial.

And more will certainly be helpful if I end up with a reasonable number of colonies that could compete with the native bees for environmental resources 2.

I’m therefore busy planting trees in some of the areas cleared of rhododendron. Not quite on the same scale as the Trees for Life rewilding at Dundreggan, but every little bit helps 😉

Why trees?

Partly because they’ll take the longest to grow, so need to go in first, and partly because many of them are excellent sources of early season pollen and nectar.

It’s also the sort of epic-scale ‘gardening’ involving chainsaws and brushcutters, huge bonfires, cubic metres of firewood and lots of digging that I have an affinity for. I don’t have the patience for pricking-out and growing on bedding plants, or weeding the herbaceous border 😉

Native trees

I’m keen to re-plant with native trees and shrubs. I know they’ll do well in this environment and they can be readily sourced, either locally or at little expense.

As will become clear shortly, the ‘expense’ part is a not an insignificant consideration with the grazing pressure from deer in this area.

I’ve initially focused on just six species; alder, hazel, wild cherry (gean), poplar, willow and  blackthorn.

Of these I’ll skip over the blackthorn (Prunus spinosa). Although the white spring flowers produce nectar, I chose it to make a spiky hedge and for the distant opportunity of making sloe gin. However, I’m going to have to try again as the bareroot whips I planted last winter have done almost nothing.

Alder

Alder (Alnus glutinosa) produces large amounts of early season pollen. It also thrives in damp ground and we have plenty of that. I’ve planted quite a bit of alder and it’s all doing pretty well. There is already a lot along the banks of nearby streams and in boggy areas at the side of the loch, so I know it will do well in this area. In fact, the few dozen I’ve planted are insignificant in comparison to what’s growing locally, but I wanted to create an area of mixed alder and willow carr 3. I planted 30 cm bareroot whips last winter and those that have survived the deer have doubled or trebled in height.

Alder

Alder, once established, seems reasonably resistant to browsing by deer, presumably because they find it relatively unpalatable. The long-term plan is to coppice the alder – it makes good firewood when properly dried. It has also historically been used to make clogs, but I’ll be cutting it back before it’s grown enough for anything but the tiniest feet.

Hazel

Like alder, hazel (Corylus avellana) is a good source of early season pollen. Most readers will be familiar with the catkins which appear as early as mid-February. The area shown in a picture (above), now cleared of rhododendron, has been planted with hazel. It’s a south-facing slope with thin soil but most seem to be doing OK so far.

Hazel

There are a couple of mature hazel nearby and I managed to find a few seedlings which I transplanted, however the majority went in as bareroot whips.

Hazel is popular with deer and with the red squirrels. The fact I needed to buy barerooted trees probably reflects the fact that the squirrels get most of the nuts, and those that do germinate are then eaten by the deer. It’s a tough life.

Gean

Gean is the Scottish name for the wild cherry (Prunus avium) 4. It flowers in April and is a great source of nectar and pollen for the bees. I’ve only planted a few of these, in scattered groups of three, or along the side of the track. Despite gean not really flourishing in acid, peaty soil they seem to have established well and are already approaching shoulder height. Gean, like rowan 5, is also great for the birds and the thrushes will probably get the majority of the fruit that sets.

Poplar or aspen

Poplar or aspen (Populus tremula) is a favourite of mine. The leaves have pale undersides and are held on long, flattened petioles. As a consequence they flutter in the faintest of breezes and are a wonderful sight, particularly planted against a backdrop of dark brooding conifers.

Poplar or aspen (Populus tremula)

In fact, poplar is so attractive I’d have planted it even if it was of no interest to the bees.

Poplar is wind pollinated and the bees probably only get a little pollen from it. Some species also produce early season sap that is a major component of propolis apparently. Finally, poplar are susceptible to a rust or fungus called Melampsora, and the bees collect the spores if they need protein and there’s no pollen to be found.

Inaccessible aspen

The standard way to propagate poplar is by root cuttings. There is relatively little poplar around here, and none I could have easily grubbed up the roots from. However, after a bit of searching I discovered Eadha Enterprises in Lochwinnoch, near Glasgow. Eadha is derived from the old gaelic word for aspen. They are a social enterprise specialising in aspen production from stocks of known provenance. The cell-grown saplings I received, which are going in this winter, are derived from trees on the Isle of Arran.

Willow

In contrast to the relative difficulty of propagating aspen, you have to try hard not to propagate willow. A foot long, pencil-thick cutting – taken more or less any time of the year – will root very quickly. Even if left in a bucket of water for a fortnight.

Willow cuttings ready for planting

I’ve planted a lot of willow from local trees (probably goat willow, Salix caprea, but they hybridise so freely you can never be certain) and planted it in variously boggy bits of ground, alongside some of the alder. Willow is generally dioecious (male or female) and you need to plant male trees for the pollen. I planted some female as well as they both produce nectar.

Willow male catkins

In addition to just planting them directly, I grew a few on in tubs in potting compost. These developed good root systems and grew better.

Pot grown cutting ready for planting

However, willow is a favourite of deer and the cuttings I’ve planted have periodically been hammered by both red and roe deer.

Sabre planting and oversize cuttings

The obvious way to prevent deer damage is to build a 6 foot high fence but, because of the rocky nature of the ground, this is impractical (which is an easier way of saying eye-wateringly expensive).

If you visit the Scottish highlands you’ll be familiar with the site of small burns cascading down gulleys in the hillside. Often the the sides of the gulleys have dense growth of alder, birch or willow.

This is not just because of the nearby water supply. After all, much of the land receives 2000 mm of rain or more a year.

The other reason the trees are there (and not on the open moor) is that the gulley is steep sided and the trees therefore experience less grazing pressure. You can recapitulate this by so-called sabre planting 6. In this you plant trees of 1m+ height perpendicular on slopes of at least 40°. The slope makes the growing tips less accessible and they gradually grow out and away, straightening up as they do.

I’ve only discovered this strategy recently 7 and will be trying it in a couple of locations.

An alternative strategy, particularly suitable for willow, is to plant ‘cuttings’ that are already too big for the deer to reach the growing tips.

A ‘big’ willow cutting – there’s a game trail 2m from this that’s used every night.

To avoid grazing by red deer this means at least 1.5-1.8 m in height. The technique is almost the same as planting the foot long, pencil-thick cuttings … you just push them into the ground. It’s worth noting that you need to push them a good distance into the ground and stake them. About 50% of the big cuttings I’ve planted have apparently rooted. I’m pretty certain that those that didn’t failed because they were not staked firmly enough. This makes sense … as the leaves sprout they become wind-resistant and gales will quickly damage the developing root system through simple leverage.

Gimme Shelter

I’ve planted trees for bees before. We planted lots of goat willow and mixed hedging around our research apiary in Fife in early 2018. The combination of a major fire in my research institute the following year, and Covid this year, meant that the trees have been just left to get on with it.

Mixed hedging and willow and wildflowers (aka weeds, but the bees don’t know that)

And they have. This was a bare earth bank in February 2018. We still need a windbreak, but even that can probably be dispensed with in a year or so. Not all the trees have thrived, but I’m more than satisfied considering the neglect they received.

Oh deer

Scotland is overrun with deer. A review over 50 years ago stated that the optimum number of red deer the land could maintain was ~60,000. They defined ‘optimum’ in terms of avoiding agricultural damage, while allowing natural regeneration with no necessity for fencing. This would also ensure that there’s enough food for the deer during the winter months.

The current estimate is that there are over 450,000 red deer in Scotland. As a consequence there are many areas with no natural tree regeneration without installing expensive and intrusive fencing. In addition, the deer are often in lousy condition and/or starve to death in hard winters.

If you look carefully you can see a couple more coming down the track. There’s also a beehive in the video above, though it’s tricky to spot.

In addition to red deer we also have a smaller number of roe deer … equally attractive and almost equally destructive.

Don’t get me wrong, I love deer … particularly braised slowly with a good quality, full-bodied red and winter vegetables.

Not beekeeping?

OK, in terms of specifics, not beekeeping. However, I’d argue that beekeepers have a responsibility to maintain and protect their environment. This includes ensuring that their charges do not impact negatively on the native wildlife.

This area is towards the extreme north-west corner of the country and the introduction of a quarter of a million bees (~5 hives) will inevitably impact the pollen and nectar available for the established native pollinating insects.

I could choose to avoid the latter by ‘not beekeeping’, but I’ve instead chosen to try and improve the resources available in the environment. Time will tell if there is a shortage of pollen and if my bees thrive.

If they don’t, at least there will be a bit less bloody rhododendron 😉


Notes

If you’re interested in native trees I thoroughly recommend the Handbook of Scotland’s Trees by Reforesting Scotland. It has lots of good advice about collecting seed and planting, but also has details of uses for trees and folklore. Whilst it focuses on Scotland’s trees (the clue is in the title), most grow elsewhere as well, and it’s packed with information. If you are interested more generally in the history, uses and planting of woodlands it’s probably worth reading all 16,452 pages (a slight exaggeration, but it is a magnum opus) of Oliver Rackham’s Woodlands which is a masterpiece.

 

Swarm prevention

Swarm prevention and control are distinct phases in the management of colonies during the next few weeks of the beekeeping season 1.

Not all beekeepers practice them and not all colonies need them.

But most should and will … respectively 😉

Swarm prevention involves strategies to delay or stop the colony from initiating events that lead to swarming.

Swarm control strategies are more direct interventions that are used to prevent the loss of a swarm.

Why do colonies swarm?

Without swarming there would be no honey bees.

Swarming is honey bee colony reproduction. Without management (e.g. splitting colonies) colony numbers would remain static. And, since bees have only been managed for a few thousand years, they must have been successfully reproducing – by swarming – for millions of years before then.

So one of the major drivers of swarming is the innate need to reproduce.

Bees also swarm if their current environment is unable to accommodate further colony expansion. Therefore, another driver of swarming is overcrowding.

And, of course, there is some overlap in these two drivers of swarming.

You can therefore expect that strong, healthy, populous colonies will probably try to swarm on an annual basis.

The mechanics of swarming

When a colony swarms about 75% of the worker bees – of all age groups – leave with the queen. They set up a temporary bivouac near the original hive and subsequently relocate to a new nest site identified by the scout bees.

The original colony is left with all the brood (eggs, larvae and sealed brood), a significantly-depleted adult bee workforce and almost 2 all of the honey stores.

What they lack is a queen.

But what the swarm also leaves behind, amongst the brood, is one – or more often several – newly developing queens. These occupy specially enlarged cells that are located vertically on the edges or face of the comb.

Queen cells ...

