Category Archives: Responsibility

Bad behaviour

Synopsis : Bad behaviour by bees – aggression, following and stability on the comb – may be transient or permanent. To recognise it you need to keep records and have hives to compare. Fortunately, these traits are easy to correct by requeening the colony.

Introduction

That’s a pretty generic title and it could cover a multitude of sins.

Slapdash disease management, insufficient winter feeding, poor apiary hygiene, siting bait hives near another beekeeper’s apiaries … even bee rustling.

However, I always try and write about a topic from direct practical experience.

If I did ever exhibit any of those examples of bad behaviour:

So, instead of discussing bad behaviour by beekeepers, I’ll write about badly behaved bees.

Nice bees

Most beekeepers have an idea of what ‘nice bees’ are like. It’s a 2 term that encapsulates the various characteristics that a beekeeper values.

These characteristics could include temper, stability on the comb, productivity (in terms of either/both bees or honey), frugality, colour and any number of other terms 3 that define either the appearance or behaviour of individual bees or, collectively, that of the colony.

Of course, all these terms are relative.

Nice bees and a nice queen

My definition of aggressive bees may well differ from what another beekeeper would consider (un)acceptable.

The relatively calm and stable bees in most of my hives could be defined as ’running about all over the place’ by someone who’s bees stick, almost immobile, to the comb.

This relativity is nowhere more apparent than when visiting the apiary of another beekeeper. I’m always a little wary of someone donning a beesuit 100 metres from the hives 4 while simultaneously claiming their bees are ’very friendly’.

These differences don’t matter if you keep your bees in an isolated location where other people – in particularly civilians (i.e. members of the general public) – won’t be impacted if your ’friendly bees’ are actually ’murderous psychopaths’.

However, they do matter if your bees are in an urban garden, or a shared allotment.

They also matter when making comparisons between colonies to determine which to split (so creating a new queen) and which – perhaps urgently – need requeening.

Transient or permanent?

For the purpose of the following discussion let’s consider that the ‘bad behaviour’ is aggression.

Here’s a screenshot from a YouTube video (from CapLock Apiaries) which shows some really unpleasant bees. The final words (in this part of the video) by the beekeeper on the right is ”This queen has to die!”.

‘This queen has to die’ … beekeeping doesn’t have to be like this

The brood boxes were stuck together, presumably because the colony is less regularly inspected and everything gets gummed up with propolis. The first comment 5 was

I’m new to bees and thought I found a hot wild hive today. Went to youtube to find some comparison. The hive I saw was absolutely docile in comparison to these guys, and the first wild hive I extracted are absolute angels!

Which emphasises the relative nature of behaviour.

I dislike aggressive bees so have no videos of my own showing this sort of behaviour 6.

However, that doesn’t mean that my bees never show aggression … 😉

Weather, forage, handling, queenless … all can influence temper

Aggression – or defensiveness – can be a permanent feature of a colony or can appear transiently. In my view, the former is unacceptable under any circumstances 7.

However, in response to environmental conditions or handling, a colony may become defensive. Again, the amount of ‘aggro’ varies. Some bees may just buzz a little more excitedly, others can go completely postal. If you are careful to only select from your better behaved stocks for splits and queen rearing you can usually avoid even transient unpleasantness.

Environmental factors that can influence the behaviour of a colony include the weather, the availability of forage and the gentleness and care exhibited by the beekeeper during inspections.

Queenless colonies may also be more aggressive, but all the comments in the post this week relate to queenright colonies.

Scores on the doors

There are two easy to achieve solutions that allow a beekeeper to make sense of the variation in any of these traits. These are:

  • keeping good hive records to allow undesirable behaviour, or a gradual decline in behaviour, to be identified, and
  • managing more than one colony so comparisons can be readily made

I score temper, running (stability on the comb) and following, but I know some who record a much greater range of characteristics.

Each are recorded on a 1 – 5 scale (worst to best, allowing half points as a ‘perfect 5’ is unattainable as the bees can always be better, whereas a 4.5 is a really good colony).

The bees in hive #34 run all over the place. They are being requeened.

I also make a note of the weather. A colony may consistently score 4’s or better until you inspect them in a thunderstorm, but that’s OK because when you look back you’ll see that the conditions were woeful.

Compare and contrast

With just one colony you have no reference to know whether all colonies in the area are suffering because there’s a dearth of nectar, or if this colony alone is a wrong ‘un.

With two colonies things get easier.

Increasingly – for reasons I’ll discuss in a future post – I think three is probably the minimum optimum number.

The more you have the easier it is to identify the outliers … the exceptional (whether good 🙂 or bad 🙁 ). That should be qualified by stating the more you have in one location as the local environment may differ significantly between apiaries.

The great thing about hive records is that they provide a longer retrospective view. You can overlook the hammering you received from a colony last week 8 if there are a long list of 4’s over the last 3 months.

They also allow you to observe trends in behaviour.

Growing old disgracefully

I’ve recently noticed that a couple of my colonies are markedly less well behaved now we’re reaching mid-season than they were throughout 2021 or the beginning of this year. I think at least one has (actually had, as it was requeened last week) a 2020 queen.

As the queen ages the behaviour of the colony has gradually changed.

I crudely classify my colonies into thirds – good, bad or indifferent. Anything ‘bad’ is requeened as soon as I have a suitable queen available (or the larvae to rear one).

These ‘declining’ colonies were never worse than indifferent last year but, as they’ve expanded this spring, are now firmly in the ‘bad’ category. I presume this is consequence of the combination of the influence of the queen’s pheromones and the size of the colony 9.

Whatever … I think all it really demonstrates is that consistently taking even cursory hive records is useful.

The colonies I’m referring to above haven’t become more aggressive (though this can happen). The characteristic I’ve seen change the most is the steadiness of the bees on the comb.

It’s worth noting here that colony size can fundamentally impact behaviour. A well-tempered nuc can develop into a big, strong and unpleasant colony. In contrast, the nucs I prepare from ‘indifferent’ colonies during swarm control and requeening don’t appear to generally improve much in temperament.

If I’m conducting swarm control on the third ‘bad’ tirtile 10 the queen is despatched so I never get to experience the performance of the resulting nucleus colony 😉

Aggression

I’ve discussed aggression above and covered it in more general terms previously. There are several studies of the genetics of aggression, usually by GWAS (Genome Wide Association Studies) of Africanised bees which can be significantly more bolshy than anything I’ve encountered in the UK 11. The colony shown in the video cited above is Africanised.

A recent study analysed individual aggressive bees 12 and compared them with pollen-laden foragers from the same colony. However, they failed to identify any genetic loci associated with aggression.

In contrast, by ‘averaging’ the genetics of hundreds of aggressive or passive (forager) bees, the scientists identified a region of the genome that – if originating from European honey bees – was more likely to result in gentle bees. Conversely, if this region is Africanised, the colony was more likely to be aggressive 13.

Hive genetics, not individual genetics

This is a really interesting result 14 as it means that, even if individual bees are Africanised and potentially aggressive, if the majority of the colony is European-like (and so gentle) the individual Africanised bees are unlikely to be aggressive.

Aggression is therefore a consequence of hive genetics, rather than individual genetics.

Neat.

Aggression in psychotic UK colonies (which, by definition, are not Africanised) may have a different genetic explanation, though some of the genes involved may be similar. Since aggression can manifest itself in several different forms – jumping up from the frames, buzzing around your head, response to sudden movement, targeting dark colours etc. – I suspect there may be multiple genes involved in the sensing or threat response.

Following

Some aggressive bees – particularly those that buzz agitatedly around your head during an inspection – also have the profoundly unpleasant trait of following you out of the apiary … down the track … back to the car … or even into the house.

The car is packed, you’ve taken you beesuit off … and PING!

The very worst of these lull you into a false sense of security by flying off, only to return in a lightning-fast kamikaze strike as soon as you remove your veil.

Ouch, that hurt.

I consider ‘following’ a worse trait than overt aggression at the hive.

I’m suited and booted’ at the hive. Ready for anything … ’Come on if you think you’re hard enough’.

At least, I am if I’ve remembered to zip my veil up properly 😉

But 15 minutes later, when I should be contemplating a cuppa, I don’t want to be pestered by bees dive bombing my head.

Looking for trouble

Followers don’t necessarily just follow.

They can initiate long-range and unprovoked attacks on individuals just walking near the hive.

I think this is an example of bad behaviour that should not be tolerated.

If you think it’s bad as a beekeeper, just imagine how unpleasant it is for passers by.

Sometimes it’s difficult to identify which of several hives is showing this trait in an apiary. To confirm it, change the order of hive inspections, leaving the likely suspect to last. If the followers don’t appear until the final inspection you have your answer.

If they’re present before that you either guessed wrong or – Eek! – have more than one hive behaving badly.

I’ve seen many aggressive colonies that showed little or no tendency to follow. Conversely, I don’t remember seeing followers that were not from an aggressive colony. I presume this means that the genes involved are distinct but linked.

Whether different or not … they’re unwanted. Any colonies of mine showing overt aggression or following are requeened. Perhaps 5% of my colonies each season are requeened for this reason.

Running

Remember back to your early days of beekeeping when you had to ’find the queen’ and were faced with this … 15

Find the queen

I estimate there are about 1200-1300 bees on the face of that frame 16. There are the same amount on the other side.

All of the bees are moving.

Of course, this makes it much easier to find the queen as she moves differently to the workers on the frame. I’m probably not alone in sometimes struggling to ‘find the queen’ on a photograph of a frame when I rarely have trouble locating her on a frame in my hands 17.

However, the more the workers move, the more difficult it gets.

Spot the queen

See if you can spot the queen on this frame of relatively sedate bees:

And what about this frame of more mobile bees? It’s worth noting there are only about half the total number of bees on this second frame.

OK, I cheated. Only the first frame has a queen on it. She’s in the middle near the bottom of the frame, moving left to right 18.

The top frame is pretty standard in terms of ‘running’ (shorthand for the stability of bees on the frame) in my hives. The bottom video is nothing like the worst I’ve seen, but (if consistently like this) it’s certainly a reason to score the colony down and requeen them from a more stable line.

Inspections

Bees running around on the frame certainly make locating the queen more tricky.

However, as I’ve written elsewhere, you don’t need to find the queen unless you need to do something with her. The presence of eggs is usually sufficient to tell you the colony is queenright (assuming there are no big, fat queen cells or a queen corpse on the open mesh floor 🙁 ).