Queen cells …

Queen cells look distinctive and their initial appearance – before the swarm leaves – is a clear indication that the time for swarm prevention has gone and swarm control is now urgently needed 3.

This is one of the reasons why regular colony inspections are essential, particularly during mid/late Spring and early summer which is the time of the season when swarming is most likely.

Colony fate and the risks of swarming

But back to the recently swarmed colony. In a few days the new queen(s) emerges. If there’s more than one they usually fight it out to leave just one. She goes on one or more mating flights and a few days later starts laying eggs.

This colony should survive and thrive. They have time to build up strength (and collect more stores) before the end of the season. Under natural conditions 87% of swarmed colonies overwinter successfully 4.

Alternatively, the swarmed colony may swarm again (and again), each with a virgin queen and each further depleting the worker population. Colonies can swarm themselves to destruction like this.

Swarms headed by virgin queens are termed casts. I’m not sure what determines whether a swarmed colony also produces one or more casts. Colony strength is a determinant, but clearly not the only one as some casts contain little more than a cup full of bees.

Under natural conditions swarming is a very risky business. Swarm survival is less than 25% 5 – many will not collect sufficient stores to overwinter – and the survival of casts will be even lower because of their size and the risks associated with queen mating.

But ‘our’ bees don’t live under natural conditions

For beekeeping the ‘risks’ associated with swarming are somewhat different.

When a colony swarms you lose the majority of the workforce. Therefore honey production will be significantly reduced. You’re unlikely to get a surplus from the swarmed colony.

Of course, honey might not interest you but propolis and wax production are also reduced, as is the strength of the colony to provide efficient ecosystem services (pollination).

Secondly, despite swarms being one of the most captivating sights in beekeeping, not everyone appreciates them. Non-beekeepers may be scared and – extraordinary as it may seem – resent the swarm establishing a new nest in the eaves of their house.

Incoming! from The Apiarist on Vimeo.

Inevitably some beekeepers will claim they’ve never met anyone scared of bees, or swarms are always welcomed in the gardens that abut their apiary.

Unfortunately, that does not alter the reality that – to many – swarms are a nuisance, a potential threat and (to a small number of people 6 ) a very real danger.

Therefore, as beekeepers, we have a responsibility to practice both swarm prevention and control. This prevents our hobby/obsession irritating other people and means we have more bees to make delicious honey for family, friends and customers.

Overcrowding

I’ve already defined the event that separates swarm prevention from swarm control. It is the appearance of queen cells during the weekly colony inspection.

Swarm prevention involves managing the colony to delay the appearance of queen cells. Once queen cells are produced, swarm control is required 7

I’ve also defined the two major drivers of swarming – overcrowding and the need to reproduce 8.

How does a colony determine that it is overcrowded? As beekeepers, how can we monitor and prevent overcrowding?

As a colony expands during the spring the queen lays concentric rings of eggs from the centre of the brood nest. Imagine this initially as a kiwi fruit-sized ball, then an orange, then a grapefruit, until it is the size of a large football.

Brood frame

Perhaps a slightly squashed football, but you get the general idea.

Running out of storage space

It takes bees to make bees. The initial brood reared helps feed subsequent larvae and keeps the maturing brood warm.

As the season develops more sources of nectar and pollen become available. These are collected in increasing amounts by the expanding numbers of foragers.

This all needs to be stored somewhere.

One possibility is that the stores are loaded into the cells recently vacated by emerging workers within the brood nest. This is often termed “backfilling”. Sometimes you find a frame in which the central concentric rings of brood have emerged and, before the queen has had a chance to re-lay the frame with new eggs, workers have backfilled the cells with nectar (or, less frequently, pollen).

But, at the same time as the space available for the queen to lay is reducing, the colony population is increasing. Very fast. There are larger numbers of unemployed young bees. Unemployed because there are reduced amounts of brood to rear because the queen is running out of space.

Pheromones

And the increased number of workers means that the pheromones produced by the queen, in particular the queen mandibular pheromone, are effectively diluted. Studies by Mark Winston and colleagues 9 investigated the relationship between queen mandibular pheromone (an inhibitor of queen cell production) and colony congestion. In it he concluded that overcrowding inhibits the transmission of this pheromone, so favouring queen cell production.

Play cup or queen cell?

Play cup or are they planning their escape …?

The distribution of other pheromones is also reduced in overcrowded colonies. Lensky and Slabezki 10 showed that the queen rarely visited the bottom edges of comb in overcrowded colonies. Consequently, the levels of queen footprint pheromone was reduced. This pheromone is an inhibitor of queen cup production, the very earliest stages of queen cell development.

So, overcrowded colonies start to prepare queen cells … and swarm control is needed.

Make space

If the colony is overcrowded then you have to provide more space for colony expansion.

Just piling supers on top may not be sufficient, though it may temporarily ease congestion and partially help. Leaving a colony with no supers during a strong nectar flow is a surefire way to fill the brood box with nectar and trigger swarm preparation.

If the colony is backfilling the brood nest with nectar then the addition of supers is likely to encourage them to move the stores up, providing more space for the queen.

It will additionally have the beneficial effect of moving some bees ‘up’, to store and process the nectar, again reducing congestion in the brood nest.

However, you probably also need to encourage the bees to expand the brood nest by providing frames for them to draw out as comb. Essentially you’re spreading the brood nest by inserting one or two empty frames within it.

Expanding or spreading the brood nest

I routinely do this by removing the outer frames, which often contain stores, and adding new foundationless frames on one or both sides of the centre of the brood nest. Usually I would place these about three to four frames apart 11.

Effectively I’m providing the bees with the space to draw more comb and, in due course, for the queen to lay more eggs.

And all this keeps the workers gainfully employed and so helps alleviate overcrowding.

But what do you do if the box is full of full brood frames?

Brood frame with a good laying pattern

You provide another brood box.

Don’t just dump another brood box on top and expect the bees to immediately move up. It’s a big empty space. Ideally provide some drawn comb and move a frame or two up with emerging bees and the queen. She will rapidly start to lay up the vacated cells and the adjacent frames. Push the original frames together and add new empty frames to fill the box.

You are expanding the brood nest … vertically.

My colonies rarely need this as they are the less prolific, darker bees which tend to perform better overall in Scotland. However, some strains of bees readily fill two stacked brood boxes every season.

It’s worth emphasising again that these swarm prevention interventions are of little or no use for swarm control. If there are queen cells already present adding a frame or two of foundation will have no effect at all.

Young queens

Young queens produce more pheromones than ageing queens. Therefore, all other things being equal, the inhibitory effects of queen mandibular and footprint pheromones will be stronger in a colony headed by a young queen.

This is why colonies are less likely to swarm in their first full season 12.

You can routinely replace queens by purchasing new ones, by rearing your own, or through colony manipulation during swarm control e.g. by reuniting a vertical split.

Of these, I’d strongly recommend one of the last two approaches. It’s more interesting, it’s a whole lot more satisfying and it is a lot easier than many beekeepers realise.

Locally bred queen ...

Locally bred queen …

You have the additional advantage that the queens produced in your own apiary will – by definition – be local and there is good evidence that local queens are better adapted to local conditions.

Robbing brood and making nucs

There are at least two additional, and related, ways of increasing the space available so helping swarm prevention in a rapidly expanding colony.

The first is stealing a frame of brood 13 and using it to boost a weaker colony.

Take care when doing this.

If the recipient colony is weak due to disease or a failing queen then you’re just wasting the donated brood. However, if the colony is healthy but small it can be a good investment of resources and may help delay swarming in the donor colony as well.

More drastically, it may be possible to remove a frame (or perhaps even two) of brood and adhering bees to make up a nucleus colony. In my experience, a strong donor colony can almost always be used to produce a nuc without compromising honey production, and with the added benefit of delaying swarm preparations.

I’m going to write about nuc production in more detail in a few weeks as it deserves a full post of its own. It’s worth noting here that the nuc should also be provided with sufficient bees and stores to survive and you will need a queen for it (or at least a queen cell).

Do not just dump a couple of brood frames and bees into a box and expect them to rear a half-decent queen on their own.

However, if you have a queen (or mature queen cell) then splitting a nuc off a strong colony is usually a win-win solution for swarm prevention.


 

Time to deploy!

It’s early April. The weather is finally warming up and the crocus and snowdrops are long gone. Depending where you are in the UK the OSR may start flowering in the next fortnight or so.

All of which means that colonies should be expanding well and will probably start thinking of swarming in the next few weeks.

So … just like any normal season really.

Except that the Covid-19 pandemic means that this season is anything but normal.

Keep on keeping on

The clearest guidelines for good beekeeping practice during the Covid-19 pandemic are on the National Bee Unit website. Essentially it is business as usual with the caveats that good hygiene (personal and apiary) and social distancing must be maintained.

Specifically this excludes inspections with more than one person at the hive. Mentoring, at least the really useful “hands-on” mentoring, cannot continue.

A veil is no protection against aerosolised SARS-CoV-2. Don’t even think about risking it.

This means that there will be a lot of new beekeepers (those that acquired bees this year or late last season) inspecting colonies without the benefit of help and advice immediately to hand.

Mistakes will be made.

Queen cells will be missed.

Colonies will swarm 1.

Queen cells

Queen cells …

It’s too early to say whether the current restrictions on society are going to be sufficient to reduce coronavirus spread in the community. It’s clear that some are still flouting the rules. More stringent measures may be needed. For beekeepers who keep their bees in out apiaries, the most concerning would be a very restrictive movement ban. In China and (probably) Italy these measures proved to be effective, although damaging to beekeeping, so the precedent is established.

Many hives and apiaries are already poorly managed 2. I would expect that additional coronavirus-related restrictions would only increase the numbers of colonies allowed to “fend for themselves” over the coming season.

Which brings me back to swarming.

Swarmtastic

The final point of advice on the NBU website is specifically about swarms and swarm management:

You should use husbandry techniques to minimise swarming. If you have to respond to collect a swarm you need to ensure that you use the guidelines on social distancing when collecting the swarm. If that is not possible, then the swarm then should not be collected. Therefore trying to prevent swarms is the best approach. 

Collecting swarms can be difficult enough at the best of times 3. And cutouts of established colonies are even worse.

In normal years I always prefer to reduce the swarms I might be called to 4 by setting out bait hives.

Swarm recently arrived in a bait hive with a planting tray roof …

Let the bees do the work.

Then all you need do is collect them once they’re all neatly tucked away in a hive busy drawing comb.

This year, with who-knows-what happening next, I’ll be setting out more bait hives than usual with the expectation that there may well be additional swarms.

If they’re successful I’ll have more bees to deal with when the ‘old normal’ finally returns. If they remain unused then all I’ve lost is the tiny investment of time made in April to set them out.