The reason I dislike bees that are not stable on the comb is because they make inspections more difficult. They prevent you clearly seeing eggs and larvae so you have to shake the bees off the frame, thereby overloading the next frame you look at with agitated bees.

Furthermore, the bees must have somewhere to run to … which usually means they run onto the frame lugs, and then your hands and – in the worst cases – up your forearms.

There was a frame lug there a few seconds ago

In addition, they run over each other, forming heavier and heavier ‘gloops’ 19 of bees that eventually become too heavy, lose their grip and fall … onto the top bars of the frames you have yet to inspect, onto the ground, or into the top of your boots.

A ‘gloop’ forming

Running appears to be a feature which isn’t influenced much by environmental conditions, perhaps other than a chilly and gusty wind 20.

Better bees

There are two good things about aggression, following and running:

  • these behaviours are easy to identify; you can easily tell if the colony is too hot for comfort, or if your neighbour complains repeatedly about getting chased by bees, or you’re plagued with ‘gloopy’ bees that make inspections a pain. Remember, there’s no standard to compare them to, no ‘reference colony’. All that matters is how they’re viewed by anyone that interacts with them. If they’re too defensive, if they bother you away from the hive or are too mobile, then score them down in your hive records. If they remain the same for the next two to three weeks, or don’t improve when the weather/forage picks up, then make plans to do something about it.
  • all these undesirable traits can be easily corrected by replacing the queen. Four to six weeks after requeening the characteristics of the colony will reflect those of the new queen. Of course, this only works if you source a good quality queen – either by rearing your own or purchasing one 21, or by ensuring that the colony raises its own queen from larvae sourced from a high quality colony. While you’re at it do yourself and your neighbouring beekeepers a favour and fork out any drone brood in the misbehaving colony.

It really is as easy as that.

Incremental but steady improvement

Over a few years the quality of your bees will improve.

Of course, with open mating you’ll occasionally get rogue colonies. However, as the average quality improves, you’ll have a greater choice of colonies from which to source larvae.

Over time you’ll need to recalibrate your scoring system. In five years a 3/5 will be a much improved colony over a 3/5 now.

When you next (reluctantly) open a bolshy colony, struggle to find the queen because of the wriggling mass of bees on the frames and are then stung repeatedly as you take your veil off by the car, think of it as an opportunity.

You have now recognised the problem and you already know the solution 😉


Note

I’ve chosen aggression, following and running as three easy to spot traits that can be, just as easily, fixed. There are other examples of bad behaviour that may well be unfixable. There’s a dearth of nectar in my west coast apiary until the lime flowers and robbing is a problem 22. Although robbing is a variable characteristic (amongst different strains of bees) I doubt it could be excluded completely by requeening. Selection would be time consuming, being dependent upon environmental conditions. However, the ‘fix’ is again relatively straightforward … keep very strong colonies, feed late in the evening (if needed) and physically protect colonies with reduced entrances and/or robbing screens. Robbing is an example of bad behaviour by bees where the solution is almost entirely the responsibility of the beekeeper.

Triumphs and tragedies

Synopsis: Having dealt with beekeeping tragedies last week, it’s now time to consider landmark events (‘triumphs’) in beekeeping. These four things – successful overwintering, swarm control, finding the queen and queen rearing – are what I consider the most notable. All beekeepers should be able to achieve these, and their beekeeping will benefit as a consequence.

Introduction

In the second part of the highs and lows of my (or an average beekeepers’s 1 ) beekeeping career I discuss what I consider are the four most significant events in the progression from total beginner to my current level 2.

These highs and lows, or ‘triumphs and tragedies’, stemmed from a question posed during a live-streamed Q&A session with Lawrence Edwards from Black Mountain Honey. I didn’t think I answered it particularly well then – though some of the things below were definitely included – so have had another crack at it.

The tragedies I covered last week – the loss of a queen, a swarm or a colony – aren’t really tragedies. As I said in the introduction then, ” … the observant and well-prepared beekeeper can avoid most of the ‘tragedies’, and recover from almost all of them”.

However, unlike the tragedies that really aren’t tragedies, these triumphs really are landmark events that significantly improve your beekeeping.

Unsurprisingly, some of the triumphs I discuss below are how you recover from – or avoid altogether – the tragedies I mentioned last week.

Successful overwintering

Studies from Tom Seeley (in his book The Lives of Bees) indicate that a swarm from a wild-living colony has about a 23% chance of surviving the winter. Swarms perish for a number of reasons; many starve to death, others die from pathogens 3, a few queens likely fail and some colonies are lost due to ‘natural disasters’ such as lightning strikes or storms or bears.

Although I don’t know the percentage breakdown of these causes of death, I’d be surprised if the combination of queen failures and ‘natural disasters’ account for more than a small percentage.

In contrast, I expect that starvation and disease account for most losses of ‘wild’ colonies.

Hives in the snow

The survival rate of managed colonies is not entirely clear as it differs with the group or individual being surveyed.

The relatively small-scale annual BBKA surveys suggest that about 80% (the average of the last 12 years) of colonies overwinter successfully. The much larger Bee Informed Partnership surveys 4 report a slightly lower figure of 70%.

Finally, the COLOSS surveys – covering Europe and a few other countries 5 – helpfully split winter losses into those due to ‘mortality’ (presumably disease and starvation) from queen failure and natural disasters, and usually report survival rates of 70-80% 6.

COLOSS reports losses due to queen failure and natural disasters are typically about 5-7%.

Let’s assume for the sake of argument that these are unavoidable, and that they’re as likely to befall a managed hive as a ‘wild’ colony.

Averages, outliers and being ‘better than average’

These losses, when analysed statistically, show considerable variation between individual beekeepers. Some never lose colonies during the winter, others often experience high rates of colony mortality.

When I last checked 7 all my colonies have survived this winter. My average losses over the last decade (about 200 ‘colony winters’) are well below 10%. Many of the experienced beekeepers I know routinely experience losses in the 5-10% range.

In contrast, inexperienced – and sometimes longstanding 8 – beekeepers may lose many or even all the colonies they ‘manage’. Many give up, others make up the losses through splitting, swarms or purchases, and soldier on to the next winter, only to experience the same disappointment again 9.

Winter losses ...

Winter losses … dead bees on the floor of a hive with a failed queen.

Some losses are expected – though perhaps no more than the ‘unavoidable’ 5-7% due to ‘natural disasters’ and queen failures.

However, the remaining 90-95% of colonies should survive, particularly if we assume that their loss would be due to starvation or disease … both of which squarely fall under the term ‘management’ when considering managed colonies.

This management is the responsibility of the beekeeper – s/he must ensure that the mite (and consequently virus) levels are minimised at the right times during the season, and that the colony has sufficient stores to overwinter successfully.

Take your winter losses in autumn

The final point to remember is that the successful management of colonies involves excluding those from going into the winter that are likely to fail.

Weak colonies in late autumn, or early autumn queen failures, are often doomed anyway.

Don’t let them become a (BBKA, BIP or COLOSS) statistic.

If healthy, unite these colonies with strong colonies and then plan for some additional splits the following season to make up the ‘on paper’ loss. Far better you strengthen another colony than condemn a weak colony, or one with a poorly mated queen, to a lingering death in midwinter.

Uniting a strong colony with a weak (queenless) colony

I therefore consider the first landmark event (‘triumph’) in beekeeping is the successful overwintering of the majority (over 90%) of the colonies managed – irrespective of the severity or duration of the winter.

Achieving this involves a combination of skills:

  • successful disease management (which I term ‘Rational Varroa Control’)
  • appropriate feeding in the autumn
  • the ability to judge colonies unlikely to survive before it’s too late to unite them
  • well-sited apiaries unlikely to flood or be hit by falling trees (or visited by rampaging bears)
  • provision of young and well-mated queens to head colonies

A strong and healthy colony is likely to overwinter successfully. It’s also more likely to build up strongly the following spring, and therefore will probably swarm … or at least try to.

Which neatly takes me to the second of the ‘triumphs’ that a beekeeper should aim to achieve.

Successful swarm control

Swarm control is the management of a colony that has started making queen cells, and is therefore likely committed to swarm within a few days.

It is a necessity if (or when!) swarm prevention stops working.

I visited one of my apiaries last week. There were a dozen colonies in the apiary last year and I know I missed one swarm.

‘Missed’, but not ‘lost’.

I’d found the bivouacked swarm, dropped it into a nuc box and successfully re-hived them 🙂

Collecting the stragglers – a captured bivouacked swarm dropped into a nuc box.

However, while taking some willow cuttings I discovered wax deposits on another of the small trees I’d planted.

Clearly a swarm had bivouacked here for a day or so and I’d both missed and lost it 🙁

Missed and lost – signs of a bivouacked swarm on a small willow.

For the last couple of seasons, while living remotely, I’ve usually been very pro-active in my swarm control.

If a few colonies in the apiary start building queen cells I use the nucleus method of swarm control and take the queens out of all the strong colonies and then allow them to requeen.

For swarm control the nucleus method is almost foolproof.

It is very successful in preventing the loss of a prime swarm (one with the mated queen). However, with really strong colonies, there remains the risk that more than one virgin queen emerges. I suspect I’d missed a queen cell and lost a cast headed by a virgin queen. I know that all my colonies requeened successfully and without unexpected delays.

So, this was an example of unsuccessful swarm control, but it was less of a problem than the loss of a prime swarm (as I still had the mated queen tucked away in a nuc somewhere).

Timing and mechanics

Successful swarm control involves the ability to recognise when a colony is actively making swarm preparations i.e. being able to find queen cells, and then knowing exactly what to do (and when to do it) to prevent the colony from swarming.

Queen cells ...

Queen cells …

The first is observational and will improve the more hives you inspect (or should if ‘seeing’ is coupled with ‘understanding’).

The second – ‘what and when’ – is the mechanics of swarm control:

  • find and isolate the mated queen somehow (Pagden or vertical split, nucleus etc.) in a way that ensures her survival. Her continued availability is important if the original colony does not successfully requeen.
  • find all the queen cells and leave sufficient to ensure the colony can requeen but not so many that the colony generates casts. I usually leave a single charged queen cell (but clearly left more than one in the colony that swarmed onto that willow above).
  • the ability to judge that the colony has successfully requeened and that the new queen is well mated, so guaranteeing the survival of the colony.

There are dozens of different swarm control methods. Most share some common features in terms of actions and timing.

However, that doesn’t mean that you can ‘mix and match’.

  • Learn one method.
  • Know when to apply it. Understand its pros and cons.
  • Have the equipment to hand during the ‘swarm season’.
  • Analyse what went wrong if it doesn’t work.

Achieve all this and you will be successful at swarm control, your colonies will be stronger during the peak nectar flows of the season, you’ll collect more honey and they will overwinter more successfully.

Swarm control – knowing what to do when, and employing it successfully – moves you from hit and hope scrabbling around with “Finger’s crossed they won’t swarm” to a reassuring 10 “What will I do with the additional colony?

It’s a real confidence builder … and while we’re on the topic of confidence.

Finding the queen … quickly, and every time

Watch a new beekeeper look for the queen. They will sequentially and thoroughly inspect every frame in the colony. Each frame is turned and rotated slowly as taught in the winter ’Start beekeeping’ courses. They’re often particularly careful to check the sidebars and the bottom bar of the frames. The underside of the queen excluder (QE) is carefully scrutinised.

A gentle puff of smoke every couple of frames keeps the colony nicely subdued.

Fifteen minutes later they find her, on a frame of stores. The frame had already been inspected at least once 🙁

She’s somewhere in there …

In contrast, an experienced – and good (!) – beekeeper gently lifts the QE, checks it briefly and closely observes the density of bees along the visible seams. She then uses a small amount of smoke to allow the dummy board and outer frame to be removed. These are carefully placed aside.

The beekeeper then splits the remaining frames where the density of young bees is the greatest, opening a 2 cm gap. The nearer frame facing the gap is then carefully removed and the queen will usually be found on it, or on the far side of the other frame facing the gap.

It’s all over in 90 seconds and – to the inexperienced – it looks like magic.

It’s not.

Blue marked queen ...

Blue marked queen …

It’s also not 100% guaranteed, but it happens enough that it’s certainly not chance.

Of course, you don’t need to find the queen to be reasonably certain the colony is queenright.

Usually their behaviour, the presence of eggs and the absence of sealed queen cells is a sufficiently good indication that there’s a queen present.

Gently does it

But, when you do need to find her – for example, to employ one of those swarm control methods that requires the isolation of the queen 11 – the 13.5 minutes saved by the good beekeeper really helps avoid frustration (and agitated bees).

In the example above the beginner found the queen on a frame of stores, almost certainly because he disturbed the colony using too much smoke and by slowly going through the box frame by frame. The queen was ‘chased’ across the box, scuttled across the floor or around the sidewall of the hive and ended up on the outer frame of stores or pollen.

The experienced beekeeper used almost no smoke. The bees barely knew she was there. She split the frames where there were more young bees. These will be tending the queen and the young larvae. If the queen wasn’t on the face of the first frame checked she’s likely to be on the reverse of the facing frame (having moved there to avoid the light streaming in through the gap between the frames).

You can keep bees without being able to find the queen, but certain things are much easier if you can reliably and quickly locate her.

This is a skill that some never acquire and that others seem to naturally possess.

But it can also be learned.

It’s easier to do with a calm and gentle colony.

However, it’s perhaps learned fastest with a double brooded box of suicidal psychotics 😉

And, if you’re good at finding the queen you will be asked 12 to requeen one of those double brooded boxes of suicidal psychotics.

Which is why this third landmark event in your beekeeping is inextricably linked to my final choice … the ability to actively rear high quality queens.

Queen rearing

Of all the things I’ve learned since starting beekeeping – including the huge number of things I’ve subsequently forgotten – queen rearing has been, without doubt, the most useful.

I’m talking here about ‘active’ queen rearing, rather than passively allowing a queenless colony to generate queen cells and requeen itself.

There’s absolutely nothing wrong with this ‘passive’ approach. I use it every year. However, it doesn’t teach you as much about beekeeping.

I consider the following are the direct and indirect benefits of active queen rearing. These justify inclusion of queen rearing in this list of landmark events in beekeeping:

  • to be successful you need the ability to judge the quality of the bees over the course of the season. There’s no point in rearing queens from poor quality stock.
  • rearing good quality queens means you can readily improve the quality of your colonies, simply by requeening them. You should see the benefits in 2-3 years (or months in the case of some colonies I’ve requeened 😉 ).
  • queen rearing means you need to acquire the skills and confidence to find and (often) handle the queen. Marking and clipping the queen makes your beekeeping easier.

Returning a marked and clipped queen

  • you can readily achieve sustainability in your beekeeping. No need to buy in queens or nucs. No need to rely upon capturing swarms to maintain colony numbers.
  • you can have spare queens and nucs available when you need them, or generate surplus for gift/sale.
  • young queens – which you ensure by requeening – head stronger colonies, are less likely to swarm and overwinter better.
  • queen rearing requires understanding the colony manipulations needed to start queen cell production. This necessitates good observation and skilled beekeeping.

And there are probably as many again that I could include if I hadn’t already written 500 words more than I’d intended 😉

The most fun you can have with a beesuit on?

However, almost as importantly … “of all the things I’ve learned since starting beekeeping – including the huge number of things I’ve subsequently forgotten – queen rearing has been, without doubt, the most”enjoyable.

Perhaps not ‘the most fun you can have with a beesuit on’ 13 but pretty darned close.

Actually, I’ve already thought of a few more things that should be in the list above:

  • the skill to prepare nucs for queen mating (either mini-nucs or 2-5 frame nucs). And subsequently manage them.
  • an ability to have nucs available for overwintering to make up losses or for (profitable) sale early the following season.
  • the confidence to dabble with methods for colony preparation to find strategies that suit your own bees and the local environment.
  • out-of-season projects to entertain you (like building my wildly over-engineered queen cell incubator) during the interminable dark winter months.
  • etc.

Portable queen cell incubator

Only a relatively small percentage of beekeepers actively rear queens.

I suspect many are dissuaded because they think it requires skills they don’t have, and are unlikely to acquire without years of practice.

Au contraire as a Gilles Fert, a well-known French queen rearer, would say.

You may not (yet) have the skills but few of them are ‘mission critical’ and most can be learned relatively easily. 

Of the four things discussed in this post, queen rearing is the skill that has provided the greatest benefit to my beekeeping.

And enjoyment.

Go forth and multiply 🙂


 

Tragedies and triumphs

Synopsis: Beekeeping shouldn’t be “a series of calamities then winter”, though it sometimes feels like that. In the first of a two-part post I look at the real and imagined disasters that can befall you during the season. The reality is that the observant and well-prepared beekeeper can avoid most of the ‘tragedies’, and recover from almost all of them.

Introduction

A few weeks ago I did a live-streamed Q&A with Laurence Edwards from Black Mountain Honey. Some of the questions were both good and interesting, some of the answers were perhaps less so. Before any readers think I’m being rude here I should point out that Laurence was asking the questions – often on behalf of others – and I was answering them.

There were quite a few questions on non-chemical treatment which I was singularly ill-equipped to deal with. Not because I don’t know anything about it, but because I don’t practice it 1 and because I suspect I’m not a good enough beekeeper to be successful if I did try it. There’s clearly a lot of interest in the topic, though I fear much of this is also from beekeepers who are not sufficiently experienced to succeed with it either.

However, there were two questions – or perhaps it was one merged question – that went something like this:

What is your greatest beekeeping success and your biggest beekeeping disaster?

I’m paraphrasing here. I can’t remember the precise wording and daren’t review it on YouTube as I’d then have to listen to my erudite insights inchoate waffle … which would be excruciating.

My answer probably involved asking whether I was restricted to just one disaster … 😉

Let’s get some perspective first

New beekeepers in particular are likely to worry about the “disasters” and overlook some of the “successes” in their first season or two. I therefore thought I’d discuss what I consider are the highs and lows – abbreviated to tragedies and triumphs’ to give the post a snappy title – of the first few years of beekeeping.

Obviously this is biased and based upon my own experience, and from mentoring others. Your experience may be very different … or you may have yet to experience the highs and lows of a beekeeping season.

But before I start using superlatives to describe the chaos of my early efforts at swarm control it’s worth remembering – particularly as the war in Ukraine enters its third week – that I’m only talking about beekeeping here.

In the overall scheme of things it’s simply not very important.

What might feel like a disaster of biblical proportions in the apiary … isn’t.

Yes, it might threaten the productivity, or even the survival, of the colony, but it is only beekeeping 2.

So, having got that out of the way, which do you want first?

The good news or the bad news?

The bad news … how mature 😉

The loss of a hive tool

Clearly I’m being flippant here.

The loss of a hive tool is a minor inconvenience rather than a tragedy.

There you are!

Unless you don’t have a spare and/or you’re about to inspect a dozen heavily-supered hives in the apiary … in which case it’s a major inconvenience.

It’s remarkably easy for a hive tool to fall out of those tall, thin pockets in the sleeve or thigh of your beesuit. Inevitably it falls, not onto closely cropped sward, but into tangled tussocks of rarely-mown grass.

You will probably find it again.

You could spend 15 minutes on your hands and knees retracing your steps since you left the car or you could become a detectorist and conduct a grid-based search, sweeping the area for metal objects.

Neither method is guaranteed to work.

To be certain, you must cut the grass.

But be careful. A glancing contact with the lawnmower or brush cutter and a half-buried hive tool will be damaging at best, and potentially a lot worse 🙁

Hive tools soaking

Hive tools soaking in a solution of soda crystal

Or you can avoid all this grief by keeping a covered bucket in the apiary – a honey bucket is ideal – containing a strong solution of soda crystals. You know exactly where the hive tools are and you soon get into the habit of dropping it back in after an inspection.

Better still, keep two hive tools in the bucket and alternate them as you look at your colonies. The soaking in soda will clean the hive tool, reduce any potential cross-contamination and improve your apiary hygiene.

The loss of a queen

This can be anything from a minor inconvenience to a bit of a calamity.

It very much depends upon the:

  • time of the season
  • whether you notice she’s missing
  • availability of a spare colony

How do you lose a queen? Other than by losing a swarm (see below) the two most likely reasons are cackhanded beekeeping or a queen that fails due to being poorly mated.

Returning a marked and clipped queen to a nuc

Losing a queen mid-season, for whatever reason, should be little more than a minor inconvenience. Assuming you notice she’s missing in action you can remove unwanted queen cells, leaving a single charged (i.e. known to contain a fat larva lounging around on a comfortable bed of Royal Jelly) cell, and wait while she pupates, emerges, mates and starts laying.