Not just any dark box

I’ve discussed the well-established ‘design features’ of a good bait hive several times in the past. Fortunately the requirements are easy to meet.

  • A dark empty void with a volume of about 40 litres.
  • A solid floor.
  • A small entrance of about 10cm2, at the bottom of the void, ideally south facing.
  • Something that ‘smells’ of bees.
  • Ideally located well above the ground.

I ignore the last of these. I’d prefer to have an easy-to-reach bait hive to collect rather than struggle at the top of a ladder. If I wanted to do some vertically-challenging beekeeping I’d go out and collect more swarms 😉

So, ignoring the final point, what I’ve described is the nearly perfect bait hive.

Those paying attention at the back will realise that it’s also a nearly perfect description of a single brood National hive.

How convenient 🙂

All of my bait hives are either single National brood boxes or two stacked National supers. The box does need a solid floor and a crownboard and roof. If you haven’t got a spare solid floor you can easily build them from Correx 5 for a few pence.

Inside ...

Bait hive floor

Alternatively, simply tape down a piece of cardboard or Correx over the mesh of an open mesh floor 6. In some ways this is preferable as it’s convenient to be able to monitor Varroa levels after a swarm arrives.

Do not be tempted to use a nuc box as a bait hive. You can easily fit a small swarm into a brood box, but a really big prime swarm will not fit in a 5 frame nuc box.

Big swarms are better 🙂 7

More to the point, bees are genetically programmed to search for a void of about 40 litres, so many swarms will simply overlook your nuc box for a more spacious nest site.

What’s in the box?

No, this has nothing to do with Gwyneth Paltrow in Se7en.

How do you make your bait hive even more desirable to the scout bees that search out nest sites? How do you encourage those scouts to advertise the bait hive to their sister scouts? Remember, that it’s only once the scouts have reached a democratic consensus on the best local nest site that the bivouacked swarm will move in.

The brood box ideally smells of bees. If it has previously held a colony that might be sufficient.

Bait hive ...

Bait hive …

However, a single old, dark brood frame pushed up against one sidewall not only provides the necessary ‘bee smell’, but also gives the incoming queen space to immediately start laying 8.

You can increase the attractiveness by adding a couple of drops of lemongrass oil to the top bar of this dark brood frame. Lemongrass oil mimics the pheromone produced from the Nasonov gland. There’s no need to Splash it all over … just a drop or two, replenished every couple of weeks. I usually soak the end of a cotton bud, and lay it along the frame top bar.

Lemongrass oil and cotton bud

The old brood frame must not contain stores – you’re trying to attract scouts, not robbers.

The incoming swarm will be keen to draw fresh comb for the queen to lay up with eggs. Whilst you can simply provide some frames and foundation, this has two disadvantages:

  • the vertical sheets of foundation effectively make the void appear smaller than it really is. The scout bees estimate the volume by walking around the perimeter and taking short internal flights. If they crash into a sheet of foundation during the flight the box will seem smaller than it really is.
  • foundation costs money. Quite significant amounts of money if you are setting out half a dozen bait hives. Sure, they’ll use it but – like putting a new carpet into a house you’re trying to sell – it’s certainly not the deal-clincher.

No foundation for that

Rather than filling the box with about £10 worth of premium foundation, a far better idea is to use foundationless frames. Importantly these provide the bees somewhere to draw new comb whilst not reducing the apparent volume of the brood box.

If you’ve not used foundationless frames before, a bait hive is an ideal time to give them a try.

There are two things you should be on the lookout for. The first is that the bait hive is horizontal 9. Bees draw comb vertically down, so if the hive slopes there’s a good chance the comb will be drawn at an angle to the top bar.

And that’s just plain irritating … because it’s avoidable with a bit of care.

Bamboo foundationless frames

Bamboo foundationless frames

The second thing is that the colony needs checking as it starts to draw comb. Sometimes the bees ignore your helpful lollipop stick ‘starter strips’ and decide to go their own way, filling the box with cross comb.

Beautiful … but equally irritating 🙂

Final touches

For real convenience I leave my bait hives ready to move from wherever they’re sited to my quarantine apiary (I’ll deal with both these points in a second).

Wedge the frames together with a small block of expanded cell foam so that they cannot shift about when the hive is moved.

Foam block ...

Foam block …

And then strap the whole lot up tight so you can move them easily and quickly when you need to.

Bait hive location and relocation

Swarms tend to move relatively modest distances from the hives they, er, swarmed from. The initial bivouac is usually just a few metres away. The scout bees survey a wide area, certainly well over a mile in all directions. However, several studies have shown that bees generally choose to move a few hundred yards or less.

It’s therefore a good idea to have a bait hive that sort of distance from your own apiaries.

Or even tucked away in the corner of the apiary itself.

I’ve had bees move out of one box, bivouac a short distance away and then occupy a bait hive on a hive stand adjacent to the original hive.

It’s probably definitely poor form to position a bait hive a short distance from someone else’s apiary 😉

But there’s nothing stopping you putting a bait hive at the bottom of your garden or – whilst maintaining social distancing of course – in the gardens of friends and family.

If you want to move a swarm that has occupied a bait hive the usual “less than 3 feet or more than 3 miles” rule applies unless you move them within the first couple of days of arrival. Swarms have an interesting plasticity of spatial memory (which deserves a post of its own) but will have fully reorientated to the bait hive location within a few days.

So, if the bait hive is in grandma’s garden, but grandma doesn’t want bees permanently, you need to move them promptly … or move them over three miles.

Or move grandma 😉

Lucky dip

Swarms, whether dropped into a skep or attracted to a bait hive, are a bit of a lucky dip. Now and again you get a fantastic prize, but often it’s of rather low value.

The good ones are great, but even the poor ones can be used.

But there’s an additional benefit … every one that arrives self-propelled in your bait hive is one less reported to the BBKA “swarm line” or that becomes an unwelcome tenant in the eaves of a house 10.

As long as they’re healthy, even a bad tempered colony headed by a queen with a poor laying pattern, can usefully be united to create a stronger colony to exploit late season nectar.

Varroa treatment of a new swarm in a bait hive…

But they must be healthy.

Swarms will potentially have a reasonably high mite count and will probably need treating within a week of arrival in the bait hive 11. Dribbled or vaporised oxalic acid/Api-Bioxal would be my choice; it’s effective when the colony has no sealed brood 12 and requires a single treatment.

But swarms can bring even more unwelcome payloads than Varroa mites. If you keep bees in an area where foulbroods are established be extremely careful to confirm that the arriving swarm isn’t affected. This requires letting the colony rear brood while isolated in a quarantine apiary.

How do you know whether there are problems with foulbroods in your area? Register your apiary on Beebase and talk to your local bee inspector.

My bait hives go out in the second or third week of April … but I’m on the cool east coast of Scotland. When I lived in the Midlands they used to be deployed in early April. If you’re in the balmy south they should probably be out already 13.

What are you waiting for 😉 ?


 

Do bees feel pain?

Even the most careful hive manipulations sometimes result in bees getting rolled between frames, or worse, crushed when reassembling the hive. Some beekeepers clip one wing of the queen to reduce the chance of losing a swarm, or uncap drone brood in the search for Varroa.

All of these activities can cause temporary or permanent damage, or may even kill, bees. A careful beekeeper should try and minimise this damage, but have you ever considered whether these damaged bees suffer pain?

Before considering the scientific evidence it’s important to understand the distinction between the detection of, for example, tissue damage and the awareness that the damage causes is painful and causes suffering.

Detection is a physiological response that is present in most animal species, the pain associated with it may not be.

What is pain?

Tissue damage, through chemical, mechanical or thermal stimuli, triggers a signal in the sensory nervous system that travels along nerve fibres to the brain. Or to whatever the animal has that serves as the equivalent of the brain 1.

This response is termed nociception (from the Latin nocēre, meaning ‘to harm’) and has been recorded in mammals, other vertebrates and in all sorts of invertebrates including leeches, worms and fruit flies. It has presumably evolved to detect damaging stimuli and to help the animal avoid it or escape.

But nociception is not pain.

Pain is a subjective experience that may result from the nociceptive response and can be defined as ‘an aversive sensation or feeling associated with actual or potential tissue damage’.

Most humans, being sentient, experience pain following the triggering of a nociceptive response and, understandably, conflate the two.

But they are separate and distinct. How do we know? Perhaps the first hint is that different people experience different levels of pain following the same harmful experience; an excruciatingly painful experience for one might be “just a scratch’ to another.

‘Tis but a scratch

With people it’s easy to demonstrate the distinction between nociception and pain – you simply ask them.

Can you feel that?

Does that hurt?

For the same stimuli you may receive a range of answers to the second question, depending upon their subjective experience of pain.

Painkillers

But you cannot ask a leech, or a worm or a fruit fly or – for the purpose of this post – a bee, whether a particular stimulus hurts.

Well, OK, you can ask but you won’t get an answer 😉

You can determine whether they ‘feel’ the stimulus. Since this is a simply physiological response you can measure all sorts of features of the electrical signal that passes from the nociceptors (the receptors in the tissue that detect damaging events) through the nerve fibres to the brain. This involves electrophysiology, a well established experimental science.

But how can we determine whether animals feel pain?

What do you do when you have a bad headache?

You take a painkiller – an aspirin or paracetamol. You self-medicate to relieve the pain.

Actually, even before you reach for the paracetamol, your body is already self-medicating by the release of endogenous opioids which help suppress the pain.

In cases of extreme pain injection of the opiate morphine may be necessary. Morphine is a very strong painkiller, or analgesic. Opioids bind to opioid receptors and this binding is blocked by a chemical called naloxone, an opiate antagonist. I’ll come back to naloxone in a minute.

But first, back to the unhelpfully unresponsive bee that may or may not feel pain …

It is self-medication with analgesics that forms the basis of the standard experiment to determine whether an animal feels pain.

The principle is straightforward. Two identical foods are prepared, one containing a suitable analgesic (e.g. morphine) and the other a placebo. If an animal is in pain it will preferentially eat the food containing the morphine.

Conversely, if they do not feel pain they will – on average – eat both types of food equally 2.

But this experiment will only work if morphine ‘works’ in bees.

Does morphine ‘work’ in bees?

An unpleasant or harmful stimulus induces a nociceptive response which might include taking defensive action like retreating or flying away. Studies have shown that the magnitude of this defensive action in honey bees is reduced or blocked altogether by prior injection with morphine.

This is a dose-response effect. The more morphine injected the smaller the nociceptive response by the bee. Importantly we know it’s the morphine that is having the effect because it can be counteracted by injection with naloxone.

So, morphine does work in bees 3.