Nerve racking? Perhaps slightly, but it’s usually a pretty safe bet that things will work out OK.

If, through clumsiness or stupidity 3, you kill the queen during an inspection there should be ample eggs and young larvae for the colony to use when rearing one or more replacements.

Keep your eyes peeled …

But what if you don’t notice she’s missing? You assume she’s there and blithely knock back all the queen cells you can find 4.

Sealed queen cells

You return the next week … all looks good, no more queen cells.

But wait a minute … there are no eggs either 🙁

Under these circumstances you realise the importance of having at least two colonies. You can rescue the queenless colony by donating a frame of eggs from a queenright colony.

With two hives a crisis is rarely a disaster

Queens also fail because they are poorly mated. They either stop laying, or they stop laying fertilised eggs (i.e.they continue to lay unfertilised ones, leaving you with ever-increasing numbers of drones in the colony). The colony might realise and supersede her, or you might be able to rescue the situation with a donated frame of eggs.

I’ll deal with the consequences of a failed or slaughtered queen at the extremities of the season – early or late – below.

The loss of a swarm

It happens to the best of us, and it sometimes seems to happen even if you do your swarm prevention and control by the book 5.

I’ve turned up in the apiary on a warm May afternoon to discover a whirling mass of bees swarming from one of my hives 6.

It’s not a disaster … in fact it’s one of the greatest sights in beekeeping.

With luck the swarm will bivouac nearby and you’ll be able to collect them in a skep and re-hive them late in the afternoon.

A small swarm

A small swarm …

At least it shouldn’t be a disaster, but Sod’s Law usually dictates that …

  1. if you’re there when the swarm emerges, and
  2. you have a skep and sheet with you

… the swarm will alight 45 feet up a Leylandii 🙁

Even then it might end well if you’ve got a suitable bait hive set out nearby.

The time when losing a swarm is a disaster 7 is when you don’t realise you’ve lost a swarm. You find some queen cells, hurriedly knock them all back 8 and then wonder why there are no eggs the following week.

Déjà vu

At which point you’re in a similar situation to the ‘loss of the queen’ I described above … except you’ve also lost up to 75% of the workers from the colony. The situation is still rescuable with a frame of eggs from your other hive 9 but you’re likely to miss out on the major nectar flow.

Could the situation be any worse?

Oh no it can’t … Oh yes it can!

You miss the lost the swarm, you knock back all those queen cells and you then fail to realise there are no eggs or young larvae in the colony until only sealed brood remains (i.e at least 9 days).

Or worse still, until no brood remains (i.e at most 21 days).

With no brood pheromone being produced there’s now a real danger that the colony will develop laying workers. Things now get an order of magnitude more difficult as a colony with laying workers is very difficult to requeen (and generally will not even attempt to rear their own if presented with a frame of eggs).

Drone laying workers ...

Multiple eggs per cell = laying workers (usually)

You’re fast approaching the next of the beekeeping ‘disasters’ …

The loss of a colony

How do you lose a colony?

What was it Elizabeth Barrett Browning said? ’Let me count the ways’ 10.

Natural disasters such as falling trees, winter gales, raging floods, woodpeckers, honey badgers and stampeding elephants 11 can destroy a colony.

Hive toppled by a summer storm

However much care you take – avoiding floodplains, strapping the hives down, seeking shelter (but not near shallow-rooted trees) – sometimes sh1t just happens 12.

You did your best and nature did her worst.

See what you can rescue and try again next year.

Queen loss at the start or end of the season

Losing a queen very early or very late in the season – for whatever reason – is a problem. There’s no chance of the colony rearing another – it’s too cold and/or there are no drones available. I suppose there’s an outside chance you could requeen the colony – if you had a queen available 13 – but doing so involves quite a bit of risk.

If the queen fails overwinter, all the bees in the box will be very old by the time your colony inspection confirms she’s firing blanks, or not firing at all. The chances of successfully requeening the hive are slim at best.

Although that colony is effectively lost – at least if it happens late in the season – it’s not an unmitigated disaster if you have another hive 14. You can unite the queenless colony over a queenright colony very late into the autumn, strengthening the latter and (at least) using the bees from the former, rather than condemning them to a lingering death.

An Abelo/Swienty hybrid hive ...

An Abelo/Swienty hybrid hive … uniting colonies in midsummer

I wouldn’t bother trying to unite a queenless colony (or one with a failed queen) at the very beginning of the season. The remaining bees will be pretty decrepit and there won’t be many of them. It’s unlikely they would contribute in a meaningful way to the successful build-up of another colony.

Winter losses through starvation

These are unfortunately common and often entirely avoidable.

Small-scale surveys from the BBKA and SBA often report winter colony losses of 20-30%, and up to 50% in some years. Large scale surveys, like the Bee Informed Partnership (BIP) one in the USA, have reported annual colony losses – the majority of which occur in the winter – exceeding 40% in all but two years since 2013.

Bee Informed Partnership loss and management survey

I’ve lost colonies through both starvation and disease.

In both cases it was entirely my fault 🙁

It was a disaster for the bees and it was a sobering and educational experience for me.

I discussed starvation, and how to avoid it, in winter weight a couple of weeks ago. I won’t rehash it here, but I will repeat again that the bees are still in the ‘danger zone’.

Time for another?

Time for another? Definitely.

There’s little nectar available and they are busy rearing brood. Their need for stores is probably higher now than at any time over the last 4-5 months.

At best, a shortage will hold the colony back. At worst they’ll die of starvation.

All of which is completely avoidable by ensuring they have ample stores at the beginning of the winter, and then by keeping an eye on the weight of the colony as they enter the spring. If you’re adding fondant in late December it’s likely the colony had insufficient stores to start with … but at least you’re keeping a check on the weight of the colony.

Winter losses due to disease

I suspect that the majority of winter losses are not due to starvation but are instead due to inadequate or incorrect Varroa management.

This is a topic that has been covered numerous times in posts here. The most recent overarching review of the topic is probably Rational Varroa Control. Versions of this appeared in the August 2020 BBKA Newsletter and in The Scottish Beekeeper in the same month.

Successful Varroa control requires an understanding of the treatments available and the pros and cons of using them on your bees and in your location/climate. Too many beekeepers simply want to know whether they should add Apiguard in the third week of August or middle of September.

Apivar strip on wire hangar

Unfortunately, it’s not quite that simple.

But that doesn’t mean it’s particularly difficult either.

Unlike many of the other diseases of honey bees – e.g. chronic bee paralysis virus (CBPV), Nosema and the foulbroods – there are effective treatments to control Varroa and the damaging viruses that it transmits.

Losing a colony in June to CBPV is possibly unavoidable (it’s just bad luck) but losing one to Varroa/DWV in January – which is largely avoidable – might well be bad beekeeping.

In both cases of course it’s a disaster for the colony 🙁

Disaster

The meaning of disaster is ‘An event or occurrence of a ruinous or very distressing nature; a calamity; esp. a sudden accident or natural catastrophe that causes great damage or loss of life’. Its origins date back to the mid-16th Century.

Some of the ‘disasters’ I’ve described above involve the loss of just one life – that of the queen. For the reasons I describe, they’re not really disasters at all, or shouldn’t be for the observant and well prepared beekeeper.

Locally bred queen ...

Locally bred queen …

They become disasters i.e. causing great damage or loss of life, if you miss the tell-tale signs and so contribute to the eventual demise of the colony.

The avoidable loss of a queen or a colony is a distressing experience, or at least it should be 15.

If it is distressing then it will probably also be a learning experience.

Analyse what went wrong and work out how you might prevent it happening again in the future.

We have a duty of care for the bees we manage. I don’t like losing colonies, but it still happens infrequently. When it does I try and determine whether it was just fate … or my incompetence (or – let’s be generous – my actions or inactions) that caused the loss.

And the times you manage to work out where you went wrong are the foundations for your beekeeping triumphs in the future … which is what we’ll return to next week.


 

Winter weight

Synopsis: With colonies now rearing brood there is a risk of them starving. Here are a couple of ways of checking the winter hive weight to determine if you need to add fondant. These checks should be conducted every 2-3 weeks until the bees are foraging in the warmer spring weather. 

Introduction

Last week I described how to determine what was happening inside the hive in winter.

By carefully inspecting the debris that falls through the open mesh floor (OMF) you can tell:

  • the size and position of the cluster,
  • whether they are rearing brood (or, more precisely, whether there is brood being uncapped … I don’t think you can tell if there is open brood simply by inspecting the debris),
  • if frames of stores distant from the cluster are being used.

In addition, I explained the importance of checking that the hive entrance was clear of corpses. These accumulate during long periods of cold or inclement weather. If the hive entrance is small enough to prevent mice from getting in – and it should be – then there’s a chance these corpses will build up sufficiently to stop bees getting out.

Entering the ‘danger zone’ – rearing brood, too cold to forage – don’t let them starve

These two checks take no more than a few minutes and should be conducted at least monthly. There’s no harm in doing them more frequently because – performed correctly – the colony isn’t disturbed at all.

Last week I described these as ”The bees don’t even know they’re being checked” checks.

The final important winter check is to determine the weight of the colony.

Avoirdupois 1

If the bees are rearing brood they will be using their winter stores. Of course, they will have been using these stores throughout the late autumn and winter, but critically, the rate at which they use their stores will increase once brood rearing starts.

I’ve illustrated this before schematically, but have attempted to improve the diagram a little this year.

Once they have reared some brood, they’ll have more bees to help them rear some more brood, meaning that the rate at which the stores are used will increase.

Schematic diagram of winter hive weights

The solid black line is the weight of the colony. In the late autumn the colony almost certainly goes through a broodless period 2. During this broodless period the colony is simply using stores to maintain the adult bees in the cluster. I’ve drawn this as a straight line (i.e. a constant rate of stores usage), but I bet it varies with the ambient temperature as more or less stores are required for essential metabolic processes.

But at some point the queen starts laying again and the colony have some larvae to feed.

I’ve indicated the start of brood rearing by a dashed vertical line. Typically I usually guesstimate this occurs around the winter solstice 3, but for our purposes the precise timing is irrelevant.

Twenty one days later these bees emerge, by which time the queen has already laid some more eggs.

Things start to pick up.

What started as a small palm-sized patch of brood now covers almost the side of a frame, in a month it will be double that.

Or more.

And all of those hungry mouths mean more stores are needed, so the rate at which the stores are consumed will increase, meaning that the colony weight will decrease … and it will continue to get lighter faster 4.

Silent spring

A few crocus and snowdrops are out, but the weather is too poor for foraging.

The weather gradually improves and more spring flowers become available.

There’s gorse available, of course. There always is.

Late December gorse ...

Late December gorse …

The bees can now forage a little more. On unseasonably warm days the bees take cleansing flights and might collect a little pollen and nectar.

I’ve imaginatively and artistically illustrated this in the graph with some little yellow flowers 🙂

But, all the time, more brood is being reared.

If the nectar coming in is insufficient to feed the brood – and early in the season it will be – then the bees will continue to make inroads into their precious stores.

And the colony will get lighter.

And lighter.

Until it drops below some critical threshold and enters the ‘danger zone’ – the absolute weight doesn’t matter 5 – at which point the colony must go into self-preservation mode.

Brood will be abandoned, cannibalised and/or ejected from the hive. The queen will stop laying. The colony will be forced back into a ‘maintenance’ state.

A protracted cold period, or a fortnight of rain, and there’s a very real danger the colony will starve to death.

At the very best the early spring expansion of the colony will be severely retarded and it is unlikely to recover until mid-season.

All of which is easily avoided by carefully monitoring the amount of stores the colony has.

A brood frame full of stores

However, remember you’re supposed to be conducting ”The bees don’t even know they’re being checked” checks, not pulling open the brood box and rummaging through to count frames of sealed stores.

But since the number of bees in the colony is steady (or likely decreasing slowly) and there’s effectively no nectar being collected, the weight of the hive is a good surrogate measure to determine the level of stores available.

Winter weight

There are all sorts of ingenious solutions to determine the weight of a full hive.

Probably the most complicated and expensive is to purchase (or build) a set of electronic hive scales that automagically communicate with an app on your smartphone to give you a real-time readout of the hive weight in kilograms. You can record the weight of a few thousand foragers leaving the hive in the morning 6, and see them return by nightfall together with the 1500 g of nectar they’ve collected.

Arnia hive data

Arnia hive data

At the other end of the spectrum – in terms of both cost and information – is hefting the hive. Using nothing more than than a gentle lift and good judgement you can readily tell whether the hive contains sufficient stores for the bees to continue to rear brood. You won’t be able to tell the exact weight of the hive, but you will be able to determine whether it weighs enough.

I’ve used both methods.

However, I routinely only do the latter.

I’ll leave a discussion of automated hive monitoring to another day 7 and will instead briefly discuss two methods that are quick, cheap and easy (choose any three).

One method – hefting the hive – costs nothing, but requires a bit of experience and judgement. The second method involves – inaccurately, but reproducibly – weighing the hive. This costs about £10 to implement and provides a good way to build up your confidence that your hive hefting is probably good enough to ensure colony survival.

And good enough is probably all you need …

Hefting the hive

This is easier to show than describe:

The general idea is that you judge how much effort is required to lift one edge of the hive – typically the back – a couple of centimetres off the hive stand. As you can see from the video, other than slackening off the strap that secures the hive to the stand 8 there’s nothing else involved.

Comparisons help here.

It helps to have the ‘muscle memory’ of how much the hive weighed last time you checked, or – even better – how heavy it should feel like at this stage of the winter.

Both come with experience, and improve with lots of experience.

If you have several hives in the apiary, all with the same hardware, then hefting one after the other makes this comparison relatively easy. If – like in my apiaries – you have a range of different roofs, it can help to remove the roof to get a better ‘feel’ for the hive weight.

The hive should feel heavy.

If the hive feels light it probably is light.

Too light.

Weighing the hive

This second method is a little bit more involved.

I’ve previously recommended using a set of luggage scales to weigh the hive. You attach them to one edge of the hive floor, pull up gently, let the weight stabilise and then record the value on the digital display.

Don’t try this using luggage scales with an analogue display, or ones that don’t emit a helpful ‘beep’ and freeze the display when the weight stabilises.

Just don’t 🙁

Suitable luggage scale cost about a tenner. Mine are very friendly but cannot spell.

Friendly scales ...

Friendly scales …

However, those of you who have tried this method will be aware of the world of grief that is encapsulated in the words ”let the weight stabilise”, particularly if you do not have a lot of upper body/arm strength.

Here’s the problem … you are trying to hold half the weight of a full hive stationary. Probably 9 your arms will be bent at the elbow.

The hive will probably weigh 30+ kg.

Even half that is a lot to hold steady while you wait for the tinny electronic ‘beep’ to tell you to relax and lower the hive gently back onto the hive stand.

I struggle to do this (more now than I used to) and I’m tall and relatively strong.

Before I explain an easier way to achieve the same thing I ought to say a couple of words about determining the total hive weight.

Physics … Ewwww!

If everything – frames, bees, stores – in the hive are evenly distributed, then opposite sides of the hive (weighed as described above) will be a fraction less than half the total weight 10.

Weighing hives

Since the ‘stuff’ in the hive is probably not evenly distributed the weight you record will either be less than or more than half the weight of the hive, depending on whether you have picked the heavy (C in the figure above) or light (D) side of the hive.

However, the sum of the two sides (C + D) will – with the exception of the fraction lost due to vectors as described in the last footnote – still equal the total weight of the hive and contents.

So, if you want to know the total weight either measure the weight of opposing sides and add them together.

Or, measure one side, double it, assume everything is about even and enjoy being a beekeeping free spirit.

You radical 😉

Let the weight stabilise

The solution to the arm-wrenching, patience-draining, interminably-wobbling, weight stabilising problem is to use a lever.

You need two pieces of stout wood, a strong nut and bolt and a few suitably sized washers. One piece of wood forms a vertical support. The second piece of wood is a lever. It is attached near the top of the support using the bolts/washers/nut.

Hive scales

The digital luggage scales are tied to one end of the lever.

You need a way of attaching the hive to the scales. I use a 6 mm roofing bolt.

Now you see it …

All my hive floors are drilled with a 6-7 mm hole through the middle of each side of the floor 11. This is in the side runner of my kewl floors, underneath the OMF and the Varroa tray.

The roofing bolt is pushed fully into this hole and holds everything very securely.

Now you don’t … when pushed fully home the hive is securely attached to the scales

Using this ‘Heath Robinson’ contraption is simplicity itself.

Place the support vertical and adjacent to the hive, attach the scales to the hive floor, gently press down on the other end of the lever and lift the hive no more than 1-2 cm from the hive stand.

Wait a few seconds for the ‘beep’ from the scales, lower the hive gently onto the stand and record double the weight in your hive records.

Or for those of you who are not free spirits but wear a belt and braces with your beesuit, weigh the opposite side of the hive as well, add the weights together and write up your notes 😉

How reproducible is this?

Actually, pretty good 🙂

I did a bunch of measurements on a range of dummy hives of known weights 12.

By measuring both sides and adding the recorded weights together I determined that the underestimate of the true hive weight was about 8%. With care, the variation in weight of repeated independent measurements of one side of the hive was in the range 0.3 – 1.7%.

That’s more than close enough for me.

You do need to take care to standardise the method you use:

  • make sure the upright support is vertical
  • ensure that the pull exerted by the scales is as vertical as possible.
  • lift the hive by the same distance off the stand. The smaller the distance the more accurately you will determine the total weight 13.
  • push down on the lever gently and smoothly. Don’t jerk the hive. It takes relatively little effort to hold the hive stable for the weight to be recorded 14

All of which is pretty easy to achieve.

Remember – and this is the last time I’ll write this – these inspections are ”The bees don’t even know they’re being checked” checks 15. All of the above can be achieved in 1 minute with no disturbance to the colony if you are reasonably careful.

Then what??

Remember, the weight of the hive is not important, it’s whether they have enough stores to rear brood. However, regularly recording the weight as I describe here will allow you to judge how fast the colony is getting through the stores.

Ideally weigh the hive and heft the hive.

You will then more quickly learn to make a judgement based upon hefting along.

Will the colony be underweight – based upon the hive hardware, the weight of the bees, frames and stores – in a week or two when you next visit?

Bees can use their stores fast when they’re unable to forage and rearing brood. Studies by Tom Seeley have demonstrated colony weight reduction in ‘maintenance’ mode was perhaps 1 kg per week, but that this level increased significantly once brood rearing started in earnest.

If you consider that the colony is already too light, or will be too light before your next visit, you must add some stores.

And, at this time of the year you should use fondant, not syrup, to feed bees.

Feeding fondant

I’ve written extensively about feeding fondant to bees, both in midwinter and at the end of the summer. I only use commercial baker’s fondant, not the overpriced stuff sold to gullible wealthy beekeepers.

The priority is to add the fondant as close as possible to the cluster. You want the bees to have immediate access to it. You don’t want them to have to crawl half way across the hive, up through a hole in the crownboard and into that cold empty void under the roof.

Which bees are better able to access the fondant?

Brrrr.

I add fondant in 1 – 5 kg blocks. The amount depends upon the size of the colony, the likely time of my next visit and the probability of their being nectar readily available before then.

I always err on the side of generosity 16.

You can easily remove unused fondant …

… or you can guiltily remove pathetic handfuls of starved bees.

Your choice 🙁

Pack the fondant into clear plastic food trays 17 rescued from the recycling bin. Once filled, wrap them with a couple of layers of clingfilm, or place them in a securely sealed plastic bags. The fondant will absorb moisture from the environment, particularly if it’s warm. I just keep a pile of them in the car for my winter visits to the apiary.

Spot the blocks of fondant and the scales

Remove all the clingfilm. Bees have a horrible habit of dragging it down into the brood nest, chewing it up and incorporating it into brace comb.

I place the fondant on top of the frame bars, directly over the cluster. My crownboards are reversible and have a deep upper (i.e lower when reversed!) rim which accommodates the tray of fondant.

Fondant block under an inverted perspex crownboard

I add the insulation block back over the crownboard and replace the roof, secure in the knowledge that the colony has sufficient food for the next 2-3 weeks.

If your crownboards aren’t reversible with a deep rim make some that are use an eke or an empty super.


 

Rational Varroa control

It’s the end of July … in the next two to three weeks the first eggs will be laid that will develop into the winter bees that get your colonies through to next spring. Protecting these winter bees is necessary to prevent overwintering colony losses.