We can therefore test whether bees choose to self-medicate with morphine to determine whether they feel pain.

And this is precisely what Julie Groening and colleagues from the University of Queensland did, and published three years ago in Scientific Reports. The full reference is Groening, J., Venini, D. & Srinivasan, M. In search of evidence for the experience of pain in honeybees: A self-administration study. Sci Rep 7, 45825 (2017); https://doi.org/10.1038/srep45825

Ouch … or not?

The experiment was very simple. Bees were subjected to one of two different injuries; a continuous pinch to the hind leg, or the amputation of part of the middle leg. They were then offered sugar syrup alone and sugar syrup containing morphine.

The hypothesis proposed was that if bees felt pain they would be expected to consume more of the sugar syrup containing morphine.

To ensure statistically relevant results they used lots of bees. Half were injured and half were uninjured and used as controls. If syrup laced with morphine tasted unpleasant you would expect the control group to demonstrate this by eating less.

Throughout the experiments the authors were therefore looking for a difference in syrup alone or syrup with morphine consumption between the injured bee and the uninjured controls.

All of the experiments produced broadly similar results so I’ll just show one data figure.

Relative consumption of morphine (M) and pure sucrose solution (S) by injured (i; amputated) or control (c) bees.

Both groups of bees preferred the pure syrup (the two box plots on the right labelled S_c or S_i) over the morphine-laced syrup (M). However, the bees with the amputation did not consume any more of the morphine-containing syrup (M_i) than the controls (M_c).

Therefore they did not self-medicate.

Very similar results were obtained with the bees carrying the hind leg clip (recapitulating an attack by a competing forager or predator, which often target the rear legs). The injured bees consumed statistically similar amounts of plain or morphine-laced syrup as the control group.

The one significant difference observed was that bees with amputations consumed about 20% more syrup overall than those with the rear leg ‘pinch’ injury. The authors justified this as indicating that the amputation likely induced the innate immune system, necessitating the production of additional proteins (like the antimicrobial peptides that fight infection), so leading to elevated energy needs. Speculation, but it seems reasonable to me.

Feeling no pain

This study, using a pretty standard and well-accepted experimental strategy, strongly suggests that bees do not feel pain.

It does not prove that bees feel pain. It strongly supports the theory that they do not. You cannot prove things with science, you can just disprove them. Evidence either supports or refutes a hypothesis; in this case the evidence (no self-medication) supports the hypothesis that bees do not feel pain because, as has been demonstrated with several other animals, they would self-medicate if they did feel pain.

In the discussion of the paper the authors suggest that further work is necessary. Scientists often make that kind of sweeping statement to:

  • encourage funders to provide money in the future 😉
  • allow them to incorporate additional, perhaps contradictory, evidence that could be interpreted in a different way to their own results.

Skinning a cat

That is painful … but the proverb There’s more than one way to skin a cat 4 means that there is more than one way to do something.

And there are other ways of interpreting behavioural responses as an indication that animals feel pain.

For example, rather than measuring self-medication with an analgesic, you could look at avoidance learning or protective motor reactions as indicators of pain.

Protective motor reactions include things like preferential and prolonged grooming of regions of the body which have been injured 5. There is no evidence that bees do this.

Avoidance learning

However, there is evidence that bees exhibit avoidance learning. This is a behavioural trait in which they learn to avoid a harmful stimulus that might cause injury.

If a forager is attacked by a predator at a food source (and survives) it stops other bees dancing to advertise that food source when it returns to the hive 6.

Whilst avoidance learning does not indicate that bees feel pain, it does imply central processing rather than a simple nociceptive response. It shows that bees are able to weigh up the risk vs. reward of something good (a rich source of nectar) with something bad (the chance of being eaten when collecting the nectar). This type of decision making demonstrates a cognitive capacity that might make pain experience more likely.

We’re now getting into abstruse areas of neuropsychology … dangerous territory.

Let’s assume, as I do based upon the science presented here and in earlier work, that bees do not feel pain. What, if anything, does this mean for practical beekeeping.

Practical beekeeping

It certainly does not mean we should not attempt to conduct hive manipulations in a slow, gentle and controlled manner. Just because rolled bees are not hurting, or crushed bees are not feeling pain, doesn’t give us carte blanche to be heavy handed.

One of the nociceptive responses is the production of alarm pheromones (sting and mandibular) which are part of the defensive response. Alarm pheromones agitate the hive and make the colony aggressive, much more likely to sting and much more difficult to inspect carefully.

So we should conduct inspections carefully, not because we are hurting the bees, but because they might hurt us.

But there are other reasons that care is needed as well. Crushed bees are a potential source of disease in the hive. One reason undertaker bees remove the corpses is to remove the likelihood of disease spreading in the hive. If bees are crushed the heady mix of viruses, bacteria and Nosema they contain are smeared around all over the place, putting other hive members at risk.

And, as we’re all learning at the moment, good hygiene can be a life-saver.


Colophon

This is the first post written under ‘lockdown’. It’s a little bit later than usual as it has had to travel a   v  e  r  y    l  o  n  g   way along the fibre to ‘the internet’. It’s going to be a very different beekeeping season to anything that has gone before.

At least spring is on the way …

Primroses, 27-3-20, Ardnamurchan

 

Bees in the time of corona

I usually write a review of the past year and plans for the year ahead in the middle of winter. This year I reviewed 2019 and intended to write about my plans when they were a little better formulated.

Inevitably, with the coronavirus pandemic, any plans would have had to be rapidly changed. It’s now not clear what the year ahead will involve and, with the speed things are moving at, anything I write today 1 may well be redundant by publication time on Friday.

Nothing I write here should be taken as medical advice or possibly even current information. I teach emerging virus infections and have studied RNA viruses (like DWV, coronavirus also has an RNA genome but it is a fundamentally different beast) for 30 years but defer to the experts when hardcore epidemiology is being discussed.

And it’s the epidemiology, and what we’ve learned from the outbreak in Italy, that is determining the way our society is being restructured for the foreseeable future.

Talking the talk

I gave three invited seminars last week. It was good to see old friends and to meet previously online-only contacts. It was odd not to shake hands with people and to watch people seek out the unoccupied corners of the auditorium to maintain their ‘social distancing’.

All of the beekeeping associations I belong to have cancelled or postponed talks for the next few months. Of course, there are usually far fewer talks during the beekeeping season as we’re all too busy with our bees, but those that were planned are now shelved.

Not me …

I expect that forward-thinking associations will be looking at alternative ways to deliver talks for the autumn season. If they’re not, they perhaps should as there’s no certainty that the virus will not have stopped circulating in the population by then.

I already have an invitation to deliver a Skype presentation in mid/late summer (to an association in the USA) and expect that will become increasingly commonplace. Someone more entrepreneurial than me will work out a way to give seminars in which the (often outrageous 2) speaker fee is replaced by a subscription model, ensuring that the audience can watch from the comfort of their armchairs without needing to meet in a group.

There is a positive spin to put on this. My waistline will benefit from not experiencing some of the delicious homemade cakes some beekeeping associations produce to accompany tea after the talk 😉 … I’m dreaming thinking in particular of a fabulous lemon drizzle cake at Fortingall & District BKA 🙂

It will also reduce the travel involved. For everyone. It’s not unusual for me to have a 2-3 hour journey to a venue 3 and, much as I enjoy talking, the questions, the banter and the cake, driving for 2-3 hours back can be a bit wearing.

At risk populations

Everyone is getting older … but beekeepers often have a head start. In the UK the average age of bee farmers is reported to be 66 years old. In my many visits to beekeeping associations I meet a lot of amateur (backyard) beekeepers and suspect that the majority are the wrong side of 50 4.

And that’s significant as Covid-19 is a more serious infection for those over 50.

Infection outcomes are also worse for men, and the majority (perhaps 65%) of beekeepers are men. The rates of infection appear similar, but men – particularly elderly men – often have less good underlying health; they are more likely to smoke and have less effective immune responses.

Enough gloom and doom, what does this mean for beekeeping?

Mentoring

If you took a ‘beginning beekeeping‘ course this winter you may struggle to find a mentor. If you’ve been allocated one (or someone has generously volunteered) think twice about huddling over an open hive with them.

Actually, don’t huddle with them at all … the veil of a beesuit is no barrier to a virus-loaded 5μm aerosol.

Mentoring is one of the most important mechanisms of support for people starting beekeeping.  I benefitted hugely from the experienced beekeepers who generously answered all my (hundreds of) idiotic questions and helped me with frames of eggs when I’d inadvertently ‘lost’ my queen and knocked back all the queen cells.

Without mentoring, learning to keep bees is a lot more difficult. Not impossible, but certainly more challenging. Beekeeping is fundamentally a practical pastime and learning by demonstration is undoubtedly the best way to clear the initial hurdles.

But thousands before have learnt without the benefit of mentoring.

However, if you can wait, I suggest you do.

If you cannot 5, you need to find a way to compensate for the potential absence of experienced help ‘on hand’.

All of us are going to have to learn to communicate more effectively online. Camera phones are now so good that a quick snap (or video) sent via WhatsApp may well be good enough to diagnose a problem.

Get together (virtually!) with other beginners at a similar stage and compare notes. Discuss how colonies are building up, early signs of swarming and when hives are getting heavier.

Bees in the same environment tend to develop at about the same rate. If your (virtual) ‘bee buddy’ lost a swarm yesterday you should check your colonies as soon as possible.

Getting bees

Thousands of nucs, packages and queens are imported to the UK every year. I’ve no idea what will happen to the supply this season. It might be unaffected, but I suspect it will be reduced.

If you’re waiting for an “overwintered nuc” and your supplier claims now not to be able to supply one 6 all is not lost.

Under offer ...

Under offer …

Set out one or two bait hives. With isolation, movement restrictions, curfews and illness 7 it’s more than likely that some nearby colonies will be poorly managed. If you use a bait hive you can attract a swarm with almost no work and save an overworked beekeeper from having to do a cutout from the roofspace of the house the swarm would have otherwise selected.

At the very least, you can have the pleasure of watching scout bees check out the hive in the isolated comfort of your own garden.

Keeping bees

I think the last few days have shown that the future is anything but predictable. Who knows where we’ll be once the swarming season is here. You can practice swarm control with social distancing in your out apiary unless there are movement controls in place.

In that case, you cannot get there in the first place.

Let us hope that it doesn’t come to that.

What you can do is be prepared. Give the bees plenty of space when the first nectar flow starts. Two supers straight away, or three if your knowledge of local conditions suggests two may not be enough.

Clip one of the wings of the queen. This doesn’t stop the bees swarming (almost nothing does) but it does stop you losing the bees. Although I cannot be certain that queen clipping is painless – because I’m not sure that bees feel pain (evidence suggests they don’t) – I do know that clipped queens have as long and as productive lives as unclipped queens.