I’ve written and lectured extensively on Varroa control and related topics for at least 5 years. The following article is published in August’s BBKA Newsletter and The Scottish Beekeeper. It provides an overview of what I term rational Varroa control.

I define this as effective mite management based upon our current understanding of the biology of bees and Varroa. The goal of this control is to minimise winter losses due to Varroa and viruses.

It is not a recipe with easy to follow if this, then that instructions. Neither does it provide a calendar-based guide of what to do and when to do it.

It does not even tell you what you should use for mite control.

Instead it focuses on the principles … understanding these will enable you to implement control strategies that help your bees, in your environment, survive.

This version is hyperlinked to additional, more expansive, posts on particular topics, is slightly better illustrated than those that appeared in print and contains some additional footnotes with caveats and exceptions.


Introduction

Despite almost 30 years experience of Varroa in the UK, this ectoparasitic mite of honey bees remains the greatest threat to bees and beekeeping. With the exception of those fortunate to live in mite-free regions, all beekeepers must manage the mite population in their hives or risk losing the colony to the viruses transmitted when Varroa feeds on developing pupae. 

Fortunately, Varroa control is relatively straightforward; there are a range of approved and effective miticides that – used appropriately – reduce mite infestation levels significantly. The key words in that last sentence are ‘approved’, ‘effective’ and ‘used appropriately’. In reality annual colony losses, primarily occurring in the winter, often exceed 20% (Figure 1) and may be significantly higher in long or harsh winters 1. Many of these losses are attributable to Varroa and viruses. It is therefore clear that many beekeepers are not successful in managing Varroa; either they are not treating at all, or they are treating inappropriately.

Figure 1. BBKA winter survival survey – larger studies (COLOSS and BIP) often show much higher losses

This article is primarily aimed at relatively inexperienced beekeepers, but may also help the more experienced who still suffer with high levels of winter losses. It emphasises the importance of two, correctly timed, appropriate miticide treatments per season that should ensure colony survival. It is not going to deal with treatments of questionable or minor efficacy. These include the use of small cell foundation, drone brood culling or sugar dusting. These may reduce mite levels, but insufficiently to benefit colony health. Nor will it discuss the use of any miticides (or application methods) that are not approved by the Veterinary Medicines Directorate. I will also not discuss treatment-free beekeeping, selection of mite-resistant bees or advanced colony manipulations like queen trapping. In my view any or all of these could or should be tried … but only once a beekeeper can routinely successfully overwinter colonies using strategies similar to those described here.

The problem

Varroa is an ectoparasitic mite that feeds on developing honey bee pupae. During feeding it transmits a range of honey bee viruses, the most important of which is deformed wing virus (DWV). DWV is present in honey bees in the absence of Varroa. In our studies, using sensitive PCR-based detection methods, we never detect bees – even those from mite-free regions of Scotland – without DWV. The virus is transmitted horizontally between bees during trophallaxis, and vertically from drones or the queen through sperm or eggs. These routes of transmission are rarely if ever associated with any significant levels of disease and virus only replicates to modest levels (perhaps 1-10 thousand viruses per bee). However, when Varroa transmits DWV the virus bypasses the bee’s natural defence mechanisms and replicates to very high levels in recipient pupae (billions per pupa, 1 – 10 million times higher than in unparasitised pupae). Studies from our laboratory have shown that ~75% of pupae with these high virus loads either do not emerge, or emerge exhibiting the characteristic “deformed wings” that give the virus its name (Figure 2; Gusachenko et al., Viruses 2020, 12, 532; doi:10.3390/v12050532). The ~25% of bees that do emerge and appear ‘normal’ exhibit a range of symptoms including reduced fitness, impaired learning and reduced foraging. However, most importantly they also exhibit reduced longevity. During the summer this is probably not critical; the lifespan of a worker is only ~6 weeks and, assuming the queen is laying well, there are thousands of half-sisters around with more being produced every day.

DWV symptoms

Figure 2. DWV symptoms

But during the winter, brood rearing either stops completely or drops to a very low level. The bees reared from late summer onwards are physiologically very different. These are the ‘winter bees’, also termed the diutinus bees (from the Latin meaning long-lived). Physiologically these bees resemble juvenile workers and they can survive for many months. And they need to … it is these bees that get the colony through the autumn, winter and into the following spring. They protect the queen, they thermoregulate the hive and, usually around the winter solstice, they start to rear small amounts of new brood for the season ahead.

The longevity of the bees in the hive in winter is critical to colony survival. If the winter bees have high DWV levels their longevity is reduced (in addition to the reduced numbers due to overt disease or non-viability). This means that the winter cluster shrinks in size faster than it would do otherwise. With reduced numbers of bees it cannot keep brood warm enough and so the colony fails to expand early the following season. In cold spells it may be unable to reach the food stores resulting in the colony perishing from ‘isolation starvation’. It may not be able to maintain sufficient warmth to protect the queen, or may simply freeze to death.

The goal of rational Varroa control

Successful overwintering requires lots of winter bees. The size of the winter cluster is directly related to its survival chances. Therefore the goal of rational Varroa control is to prevent the winter bees from being exposed to mites and mite-transmitted viruses during their development. Winter bee production is induced by a range of factors including photoperiod, nectar and pollen availability, brood and forager pheromones. Together these induce slowed behavioural maturation of the winter bees. This is not like flicking a switch, instead it is a seamless transition occurring as late summer segues into early autumn (Figure 3). Winter bee production is also influenced by the queen. Young queens lay later into the autumn, so increasing the numbers of winter bees. 

Figure 3. Colony age structure from August to December.

It is important to note that these events are environment-driven, not calendar-driven. It will not happen at precisely the same time each year, or at the same time in different locations (or latitudes) each year.

To protect these winter bees the colony needs to be treated with an effective miticide before the majority of the winter bees are produced. This ensures that the developing winter bee pupae are not parasitised by virus-laden mites and so do not suffer from reduced longevity. 

When are winter bees produced in the UK? 

Unfortunately, I’m not aware of any direct studies of this. Scientists in Bern (49.9°N) in 2007/08, where the average temperatures in November and December were ~3°C, showed that the Varroa- and virus-reduced longevity of bees was first measurable in mid-November, 50 days after emergence. By extrapolation, the eggs must have been laid in the first week of September. 

Doing large scale experiments of Varroa control is time-consuming and subject to the vagaries of the climate (and, as a molecular virologist, beyond me in terms of the resources needed). I have therefore used the well-established BEEHAVE program of colony development (from scientists in the University of Exeter; https://beehave-model.net/) to model the numbers of developing and adult bees, and the mite numbers in a colony. BEEHAVE by default uses environmental parameters (climate and forage) based upon data from Rothamsted (51.8°N). Using results from this model system, the bees present in the hive at the end of December – by definition the diutinus winter bees – were produced from eggs laid from early/mid August (Figure 4).

Whatever the precise date – and it will vary from season to season as indicated above – at some point in September the adult bee population starts to be entirely replaced with winter bees. Large numbers of these need to live until the following February or March to ensure the colony survives and is able to build up again once the queen starts laying.

When to treat – late summer

The numbers of pupae and adult bees present in the colony are plotted in Figure 4 using dashed lines. Adult bee number decrease in early spring until new brood is reared. The influence of the ‘June gap’ on pupal numbers is obvious. Brood rearing gradually tails off from early July and stops altogether sometime in late October or early November. The shaded area represents the period of winter bee production – from early/mid August until brood rearing stops. 

Figure 4. Winter bee production and mite levels – see key and text for further details

Mite levels are indicated using solid lines. The impact on the mite population of treating in the middle of each month from July to November is shown (arrowed and labelled J, A, S, O and N) using the colours green, blue, red, cyan and black respectively. The absolute numbers of bees or mites is irrelevant, but bees (pupae and adults) are plotted on the left, and mites on the right hand axis, so they cannot be directly compared. The miticide treatment modelled was ‘applied’ for one month and was 95% effective, reproducing many licensed and approved products.

Mite levels peak in the colony in late September to October. If treatment does not occur until this time of the season then the majority of winter bees will have been reared in the presence of large amounts of mites. Unsurprisingly, the earlier the treatment is applied, the lower the mite levels during the period of winter bee production. 

Rational Varroa control therefore involves treatment soon after the summer blossom honey is removed from the hive, so maximising the winter bees produced in the presence of low mite numbers. If you leave treatment until mid-September, you risk exposing the majority of winter bees to high levels of Varroa in the hive. If your primary crop is heather honey, which is not harvested until September, you may need to consider treating earlier in the summer – for example during the brood break when requeening or during swarm control.

Why treat in midwinter?

A key point to notice from Figure 4 is that, paradoxically, the earlier the miticide is applied, the higher the mite levels are at the end of the year. Compare the August (blue) and October (cyan) lines at year end for example. This is because mites that survive treatment – and some always do – subsequently reproduce in the small amount of brood reared late in the season. This is what necessitates a ‘midwinter’ treatment. Without it, mite levels increase inexorably year upon year, and cannot be controlled by a single late-summer treatment. Beekeepers bragging on social media that their mite drop after the winter treatment was zero probably applied the summer treatment too late to effectively protect their winter bees.

And when is midwinter?

Historically beekeepers apply the ‘midwinter’ treatment between Christmas and New Year. This is probably too late. The usual miticide used at this time is oxalic acid, a ‘one shot’ treatment that is ineffective against mites in capped cells. For maximum efficacy this must be applied when the colony is broodless. Brood rearing usually starts (if it ends at all, again this is climate-dependent) around the winter solstice. By delaying treatment until a lull in the Christmas festivities or even early January some mites will already be inaccessible in capped cells. 

Figure 5. Biscuit coloured (or a bit darker) cappings indicating brood rearing in this colony

I check my colonies for brood – either by looking for biscuit-coloured cappings on the Varroa tray (Figure 5) or by quickly inspecting frames in the centre of the cluster – and usually treat in November or very early December. If I cannot check visually I apply the treatment during the first extended cold spell of the winter. By treating when the colony is broodless I can be certain my intervention will have maximal effect.

What to treat with?

I have deliberately avoided – other than mentioning oxalic acid – specific miticides. Rational Varroa control involves the choice of an appropriate miticide and its correct application. Examples of incorrect or inappropriate miticide choice include; use of Apistan when resistance is known to be very widespread, use of Apiguard when the average ambient temperature is below 15°C (which makes Apiguard of little use for effective control in much of Scotland) or the use of Api-Bioxal when there is capped brood present. In addition, use of a half-dose or a reduced period of application will both reduce efficacy and potentially lead to the selection of resistance in the mite population. Used correctly – the right dose at the right time and for the right duration – the majority of the currently licensed miticides are be capable of reducing mite levels by over 90%. If they do not, use one that does. Miticide choice should be dictated by your environment and the state of the colony.

All together now

Most beekeepers grossly underestimate the movement of bees (and their phoretic mites) between colonies. Numerous studies have shown that drifting and (to an even greater extent) robbing can result in the transfer of large numbers of mites from adjacent and, in the case of robbing, more distant colonies. 

Gaffer tape apiary

Figure 6. Gaffer tape apiary …

Rational Varroa control therefore involves treating all colonies within an apiary, and ideally the wider landscape, in a coordinated manner. In communal association apiaries (Figure 6), where beekeeping experience and therefore colony management and health can vary significantly, this is particularly important. Coordinated treatment is only relevant in late summer when bees are freely flying.

Swarms

Swarms originating from unmanaged or poorly managed colonies will have high mite levels. The bee population in a swarm is biased towards younger bees; these are the bees that phoretic mites preferentially associate with. Studies have shown that ~35% of the mite population of a colony leaves with the swarm.

Figure 7. Varroa treatment of a new swarm in a bait hive…

Since swarms contain no sealed brood until ~9 days after they are hived oxalic acid is the most appropriate treatment. I usually treat them using vaporised oxalic acid late in the evening soon after they are hived (Figure 7). Even casts get this treatment and I have not experienced any issues with the queen not subsequently mating successfully. I’d prefer to have a queenless low-mite colony than a queenright one potentially riddled with Varroa.

Midseason mite treatment

The text above describes the mite management strategies I have used for several years. I apply Apivar immediately the summer honey is removed and treat with oxalic acid when broodless before the end of the year. Doing this has almost never required any additional midseason treatments; if mite levels are sufficiently low at the beginning of the season they cannot rise to dangerous levels before the late summer treatment. I still get winter colony losses, but they are almost always due to poor queen mating and rarely due to Varroa and viruses.

Figure 8. Queenright splits and the window(s) of opportunity

However, if midseason treatments are required – either because there are signs of overt infestation, because regular mite counts have shown there is a problem, or to have low mite colonies after the heather honey is collected – then there are two choices. Treat with MAQS which is approved for use when there are supers on the hive and, more importantly, is effective against mites in capped cells 2. Alternatively, treat during swarm control. With care, the majority of splits (e.g. the Pagden artificial swarm or the nucleus method) can be performed to give a broodless period for both the queenright (Figure 8) and queenless partitions. That being the case, a single application of an oxalic acid-containing miticide can be very effective in controlling the mite population.

Costs

Many beekeepers complain about the cost of licensed and approved miticides. However, some perspective is needed. A colony with low levels of mites will be more likely to survive overwinter, so reducing the costs of replacement bees. In addition, a healthy colony will be a stronger colony, and therefore much more likely to produce a good crop of honey (and potentially an additional nuc). Over the last 5-6 years my miticide costs are equivalent to one jar of honey per colony per year. This is an insignificant amount to pay for healthy colonies.

Summary

Rational Varroa control requires an understanding of the goals of treatment – protecting the winter bees and minimising mite levels for the beginning of the following season – and an appreciation of how this can best be achieved using miticides appropriate for the environment and the state of the colony. Like so much of beekeeping, it involves judgement of the colony and will vary from season to season and your location. I’ve applied my midwinter treatment as early as the end of October or as late as mid-December, reflecting variation in timing of the broodless period. Rational Varroa control also involves an understanding of the biology of bees and an awareness of the influence of beekeeping (e.g. crowding colonies in apiaries which increases mite and disease transmission) on our bees. However, none of this is difficult, expensive or time consuming … and the benefits in terms of strong, healthy, productive colonies are considerable.


Note

A version of this post appeared in the BBKA Newsletter, August 2021

A version of this post appeared in The Scottish Beekeeper, August 2021

Oxalic acid (Api Bioxal) preparation

This post updates and replaces one published three years ago (which has now been archived). The registered readership of this site has increased >200% since then and so it will be new to the majority of visitors.

It’s also particularly timely.

I will be treating my own colonies with oxalic acid in the next week or so.

Mites and viruses

Varroa levels in the hive must be controlled for successful overwintering of colonies. If you do not control the mites – and by ‘control’ I mean slaughter 😉 – the viruses they transmit to the overwintering bees will limit the chances of the colony surviving.

The most important virus transmitted by Varroa is deformed wing virus (DWV). At high levels, DWV reduces the lifespan of worker bees.

This is irrelevant in late May – there are huge numbers of workers and they’re only going to live for about 6 weeks anyway.

In contrast, reduced longevity is very significant in the winter where more limited numbers of overwintering bees must survive for months to maintain the colony through to the Spring. If these bees die early (e.g. in weeks, not months), the colony will dwindle to a pathetic little cluster and likely freeze to death on a cold winter night.

Game over. You are now an ex-beekeeper 🙁

To protect the overwintering bees you must reduce mite levels in late summer by applying an appropriate miticide. I’ve discussed this at length previously in When to treat? – the most-read post on this site.

I’d argue that the timing of this late summer treatment is the most important decision about Varroa control that a beekeeper has to make.

However, although the time for that decision is now long-gone, there are still important opportunities for mite control in the coming weeks.

In the bleak midwinter

Miticides are not 100% effective. A proportion of the mites will survive this late summer treatment 1. It’s a percentages game, and the maximum percentage you can hope to kill is 90-95%.

If left unchecked, the surviving mites will replicate in the reducing brood reared between October and the beginning of the following year. That means that your colony will potentially contain more mites in January than it did at the end of the late summer treatment.

Mid September

Late summer mite treatment and no midwinter treatment.

Over several years this is a recipe for disaster. The graph above shows modelled data that indicates the consequences of only treating in late summer. Look at the mite levels (in red, right hand vertical axis) that increase year upon year.

The National Bee Unit states that if mite levels exceed 1000 then immediate treatment is needed to protect the colony. In the modelled data above that’s in the second year 2.

In contrast, here is what happens when you also treat in “midwinter” (I’ll discuss what “midwinter” means shortly).

Two optimal treatments

Two optimal treatments

Mite numbers remain below 1000. This is what you are aiming for.

For the moment ignore the specific timing of the treatment – midwinter, late December etc.

Instead concentrate on the principle that determines when the second treatment should be applied.

During the winter the colony is likely to go through a broodless period 3.

When broodless all the mites in the colony must, by definition, be phoretic.

There’s no brood, so any mites in the colony must be riding around on the backs of workers.

A phoretic mite is an easy mite to kill 4.

A “midwinter” double whammy

A single oxalic acid based treatment applied during the winter broodless period is an ideal way to minimise the mite levels before the start of the following season.

Oxalic acid is easy to administer, relatively inexpensive and well-tolerated by the bees.

The combination – a double whammy – of a late summer treatment with an appropriate miticide and a “midwinter” treatment with oxalic acid should be all that is needed to control mites for the entire season.

However, “midwinter” does not mean midwinter, or shouldn’t.

Historically, winter mite treatments were applied between Christmas and New Year. It’s a convenient time of the year, most beekeepers are on holiday and it’s a good excuse to avoid spending the afternoon scoffing mince pies in front of the TV.

Or with the outlaws inlaws 😉

But by that time of year many colonies will have started brooding again.

With sealed brood, mites have somewhere to hide, so the treatment will be less effective than it might otherwise have been 5.

Why go to all the trouble of treating if it’s going to be less effective than it could be?

The key point is not the timing … it’s the broodlessness of the colony.

If the colony is broodless then it’s an appropriate time to treat. My Fife colonies were broodless this year by mid-October. This is earlier than previous seasons where I usually have waited until the first protracted cold period in the winter – typically the last week in November until the first week in December.

If they remain broodless this week I’ll be treating them. There’s nothing to be gained by waiting.

Oxalic acid (OA) treatment options

In the UK there are several approved oxalic acid-containing treatments. The only one I have experience of is Api-Bioxal, so that’s the only one I’ll discuss.

I also give an overview of the historical method of preparing oxalic acid as it has a bearing on the amount of Api-Bioxal used and will help you (and me) understand the maths.

OA can be delivered by vaporisation (sublimation), or by tricking (dribbling) or spraying a solution of the chemical.

I’ve discussed vaporisation before so won’t rehash things again here.

Trickling has a lot to commend it. It is easy to do, very quick 6 and requires almost no specialised equipment, either for delivery or personal protection (safety).

Trickling is what I always recommend for beginners. It’s what I did for years and is a method I still regularly use.

The process for trickling is very straightforward. You simply trickle a specific strength oxalic acid solution in thin syrup over the bees in the hive.

Beekeepers have used oxalic acid for years as a ‘hive cleaner’, as recommended by the BBKA and a range of other official and semi-official organisations. All that changed when Api-Bioxal was licensed for use by the Veterinary Medicines Directorate (VMD).

Oxalic acid and Api-Bioxal, the same but different

Api-Bioxal is the VMD-approved powdered oxalic acid-containing miticide. It is widely available, relatively inexpensive (when compared to other VMD-approved miticides) and very easy to use.

Spot the difference ...

Spot the difference …

It’s very expensive when compared to oxalic acid purchased in bulk.

Both work equally well as both contain exactly the same active ingredient.

Oxalic acid.

Api-Bioxal has other stuff in it (meaning the oxalic acid content is a fraction below 90% by weight) and these additives make it much less suitable for sublimation. I’ll return to these additives in a minute or two. These additives make the maths a bit more tricky when preparing small volumes at the correct concentration – this is the purpose of this post.

How much and how strong?

To trickle or dribble oxalic acid-containing solutions you’ll need to prepare it at home, store it appropriately and administer it correctly.

I’ve dealt with how to administer OA by trickling previously. This is all about preparation and storage.

The how much is easy.

You’ll need 5ml of oxalic acid-containing solution per seam of bees. In cold weather the colony will be reasonably well clustered and its likely there will be a maximum of no more than 8 or 9 seams of bees, even in a very strong colony.

Hold on … what’s a seam of bees?