There she goes ...

There she goes …

Clipped queens buy you a few days grace. The colony tends to swarm when the new virgin queen emerges rather than when the queen cell was capped. That can make all the difference.

The colony swarms but the queen spirals groundwards and usually then climbs back up the hive stand, around which the swarm then clusters. Sometimes the queen returns to the hive, though it doesn’t always end well for her there in the subsequent duel with the virgin now in residence.

1002, 1003, 1004, 1005, er, where was I? Damn!

Not lost swarm

Honey sales

Selling honey is not without risk of virus transmission, in either direction. When I sell “from the door” it often involves an extended discussion about hay fever, local forage, bumble bees and the weather. All of that can still continue but both parties will have to speak a bit louder to maintain social distancing.

Selling through shops might be easier … if the shops stay open. Farmers markets, village fetes and country fairs (fayres?) are likely to all be cancelled or postponed, at least temporarily.

There’s a neighbourhood initiative here selling high quality local produce, ordered online and collected at a set date and time. Similar things are likely to be developed elsewhere as customers increasingly want to support local producers, to buy quality food and to avoid the panic buying masses fighting over toilet tissue 8 in the supermarkets.

Peter Brookes, Panic Buying, 7-3-20, The Times

An initiative like Neighbourfood might make even more sense if there was a local delivery service to reduce further the need for contact. No doubt these things exist already.

The unknown unknowns

I’ve discussed the unknown knowns previously. These are the things you know will happen during the season, you’re just not quite sure when they’ll happen. Swarming, Varroa management, winter feeding etc.

To add to the uncertainty this year we will have the unknown unknowns … things you didn’t expect and that you might not know anything about. Or have any warning about. Social distancing, quarantine, school closures and potential lockdowns all fall into this category.

Preparing for things that cannot be predicted is always tricky. All we can do is be as resilient and responsible as possible.

My beekeeping season will start in late April or early May. I’m self-sufficient for frames and foundation and can switch entirely to foundationless frames if needed. I have enough boxes, supers, nucs etc 9 to maintain my current colonies.

I’m actually planning to reduce my colony numbers which I’ll achieve by uniting weak colonies or selling off the surplus. With a bit more free time from work (and I’m working very remotely some of the time) I intend to rear some queens when the weather is good. These will be used to requeen a few tetchy colonies for research, though it’s increasingly looking like we’ll lose this field season as the labs are effectively closed.

I’m not dependent on honey sales other than to offset the costs of the hobby. If I cannot buy fondant for autumn feeding I’ll just leave the supers on and let them get on with it.

This is why we treat ...

This is why we treat …

Which leaves only the treatments for Varroa management as essential purchases … and if I cannot mail order Apivar then things have got very serious indeed 🙁 10

In the meantime, I’m planning some more science and beekeeping posts for the future. This includes one on a new collaborative study we’re involved in on chronic bee paralysis virus which, like Covid-19, is classed as causing an emerging viral disease.


Colophon

Love in the time of cholera

The title is a rather contrived pun based on the book Love in the time of cholera by the Columbian author Gabriel García Márquez. There are no other similarities between this post and the Nobel laureates work … cholera isn’t even a virus.

Cholera, which has characteristic and rather unpleasant symptoms, might be an excuse to panic buy toilet rolls.

Covid-19, which has equally characteristic and unpleasant (but totally different) symptoms, is not 😉

 

Measles, mites and anti-vaxxers

About 11,000 years ago nomadic hunter-gatherers living near the river Tigris discovered they could collect the seeds from wild grasses and, by scattering them around on the bare soil, reduce the distance they had to travel to collect more grain the following year.

This was the start of the agricultural revolution.

They couldn’t do much more than clear the ground of competing ‘weeds’ and throw out handfuls of collected seed. The plough wasn’t invented for a further 6,000 years and wouldn’t have been much use anyway as they had no means of dragging it through the baked-hard soil.

But they could grow enough grains and cereals to settle down, doing less hunting and more gathering. Some grains grew better than others, with ‘ears’ that remained intact when they were picked, making harvesting easier. The neophyte farmers preferentially selected these and, about 10,000 years ago, the first domesticated wheat was produced.

Einkorn wheat (Triticum monococcum), one of the first domesticated cereals

Since they were less nomadic and more dependent upon the annual grain harvest they took increasing care to protect it. They were helped with this by the hunting dogs domesticated from wolves several thousands years earlier. The dogs protected the crops and kept the wild animals, primarily big, cloven-hooved ungulates and the native wild sheep and goats, at a distance.

But those that got too close were trapped and were remarkably good to eat.

And since it was easier to keep animals penned up to avoid the need to actively hunt them it was inevitable that sheep and goats were eventually domesticated (~9,000 years ago) … and the nomadic hunter-gatherers became settled farmers practising recognisably mixed agriculture.

Domestication of cattle

The sheep and goats were a bit weak and scrawny. The large ungulates, the aurochs, gaur, banteng, yak and buffalo 1 had a lot more meat on them.

Inevitably, first aurochs (which are now extinct) and then other wild ungulates, were independently domesticated to produce the cattle still farmed today. This process started about 8,000 years ago.

Auroch bull (left) and modern domesticated bull (right). Auroch were big, strong (tasty) animals.

Cattle were great. Not only did they taste good, but they could be managed to produce milk and were strong enough to act as beasts of burden.

The plough was invented and crop yields improved dramatically because the grain germinated better in the cleared, tilled soil. Loosely knit families and groups started to build settled communities in the most fertile regions.

Bigger farms supported more people. Scattered dwellings coalesced and became villages.

Not everyone needed to farm the land. The higher yields (of grain and meat) allowed a division of labour. Some people could help defend the crops from marauders from neighbouring villages, some focused on weaving wool (from the sheep) into textiles while others taught the children the skills they would need as adults.

Communities got larger and villages expanded to form towns.

Zoonotic diseases

Hunter-gatherers had previously had relatively limited contact with animals 2. In contrast, the domestication of dogs, sheep, goats and cattle put humans in daily contact with animals.

Many of these animals carried diseases that were unknown in the human population. The so-called zoonotic diseases jumped species and infected humans.

There’s a direct relationship between the length of time a species has been domesticated and the number of diseases we share with it.

Domestication and shared zoonotic diseases (years, X-axis)

The emergence of new diseases requires that the pathogen has both the opportunity to jump from one species to another and that the recipient species (humans in this case) transmits the disease effectively from individual to individual.

The nomadic hunter-gatherers had been exposed to many of these diseases as well but, even if they had jumped species, their communities were too small and dispersed to support extensive human-to-human transmission.

Rinderpest and measles

Until relatively recently rinderpest was the scourge of wild and domesticated cattle across much of the globe. Rinderpest is a virus that causes a wide range of severe symptoms in cattle (and wild animals such as warthog, giraffe and antelope) including fever, nasal and eye discharges, diarrhoea and, eventually, death. In naÏve populations the case fatality rate approaches 100%.

Rinderpest outbreak in South Africa, 1896

Animals that survive infection are protected for life by the resulting immune response.

Rinderpest is closely related to canine distemper virus and measles virus. Virologically they are essentially the same virus that has evolved to be specific for humans (measles), dogs (canine distemper) or cattle (rinderpest).

Measles evolved from rinderpest, probably 1,500 to 2,000 years ago, and became a human disease.

Rinderpest was almost certainly transmitted repeatedly from cattle to humans in the 6,000 years since auroch or banteng were domesticated. However, the virus failed to establish an endemic infection in the human population as the communities were too small.

However, by about 1,500 – 2,000 years ago the largest towns had populations of ~250,000 people. Subsequent studies have demonstrated that you need a population of this size to produce enough naÏve hosts (i.e. babies) a year to maintain the disease within the population.

This is because, like rinderpest, measles induces lifelong immunity in individuals that survive infection.

Measles is a devastating disease in an unprotected community. Case fatality rates of 10-30% or higher are not unusual. It is also highly infectious, spreading very widely in the community 3. Survivors may suffer brain damage or a range of other serious sequelae.

Measles subsequently changed the course of history, being partially responsible (along with smallpox) for Cortés’ defeat of the Aztec empire in the 16th Century.

John Enders, Maurice Hilleman and Andrew Wakefield

In the late 1950’s John Enders developed an attenuated live measles vaccine. When administered it provided long-lasting protection. It was an excellent vaccine. Maurice Hilleman, in the early 1970’s combined an improved strain of the measles vaccine with vaccines for mumps and rubella to create the MMR vaccine.

Widespread use of the measles and MMR vaccines dramatically reduced the incidence of measles – in the UK from >500,000 cases a year to a few thousand.

Incidence of measles in England and Wales

If vaccine coverage of 92% of the population is achieved then the disease is eradicated from the community. This is due to so-called ‘herd immunity’ 4 in which there are insufficient naÏve individuals for the disease to be maintained in the population.

Measles cases (and deaths) continued to fall everywhere the vaccine was used.

There was a realistic possibility that the vaccines would – like rinderpest 5 – allow the global eradication of measles.

And then in 1986 Andrew Wakefield published a paper in the Lancet suggesting a causative link between the MMR vaccine and autism in children.

Subsequent studies showed that this was a deeply flawed and biased study. And totally wrong.

There is not and never was a link between autism and measles vaccination 6. But that didn’t stop a largely uncritical press and subsequently even less critical social media picking up the story and disseminating it widely.

Measles and the anti-vaccine movement

Measles vaccination rates dropped because a subset of parents refused to have their kids vaccinated with the ‘dangerous’ measles vaccine.

Several successive birth cohorts had significantly lower than optimal vaccination rates. Measles vaccine coverage dropped to 84% by 2002 in the UK, with regional levels (e.g. parts of London) being as low as 61%. By 2006, twenty years after the thoroughly discredited (and now retracted) Lancet paper vaccine rates were still hovering around the mid-80% level.

As immunisation rates dropped below the critical threshold, measles started to circulate again in the population. 56 cases in 1998 to ~450 in the first 6 months of 2006. In that year there was also the first death from measles for many years – an entirely avoidable tragedy.

In 2008 measles was again declared endemic (i.e. circulating in the population) in the UK.

Similar increases in measles, mumps and rubella were occurring across the globe in countries where these diseases were unknown for a generation due to previous widespread vaccination.

The distrust of the MMR vaccine was triggered by the Wakefield paper but is part of a much wider ‘anti-vaccination movement‘.

“Vaccines are dangerous, vaccines themselves cause disease, there are too many vaccines and the immune system is overloaded, vaccines contain preservatives (thiomersal) that are toxic, vaccines cause sterility etc.”

None of these claims stand up to even rudimentary scientific scrutiny.

All have been totally debunked by very extensive scientific analysis.

The World Health Organisation consider the anti-vaccine movement (anti-vaxxers) one of the top ten threats to global health. Vaccination levels are lower than they need to be to protect the population. Diseases – not just measles – that should be almost eradicated now kill children every year.

Where are the bees in this beekeeping blog?

Bear with me … before getting to the bees I want to move from fact (all of the above) to fantasy. The following few paragraphs (fortunately) has not happened (and to emphasise the point it is all italicised). However, it is no more illogical than the claims already being made by the anti-vaccine movement.

Childhood measles

The inexorable rise of internet misinformation and social media strengthened the anti-vaxxers beliefs further. Their claims that vaccines damage the vaccinees were so widespread and, for the uncritical, naturally suspicious or easily influenced who simply wanting to protect their kids, so persuasive that vaccine rates dropped further. They refused to consider the scientific arguments for the benefits of vaccines, and refused to acknowledge the detrimental effects diseases were having on the community.

The obvious causative link to the inevitable increase in disease rates was not missed – by both the anti-vaxxers and those promoting vaccination. However, the solutions each side chose were very different. Measles remained of particular concern as kids were now regularly dying from this once near-forgotten disease. The symptoms were very obvious and outbreaks spread like wildfire in the absence of herd-immunity 7.

The anti-vaxxers were aware that population size was a key determinant of the ability of measles to be maintained in the population. Small populations, such as those on islands or in very isolated regions, had too few new births annually to maintain measles as an endemic disease.

With the increase in remote working – enabled by the same thing (the internet) responsible for lots of the vaccine misinformation – groups of anti-vaxxers started to establish remote closed communities. Contact with the outside world was restricted, as was the size of the community itself.

A quarter of a million was the cutoff … any more than that and there was a chance that measles could get established in the unprotected population.

Small communities 8 work very well for some things, but very badly for others. Efficiencies of scale, in education, industry, farming and trade became a problem, leading to increased friction. When disease did occur in these unprotected communities it wreaked havoc. Countless numbers of people suffered devastating disease because of the lack of vaccination.

In due course this led to further fragmentation of the groups. They lived apart, leading isolated lives, flourishing in good years but struggling (or failing completely) when times were hard, or when disease was introduced. Some communities died out altogether. 

They chose not to travel because, being unvaccinated, they were susceptible to diseases that were widespread in the environment. Movement and contact between villages, hamlets and then individual farm settlements was restricted further over time.

The benefits of large communities, the division of labour, the economies and efficiencies of scale, were all lost.

They didn’t even enjoy particularly good health.

They had ‘evolved’ into subsistence farmers … again.

OK, that’s enough! Where are the bees?

Anyone who has bothered to read this far and who read Darwinian beekeeping last week will realise that this is meant to be allegorical.

The introduction of Varroa to the honey bee population resulted from the globalisation of beekeeping as an activity, and the consequent juxtaposing of Apis mellifera with Apis cerana colonies.

Without beekeepers it is unlikely that the species jump would have occurred.

Apis cerana worker

Undoubtedly once the jump had occurred transmission of mites between colonies was facilitated by beekeepers keeping colonies close together. We do this for convenience and for the delivery of effective pollination services.

The global spread of mites has been devastating for the honey bee population, for wild bees and for beekeeping.

But (like the introduction to measles in humans) it is an irreversible event.

However, it’s an irreversible event that, by use of effective miticides, can at least be partially mitigated.

Miticides do not do long-term harm to honey bees in the same way that vaccines don’t overload the immune response or introduce toxins or cause autism.

There can be short term side effects – Apiguard stinks and often stops the queen laying. Dribbled oxalic acid damages open brood.

But the colony benefits overall.

Many of the miticides now available are organic acids, acceptable in organic farming and entirely natural (even being part of our regular diet). Some of the hard chemicals used (e.g. the lipid-soluble pyrethroids in Apistan) may accumulate in comb, but I’d argue that there are more effective miticides that should be used instead (e.g. Apivar).

I’m not aware that there is any evidence that miticides ‘weaken’ colonies or individual bees. There’s no suggestion that miticide treatment makes a colony more susceptible to other diseases like the foulbroods or Nosema.

Of course, miticides are not vaccines (though vaccines are being developed) – they are used transiently and provide short to medium term protection from the ravages of the mite and the viruses it transmits.

By the time they are needed again the only bee likely to have been previously exposed is the queen. They benefit the colony and they indirectly benefit the environment. The colony remains strong and healthy, with a populous worker community available for nectar-gathering and pollination.

The much reduced mite load in the colony protects the environment. Mites cannot be spread far and wide when bees drift or through robbing. Other honey bee colonies sharing the environment therefore also benefit.

The genie is out of the bottle and will not go back

Beekeepers (inadvertently) created the Varroa problem and they will not solve it by stopping treatment. Varroa will remain in the environment, in feral colonies and in the stocks of beekeepers who choose to continue treating their colonies.

And in the many colonies of Apis mellifera still kept in the area that overlaps the natural (and currently expanding) range of Apis cerana.

Treatment-free beekeepers may be able to select colonies with partial resistance or tolerance to Varroa, but the mite will remain.

So perhaps the answer is to ban treatment altogether?

What would happen if no colonies anywhere were treated with miticides? What if all beekeepers followed the principles of Darwinian (bee-centric, bee friendly, ‘natural’) beekeeping – well-spaced colonies, allowed to swarm freely, killed off if mite levels become dangerously high – were followed?

Surely you’d end up with resistant stocks?

Yes … possibly … but at what cost?

Commercial beekeeping would stop. Honey would become even scarcer than it already is 9. Pollination contracts would be abandoned. The entire $5bn/yr Californian almond crop would fail, as would numerous other commercial agricultural crops that rely upon pollination by honey bees. There would be major shortages in the food supply chain. Less fruits, more cereals.

Pollination and honey production require strong, healthy populous colonies … and the published evidence indicates that naturally mite resistant/tolerant colonies are small, swarmy and only exist at low density in the environment.

Like the anti-vaxxers opting to live as isolated subsistence farmers again, we would lose an awful lot for the highly questionable ‘benefits’ brought by abandoning treatment.

And like the claims made by the anti-vaxxers, in my view the detrimental consequences of treating colonies with miticides are nebulous and unlikely to stand up to scientific scrutiny.

Does anyone seriously suggest we should abandon vaccination and select a resistant strain of humans that are better able to tolerate measles?


Notes

It is an inauspicious day … Friday the 13th (unlucky for some) with a global pandemic of a new zoonotic viral disease threatening millions. As I write this the UK government is gradually imposing restrictions on movement and meetings. Governments across Europe have already established draconian regional or even national movement bans. Other countries, most notably the USA and Africa, have tested so few people that the extent of Covid-19 is completely unknown, though the statistics of cases/deaths looks extremely serious.

What’s written above is allegorical … and crudely so in places. It seemed an appropriate piece for the current situation. The development of our globalised society has exposed us – and our livestock – to a range of new diseases. We cannot ‘turn the clock back’ without dissasembling what created these new opportunities for pathogens in the first place. And there are knock-on consequences if we did that many do not properly consider.

Keep washing your hands, self-isolate when (not if) necessary, practise social distancing (no handshakes) and remember that your bees are not at risk. There are no coronaviruses of honey bees.

Darwinian beekeeping

A fortnight ago I reviewed the first ten chapters of Thomas Seeley’s recent book The Lives of Bees. This is an excellent account of how honey bees survive in ‘the wild’ i.e. without help or intervention from beekeepers.

Seeley demonstrates an all-too-rare rare combination of good experimental science with exemplary communication skills.

It’s a book non-beekeepers could appreciate and in which beekeepers will find a wealth of entertaining and informative observations about their bees.

The final chapter, ‘Darwinian beekeeping’, includes an outline of practical beekeeping advice based around what Seeley (and others) understand about how colonies survive in the wild.

Differences

The chapter starts with a very brief review of about twenty differences between wild-living and managed colonies. These differences have already been introduced in the preceding chapters and so are just reiterated here to set the scene for what follows.

The differences defined by Seeley as distinguishing ‘wild’ and ‘beekeepers’ colonies cover everything from placement in the wider landscape (forage, insecticides), the immediate environment of the nest (volume, insulation), the management of the colony (none, invasive) and the parasites and pathogens to which the bees are exposed.

Some of the differences identified are somewhat contrived. For example, ‘wild’ colonies are defined fixed in a single location, whereas managed colonies may be moved to exploit alternative forage.

In reality I suspect the majority of beekeepers do not move their colonies. Whether this is right or not, Seeley presents moving colonies as a negative. He qualifies this with studies which showed reduced nectar gathering by colonies that are moved, presumably due to the bees having to learn about their new location.

However, the main reason beekeepers move colonies is to exploit abundant sources of nectar. Likewise, a static ‘wild’ colony may have to find alternative forage when a particularly good local source dries up.

If moving colonies to exploit a rich nectar source did not usually lead to increased nectar gathering it would be a pretty futile exercise.

Real differences

Of course, some of the differences are very real.

Beekeepers site colonies close together to facilitate their management. In contrast, wild colonies are naturally hundreds of metres apart 1. I’ve previously discussed the influence of colony separation and pathogen transmission 2; it’s clear that widely spaced colonies are less susceptible to drifting and robbing from adjacent hives, both processes being associated with mite and virus acquisition 3.

Abelo poly hives

50 metres? … I thought you said 50 centimetres. Can we use the next field as well?

The other very obvious difference is that wild colonies are not treated with miticides but managed colonies (generally) are. As a consequence – Seeley contends – beekeepers have interfered with the ‘arms race’ between the host and its parasites and pathogens. Effectively beekeepers have ‘weaken[ed] the natural selection for disease resistance’.

Whilst I don’t necessarily disagree with this general statement, I am not convinced that simply letting natural selection run its (usually rather brutal) course is a rational strategy.

But I’m getting ahead of myself … what is Darwinian beekeeping?

Darwinian beekeeping

Evolution is probably the most powerful force in nature. It has created all of the fantastic wealth of life forms on earth – from the tiniest viroid to to the largest living thing, Armillaria ostoyae 4. The general principles of Darwinian evolution are exquisitely simple – individuals of a species are not identical; traits are passed from generation to generation; more offspring are born than can survive; and only the survivors of the competition for resources will reproduce.

I emphasised ‘survivors of the competition’ as it’s particularly relevant to what is to follow. In terms of hosts and pathogens, you could extend this competition to include whether the host survives the pathogen (and so reproduces) or whether the pathogen replicates and spreads, but in doing so kills the host.

Remember that evolution is unpredictable and essentially directionless … we don’t know what it is likely to produce next.

Seeley doesn’t provide a precise definition of Darwinian beekeeping (which he also terms natural, apicentric or beefriendly beekeeping). However, it’s basically the management of colonies in a manner that more closely resembles how colonies live in the wild.

This is presumably unnnatural beekeeping

In doing so, he claims that colonies will have ‘less stressful and therefore more healthful’ lives.

I’ll come back to this point at the end. It’s an important one. But first, what does Darwinian mean in terms of practical beekeeping?

Practical Darwinian beekeeping

Having highlighted the differences between wild and managed colonies you won’t be surprised to learn that Darwinian beekeeping means some 5 or all of the following: 6

  • Keep locally adapted bees – eminently sensible and for which there is increasing evidence of the benefits.
  • Space colonies widely (30-50+ metres) – which presumably causes urban beekeepers significant problems.
  • Site colonies in an area with good natural forage that is not chemically treated – see above.
  • Use small hives with just one brood box and one super – although not explained, this will encourage swarming.
  • Consider locating hives high off the ground – in fairness Seeley doesn’t push this one strongly, but I could imagine beekeepers being considered for a Darwin Award if sufficient care wasn’t taken.
  • Allow lots of drone brood – this occurs naturally when using foundationless frames.
  • Use splits and the emergency queen response for queen rearing i.e. allow the colony to choose larvae for the preparation of new queens – I’ve discussed splits several times and have recently posted on the interesting observation that colonies choose very rare patrilines for queens.
  • Refrain from treating with miticides – this is the biggy. Do not treat colonies. Instead kill any colonies with very high mite levels to prevent them infesting other nearby colonies as they collapse and are robbed out.

Good and not so good advice

A lot of what Seeley recommends is very sound advice. Again, I’m not going to paraphrase his hard work – you should buy the book and make your own mind up.

Sourcing local bees, using splits to make increase, housing bees in well insulated hives etc. all works very well.

High altitude bait hive …

Some of the advice is probably impractical, like the siting of hives 50 metres apart. A full round of inspections in my research apiary already takes a long time without having to walk a kilometre to the furthest hive.

The prospect of inspecting hives situated at altitude is also not appealing. Negotiating stairs with heavy supers is bad enough. In my travels I’ve met beekeepers keeping hives on shed roofs, accessed by a wobbly step ladder. An accident waiting to happen?

And finally, I think the advice to use small hives and to cull mite-infested colonies is poor. I understand the logic behind both suggestions but, for different reasons, think they are likely to be to the significant detriment of bees, bee health and beekeeping.

Let’s deal with them individually.

Small hives – one brood and one super

When colonies run out of space for the queen to lay they are likely to swarm. The Darwinian beekeeping proposed by Seeley appears to exclude any form of swarm prevention strategy. Hive manipulation is minimal and queens are not clipped.

They’ll run out of space and swarm.

Even my darkest, least prolific colonies need more space than the ~60 litres offered by a brood and super.

Seeley doesn’t actually say ‘allow them to swarm’, but it’s an inevitability of the management and space available. Of course, the reason he encourages it is (partly – there are other reasons) to shed the 35% of mites and to give an enforced brood break to the original colony as it requeens.

These are untreated colonies. At least when starting the selection strategy implicit in Darwinian beekeeping these are likely to have a very significant level of mite infestation.

These mites, when the colony swarms, disappear over the fence with the swarm. If the swarm survives long enough to establish a new nest it will potentially act as a source of mites far and wide (through drifting and robbing, and possibly – though it’s unlikely as it will probably die – when it subsequently swarms).

A small swarm

A small swarm … possibly riddled with mites

Thanks a lot!

Lost swarms – and the assumption is that many are ‘lost’ – choose all sorts of awkward locations to establish a new nest site. Sure, some may end up in hollow trees, but many cause a nuisance to non-beekeepers and additional work for the beekeepers asked to recover them.

In my view allowing uncontrolled swarming of untreated colonies is irresponsible. It is to the detriment of the health of bees locally and to beekeepers and beekeeping.

Kill heavily mite infested colonies

How many beekeepers reading this have deliberately killed an entire colony? Probably not many. It’s a distressing thing to have to do for anyone who cares about bees.

The logic behind the suggestion goes like this. The colony is heavily mite infested because it has not developed resistance (or tolerance). If it is allowed to collapse it will be robbed out by neighbouring colonies, spreading the mites far and wide. Therefore, tough love is needed. Time for the petrol, soapy water, insecticide or whatever your choice of colony culling treatment.

In fairness to Seeley he also suggests that you could requeen with known mite-resistant/tolerant stock.

But most beekeepers tempted by Darwinian ‘treatment free’ natural beekeeping will not have a queen bank stuffed with known mite-resistant mated queens ‘ready to go’.

But they also won’t have the ‘courage’ to kill the colony.

They’ll procrastinate, they’ll prevaricate.

Eventually they’ll either decide that shaking the colony out is OK and a ‘kinder thing to do’ … or the colony will get robbed out before they act and carpet bomb every strong colony for a mile around.

Killing the colony, shaking it out or letting it get robbed out have the same overall impact on the mite-infested colony, but only slaying them prevents the mites from being spread far and wide.

And, believe me, killing a colony is a distressing thing to do if you care about bees.

In my view beefriendly beekeeping should not involve slaughtering the colony.

Less stress and better health

This is the goal of Darwinian beekeeping. It is a direct quote from final chapter of the book (pp286).

The suggestion is that unnatural beekeeping – swarm prevention and control, mite management, harvesting honey (or beekeeping as some people call it 😉 ) – stresses the bees.

And that this stress is detrimental for the health of the bees.

I’m not sure there’s any evidence that this is the case.

How do we measure stress in bees? Actually, there are suggested ways to measure stress in bees, but I’m not sure anyone has systematically developed these experimentally and compared the stress levels of wild-living and managed colonies.

I’ll explore this topic a bit more in the future.

I do know how to measure bee health … at least in terms of the parasites and pathogens they carry. I also know that there have been comparative studies of managed and feral colonies.

Unsurprisingly for an unapologetic unnatural beekeeper like me ( 😉 ), the feral colonies had higher levels of parasites and pathogens (Catherine Thompson’s PhD thesis [PDF] and Thompson et al., 2014 Parasite Pressures on Feral Honey Bees). By any measurable definition these feral colonies were less healthy.

Less stress and better health sounds good, but I’m not actually sure it’s particularly meaningful.

I’ll wrap up with two closing thoughts.

One of the characteristics of a healthy and unstressed population is that it is numerous, productive and reproduces well. These are all characteristics of strong and well-managed colonies.

Finally, persistently elevated levels of pathogens are detrimental to the individual and the population. It’s one of the reasons we vaccinate … which will be a big part of the post next week.


 

“Start beekeeping” courses

It’s mid-January. If you are an experienced beekeeper in the UK you’re being battered by the remnants of Storm Brendan and wondering whether the roofs are still on your hives.

If my experience is anything to go by, they’re not 🙁

But if you’re a trainee beekeeper you may well be attending a course on Starting Beekeeping, run by your local beekeeping association. Typically these run through the first 1- 3 months of the year, culminating in an apiary visit in April.

Trainee beekeepers

Trainee beekeepers

Sometimes a not-really-warm-enough-to-be doing-this apiary visit in April 🙁

Beekeeping, just like driving a car

Many years ago I attended the Warwick and Leamington Beekeepers Introduction to Beekeeping course. It was a lot of fun and I met some very helpful beekeepers.

But I learnt my beekeeping in their training apiary over the following years; initially as a new beekeeper, and subsequently helping instruct the cohort of trainees attending the course and apiary sessions the following year(s).

Teaching someone else is the best way to learn.

The distinction between the theoretical and practical aspects of the subject are important. You can learn the theory in a classroom, refreshed with tea and digestive biscuits, with the wind howling around outside.

Plain chocolate are preferable

However, it is practical experience that makes you a beekeeper, and you can only acquire these skills by opening hives up – lots of them – and understanding what’s going on.

Some choose never to go this far 1, others try but never achieve it. Only a proportion are successful – this is evident from the large number who take winter courses compared to the relatively modest growth in beekeeper numbers (or association memberships).

Beekeeping is like driving a car. You can learn the theory from a book, but that doesn’t mean you are able to drive. Indeed, the practical skills you lack may mean you are a liability to yourself and others.

Fortunately, the consequences of insufficient experience in beekeeping are trivial in comparison to inexperienced drivers and road safety.

Theoretical beekeeping

What should an ‘introduction to beekeeping’ course contain?

Which bits are necessary? What is superfluous?

Should it attempt to be all encompassing (queen rearing methods, Taranov swarm control, Israeli Acute Paralysis Virus) or pared back to the bare minimum?

Who should deliver it?

I don’t necessarily know, but for a variety of reasons I’ve been giving it some thought(s) … and here they are.

The audience and the intended outcome

You have to assume that those attending the course know little or nothing about bees or beekeeping. If you don’t there’s a good chance some of the audience will be alienated before you start 2.

When I started I had never seen inside a beehive. I don’t think I even knew what a removable frame was. Others on the course had read half a dozen books already. Some had already purchased a hive.

Some even had bees (or ‘hoped they were still alive’ as it was their first winter) 😯

I felt ignorant when others on the course were asking Wouldn’t brood and a half be better? or I’ve read that wire framed queen excluders are preferable.

Framed wire QE ...

Preferable to what?

What’s a queen excluder?

By working from first principles you know what has been covered, you ensure what is covered is important and you keep everyone together.

Some on the course like the idea of keeping bees, but will soon get put off by the practicalities of the discipline. That doesn’t mean they can’t still be catered for on the course. It can still be interesting without being exclusive 3.

But, of course, the primary audience are the people who want to learn how to keep bees successfully.

For that reason I think the intended outcome is to teach sufficient theory so that a new beekeeper, with suitable mentoring, can:

  • acquire and house a colony
  • inspect it properly
  • prevent it swarming, or know what to do if it does
  • manage disease in the colony
  • prepare the colony for winter and overwinter it successfully

The only thing I’d add to that list is an indication of how to collect honey … but don’t get their hopes up by discussing which 18 frame extractor to purchase or how to use the Apimelter 😉

Course contents

I’m not going to give an in-depth breakdown of my views of what an introduction to beekeeping course should contain, but I will expand on a few areas that I think are important.

The beekeeping year and the principles of beekeeping

I’d start with an overview of a typical beekeeping year. This shouldn’t be hugely detailed, it simply sets out what happens and when.

It provides the temporal context to which the rest of the course can refer. It emphasises the seasonality of beekeeping. The long periods of inactivity and the manic days in May and early June. It can be quite ‘light touch’ and might even end with a honey tasting session.

Or mead … 😉

‘Typical’ means you don’t need to qualify everything – if the spring is particularly warm or unless there’s no oil seed rape near you – just focus on an idealised year with normal weather, the expected forage and the usual beekeeping challenges.

The normal beekeeping challenges

But this part of the course should also aim to clearly emphasise the principles and practice of beekeeping.

Success, whether measured by jars of honey or overwintered colonies, requires effort. It doesn’t just happen.

Hive inspections are not optional. They cannot be postponed because of family holidays 4, weekend breaks in Bruges, or going to the beach because the weather is great.

Great weather … good for swarming and swimming

Quite the opposite. From late April until sometime in July you have to inspect colonies at weekly intervals.

Whatever the weather (within reason).

Not every 9-12 days.

Not just before and when you return from a fortnight in Madeira 🙁

Andalucian apiary

While you’re looking at these Andalusian hives your colony might be swarming.

And hive inspections involve heavy lifting (if you’re lucky), and inadvertently squidging a few bees when putting the hive back together, and possibly getting stung 5.

The discussion of the typical year must mention Varroa management. This is a reality for 99% of beekeepers and it is our responsibility to take appropriate action in a timely manner (though the details of how and when can be saved for a later discussion of disease).

Finally, this part of the course should emphasise the importance of preparing colonies properly for the winter. This again necessitates mentioning disease control.

By covering the principles and practice of a typical year in beekeeping the trainee beekeepers should be prepared from the outset for the workload involved, and have an appreciation for the importance of timing.

We have to keep up with the bees … and the pace they go (or grow) at may not be the same every year, or may not quite fit our diaries.

Bees and beekeeping

There is a long an interesting history of beekeeping and an almost limitless number of fascinating things about bees. Some things I’d argue are essential, others are really not needed and can be safely ignored.

Bee boles in Kellie Castle, Fife, Scotland … skep beekeeping probably isn’t an essential course component.

Of the essential historical details I’d consider the development of the removable frame hive is probably the most important. Inevitably this also involves a discussion of bee space – a gap that the bees do not fill with propolis or wax. Of course, bee space was known about long before Langstroth found a way to exploit it with the removable frame hive.

The other historical area often covered is the waggle dance, but I’d argue that this is of peripheral relevance to beekeeping per se. However, it could be used to introduce the concept of communication in bees.

And once the topic turns to bees there’s almost no limit what could be included. Clearly an appreciation of the composition of the colony and how it changes during the season is important. This leads to division of labour and the caste system.

It also develops the idea of the colony as a superorganism, which has a bearing on swarm preparation, management and control.

Queen development

Queen development …

Probably most important is the development cycle of the queen, workers and drones. A proper understanding of this allows an appreciation of colony build-up, the timing of swarming and queen replacement, and is very important for the correct management of Varroa.

As with the beekeeping year, sticking to what is ‘typical’ avoids confusion. No need to mention laying workers, two-queen hives, or thelytokous parthenogenesis.

Keep on message!

Equipment

What a minefield?!

As long as the importance of compatibility is repeatedly stressed you should be OK.

An Abelo/cedar hybrid hive ...

An Abelo/cedar hybrid hive …

A little forethought is needed here. Are you (or the association) going to provide your beginners with bees?

I’d argue, and have before, that you really should.

Will the bees be on National frames? 14 x 12’s? One of several different Langstroth frames? Smiths?

Or packages?

I said it was a minefield.

Beginners want to be ready for the season ahead. They want to buy some of that lovely cedar and start building boxes. They need advice on what to buy.

What they buy must be influenced by how they’re going to start with bees. One of the easiest ways around this is to allocate them a mentor and let them lead on the specifics (assuming they’ll be getting bees from their mentor).

One thing that should be stressed is the importance of having sufficient compatible equipment to deal with swarming (which we’ll be coming to shortly).

Dummy board needed ...

5 frame poly nucleus hive needing a dummy board …

My recommendation would be to buy a full hive with three supers and a compatible polystyrene nucleus hive. In due course beginners will probably need a second hive, but (if you teach the simplest form of swarm control – see below) not in the first year. A nuc box will be sufficient.

Swarming and swarm control

Swarming is often considered to be confusing 6.

It doesn’t need to be.

The life cycle of the bee and the colony have been covered already. Swarming and queen cells is just honey bee reproduction … or it’s not swarming at all but an attempt to rescue the otherwise catastrophic loss of a queen 🙁

Deciding which is important and should influence the action(s) taken.

The determinants that drive swarming are reasonably well understood – space, age of the queen etc. The timing of the events, and the importance of the timing of the events leading to swarming is very well understood.

Preventative measures are therefore easy to discuss. Ample space. Super early. Super often.

It’s swarm control that often causes the problem.

And I think one of the major issues here is the attempts to explain the classic Pagden artificial swarm. Inevitably this involves some sort of re-enactment, or an animated Powerpoint slide, or a Tommy Cooper-esque “Glass, bottle … bottle, glass” demonstration 7.

Often this is confounded by the presenters’ left and right being the audiences right and left.

Confused? You will be.

Far better to simply teach a nucleus hive-based swarm control method. Remove the old queen, a frame of emerging brood, a frame of stores and a few shakes of bees. Take it to a distant apiary (or block the entrance with grass etc. but this adds confusion) and leave a single open charged queen cell in the original hive.

This method uses less equipment, involves fewer apiary visits, but still emphasises the need for a thorough understanding of the queen development cycle.

And, to avoid confusion, I wouldn’t teach any other forms of swarm control.

Yes, there are loads that work, but beginners need to understand one that will always work for them. Hopefully they’ve got dozens of summers of beekeeping ahead of them to try alternatives.

I think swarm control is one area where the KISS principle should be rigorously applied.

Disease prevention and management

Colony disease is a reality but you need to achieve a balance between inducing paranoia and encouraging complacency.

This means knowing how to deal with the inevitable, how to identify the possible and largely ignoring the rest.

The inevitable is Varroa and the viruses it transmits. And, of at least half a dozen viruses it does transmit, only deformed wing virus needs to be discussed. The symptoms are readily identifiable and if you have symptomatic bees – and there can be no other diagnosis – you have a Varroa problem and need to take action promptly.

Worker bee with DWV symptoms

Worker bee with DWV symptoms

In an introductory course for new beekeepers I think it is inexcusable to promote alternate methods of Varroa control other than VMD-approved treatments.

And, even then, I’d stick to just two.

Apivar in late summer and a trickle of Api-Bioxal solution in midwinter.

Used properly, at the right time and according to the manufacturer’s instructions, these provide excellent mite management.

Don’t promote icing sugar shaking, drone brood removal, small cell foundation, Old Ron’s snake oil or anything else that isn’t documented properly 8.

Almost always there will be questions about treatment-free beekeeping.

My view is that this has no place in a beginners course for beekeepers.

The goal is to get a colony successfully through the full season. An inexperienced beekeeper attempting to keep bees without treatment in their first year is a guaranteed way to lose both the colony and, probably, a disillusioned trainee beekeeper from the hobby.

To lose one may be regarded as a misfortune, to lose both looks like carelessness. 9

Once they know how to keep bees alive they can explore ways to keep them alive without treatment … and they will have the experience necessary to make up for the colony losses.

In terms of other diseases worth discussing then Chronic Bee Paralysis Virus (CBPV) is rapidly increasing in prevalence. Again the symptoms are pretty characteristic. Unlike DWV and Varroa it’s not yet clear what to do about it. Expect to see more of it in the next few years.

Nosema should probably be mentioned as should the foulbroods. The latter are sufficiently uncommon to be a minor concern, but sufficiently devastating to justify caution.

By focusing on the things that might kill the colony – or result in it being destroyed 🙁 – you’re obviously only scratching the surface of honey bee pests and pathogens. But it’s a start and it covers the most important things.

Most beginners have colonies that never get strong enough for CBPV to be a problem. Conversely, their weakness means that wasps might threaten them towards the end of the season, so should probably be discussed.

And, of course, the Asian hornet if you’re in an area ‘at risk’.

My beekeeping year

By this time the beginners have an overview of an idealised beekeeping year, an appreciation of the major events in the year – swarming, disease management, the honey harvest and preparation for winter.

Sounds easy, doesn’t it?

But an ideal wrap-up session to a starting beekeeping course would be the account of a real first year from a new beekeeper.

What were the problems? How did they attempt to solve them? What happened in the end?

This asks a lot of a relatively inexperienced beekeeper. Not least of which is good record keeping (but of course, they learnt this on the course the previous year 😉 ).

However, the comparison between the ‘textbook’ account delivered during the course with the ‘sweating in a beesuit’ reality of someone standing by an open hive feeling totally clueless is very enlightening.

Sweating in a beesuit

With sufficient preparation you could even turn it into a quiz to test what the trainees have understood.

I’ve seen several ‘starting beekeeping’ courses. All have had some of the things described above. None have had all of them. Most have included superfluous information, or in some cases, dangerous misinformation.

Which brings neatly me to the question of who should teach the course?

If you can do, if you can’t teach

Ensuring that everything is covered at the right time, avoiding duplication and maintaining the correct emphasis takes skill for one person. For a group of individuals it requires a lot of preparation and strict instructions not to drift off topic.

You might have noticed that many experienced beekeepers like to talk.

A lot.

A course handbook becomes an essential – both to help the students and as a guide to keep “on message” for the tutors.

Often it is some of the most experienced beekeepers who teach these courses.

Some are outstanding. Others less so.

Their years of experience often means they take for granted the subtleties that are critical. The difference between play cups and a 1-2 day old queen cell. A reduced laying rate by the queen. How to tell when there is a nectar flow on, and when it stops.

All of this, to them, is obvious.

They forget just how much they have learned from the hundreds of hives they have opened and the thousands of frames they have examined. They’ve reached the stage when it looks like they have a sixth sense when it comes to finding the queen.

Queen rearing course

Listen up Grasshopper!

As Grasshopper says to the old, blind master 10 “He said you could teach me a great knowledge”.

Possibly.

But sometimes they’ve retained some archaic approaches that should have been long-forgotten. They were wrong then, they still are. Paint your cedar hives with creosote. Use matchsticks to ventilate the hive in winter. Apistan is all you need for Varroa control.

 

Matchless matches

If any readers of this post have had these suggested on a course they are currently attending then question the other things that have been taught.

Get a good book that focuses on the essentials. I still think Get started in beekeeping by Adrian and Claire Waring is the best book for beginners that I’ve read 11.

Get a good mentor … you’re going to need one.

And good luck!