Three seams of bees

Looking down on the colony from above, a seam of bees is the row visible between the top bars of the frames.

So, for every hive you need 5ml per seam, perhaps 45ml in total … with an extra 10% to cover inevitable spillages. It’s not that expensive, so don’t risk running out.

And the strength?

The recommended concentration to use oxalic acid at in the UK has – for many years – been 3.2% w/v (weight per volume) in 1:1 syrup. This is less concentrated than is recommended in continental Europe (see comments below on Api-Bioxal).

My advice 7 – as it’s the only concentration I’ve used – is to stick to 3.2%.

Calculators at the ready!

The oxalic acid in Api Bioxal is actually oxalic acid dihydrate. Almost all the powdered oxalic acid you can buy is oxalic acid dihydrate.

The molecular formula of oxalic acid is C2H2O4. This has a molecular weight of 90.03. The dihydrated form of oxalic acid has the formula C2H2O4.2H2O 8 which has a molecular weight of 126.07.

Therefore, in one gram of oxalic acid dihydrate powder (NOT Api Bioxal … I’ll get to Api Bioxal in a minute! Have patience Grasshopper) there is:

90.03/126.07 = 0.714 g of oxalic acid.

Therefore, to make up a 3.2% oxalic acid solution in 1:1 syrup you need to use the following recipe, or scale it up as needed.

  • 100 g tap water
  • 100 g white granulated sugar
  • Mix well
  • 7.5 g of oxalic acid dihydrate

The final volume will be 167 ml i.e. sufficient to treat over 30 seams of bees, or between 3 and 4 strong colonies (including the 10% ‘just in case’).

The final concentration is 3.2% w/v oxalic acid

(7.5 * 0.714)/167 * 100 = 3.2% 9.

Check my maths 😉

Recipe to prepare Api-Bioxal solution for trickling

Warning – the recipe on the side of a packet of Api-Bioxal makes up a much stronger solution of oxalic acid than has historically been used in the UK. Stronger isn’t necessarily better. The recipe provided is 35 g Api-Bioxal to 500 ml of 1:1 syrup. By my calculations this recipe makes sufficient solution at a concentration of 4.4% w/v to treat 11 hives. 

There’s an additional complication when preparing an Api-Bioxal solution for trickling. This is because Api-Bioxal contains two additional ingredients – glucose and powdered silica. These cutting agents account for 11.4% of the weight of the Api-Bioxal. The remaining 88.6% is oxalic acid dihydrate.

Using the same logic as above, 1g of Api-Bioxal therefore contains:

(90.03/126.07) * 0.886 = 0.633 g of oxalic acid.

Therefore, to make up 167 ml of a 3.2% Api-Bioxal solution you need to use the following recipe, or scale up/down appropriately:

  • 100 g tap water
  • 100 g white granulated sugar
  • Mix well
  • 8.46 g of Api-Bioxal

Again, check my maths … you need to add (7.5 / 0.886 = 8.46) grams of Api-Bioxal as only 88.6% of the Api-Bioxal is oxalic acid dihydrate.

Scaling up and down

8.46 g is not straightforward to weigh – though see below – and 167 ml may be too much for the number of hives you have. Here’s a handy table showing the amounts of Api-Bioxal to add to 1:1 syrup to make up the amount required.

Api-Bioxal recipes for 3.2% trickling in 1:1 syrup

The Api-Bioxal powder weights shown in bold represent the three packet sizes that can be purchased.

I don’t indicate the amounts of sugar and water to mix to make the syrup up. I’ll leave that as an exercise for the reader … remember that 100 g of sugar and 100 ml of water make 167 ml of 1:1 (w/v) syrup.

Weighing small amounts of Api-Bioxal

The amount of Api-Bioxal used is important. A few grams here or there matter.

If you are making the mix up for a limited number of hives you will have to weigh just a few grams of Api-Bioxal. You cannot do this on standard digital kitchen scales which work in 5 g increments.

Buy a set of these instead.

Digital scales … perfect for Api-Bioxal (and yeast)

These cost about a tenner and are perfect to weigh out small amounts 10 of Api-Bioxal … or yeast for making pizza dough.

A few words of caution

I don’t want to spoil your fun but please remember to take care when handling or using oxalic acid, either as a powder or when made up as a solution.

Oxalic acid is toxic

  • The lethal dose for humans is reported to be between 15 and 30 g. It causes kidney failure due to precipitation of solid calcium oxalate.
  • Clean up spills of powder or solution immediately.
  • Take care not to inhale the powder.
  • Store in a clearly labelled container out of reach of children.
  • Wear gloves.
  • Do not use containers or utensils you use for food preparation. A well rinsed plastic milk bottle, very clearly labelled, is a good way to store the solution prior to use.

Storage

Storage of oxalic acid syrup at ambient temperatures rapidly results in the acid-mediated breakdown of sugars (particularly fructose) to generate hydroxymethylfurfural (HMF). As this happens the colour of the oxalic acid-containing solution darkens significantly.

This breakdown happens whether you use oxalic acid or Api-Bioxal.

Stored OA solution and colour change

Stored OA solution and colour change …

HMF is toxic to honey bees at high concentrations. Studies from ~40 years ago showed that HMF concentrations below 30 mg/l were safe, but above 150 mg/l were toxic 11.

At 15°C HMF levels in OA solution can reach 150 mg/l in a little over a week. At room temperature this happens much faster, with HMF levels exceeding 150 mg/l in only 2-3 days. In the dark HMF levels build up slightly less quickly … but only slightly 12.

Therefore only make up OA solutions when you need them.

If you must store your oxalic acid-containing syrup for any length of time it should be in the fridge (4°C). Under these conditions HMF levels should remain well below toxic levels for at least one year. However, don’t store it for this long … use it and discard the excess.

Or prepare excess and share it with colleagues in your beekeeping association.

Don’t use discoloured oxalic acid solutions as they’ve been stored incorrectly and may well harm your bees.

Another final few words of caution

I assume you don’t have a fridge dedicated to beekeeping? That being the case please ensure that the bottle containing stored oxalic acid is labelled clearly and kept well out of the reach of children.


Notes

A quick trawl through the Veterinary Medicines Directorate database turns up several oxalic acid-containing solutions for managing Varroa. These include:

  • Oxuvar – approved for trickling or spraying, an aqueous solution of oxalic acid to which you add glucose if you intend to use it for trickling.
  • Oxybee – approved for trickling (and possibly other routes, but the paperwork was a minefield!), contains oxalic acid, glycerol and essential oils and is promoted as having a long shelf life.
  • VarroMed – approved for trickling, contains oxalic acid and formic acid and can be used throughout the year in one way or another.

I’ve not read the documentation provided with these and so don’t know the precise concentration of oxalic acid they contain. It will be listed as an active ingredient. I have not used these products. As with everything else on this site, I only write about methods or products I am familiar with. I therefore cannot comment on their relative efficacy compared to Api-Bioxal, to Apivar or to careful siting of your hives in relation to ley lines … or 5G phone masts.

 

Long distance beekeeping

This post was originally entitled ‘lockdown beekeeping’. I changed it in the hope that, at some point in the future, we’ve all forgotten lockdown and are back to the ‘old normal‘. Instead, long distance beekeeping, better summarises the topic and might rank better in future Google searches …

But before I start, here’s some general advice …

Don’t do as I do, do as I say (elsewhere on this site 😉 )

I don’t think what I’m going to describe below was anything like ideal. In the end it worked out pretty well, but probably as much from luck as judgement. I’d do it again if I had to, but I’d prefer not to. I don’t think it is a workable solution for effective beekeeping in anything other than exceptional circumstances.

But 2020 has been an exceptional circumstance …

Mid-March madness

It was abundantly clear in very early March that a lockdown was inevitable 1 to restrict the spread of Covid-19. All the numbers were going in the wrong direction and other countries were already imposing quite draconian restrictions to control virus transmission 2.

I had speaking engagements with Oban & District BKA on the 12th and at the SNHBS event at Kinross on the 14th and, on the following day, I disappeared to my bolthole on the remote west coast of Scotland. 

The wild west

I decided to simply abandon the bees in Fife for at least a month while the country came to terms with movement restrictions, supermarket food deliveries, protecting the NHS and ‘working from home’.

On the day I left I checked that colonies were not too light, that the entrances were clear and that the roofs were secure and everything was strapped down.

March is too early to do anything with bees in Fife and my first inspections are usually not until mid/late April in a normal year, and even early May if there’s been a cold Spring. I therefore had a month to plan for the season ahead, with the expectation that I would have to manage the bees with the minimum possible number of visits for the next few months.

Planning

The beekeeping season contains a number of ‘moveable fixtures’.

By that I mean that certain things happen every season, but the time when they happen is not fixed. The timing depends upon the weather which, in turn, influences forage availability. It depends upon the strength of the colony, the location of the apiary and – for all I know – the phase of the moon.

Warm springs can lead to swarming by the end of April. Conversely, cold springs delay events. Dry summers generally put paid to the lime nectar and a protracted June gap can leave colonies starving in the middle of the season.

In the previous post I called these moveable fixtures the unknown knowns.

The variable timing of these moveable fixtures influences colony management by the beekeeper; this includes the spring honey harvest, swarm control and the summer honey harvest. In addition, it includes more mundane things like comb exchange, feeding the colony up for winter and Varroa management.

Bees and beekeeping are influenced by the environment, not the calendar 3.

The UK government imposed a nationwide lockdown on the 23rd of March 2020. Movement restrictions were imposed, including the distance you could travel from where you live.

Exemptions were made for allowed activities and, after lobbying from national associations and others, beekeeping was included as an exempt activity. Notwithstanding this, it was not going to be practical to conduct the usual weekly inspections from April until late July.

First inspections

I returned to Fife to conduct the first inspections in the third week of April. The spring was well advanced and the strong colonies were really booming. The overwintered nucs had built loads of brace comb in the space over the top bars and urgently needed to be moved to a full hive.

Overwintered nuc with brace comb

There were about 20 colonies spread between my two main apiaries. All were checked for space/strength, temper and the presence of a laying, marked and clipped queen 4. I didn’t have time to mollycoddle any weak colonies so these (having checked they were healthy) were united with nearby strong colonies.

Safely back in the hive

In addition, I didn’t have the luxury of time to see if poorly behaved colonies might pick up later in the season. To be frank, I had more colonies than I needed (or could easily cope with). With the need for swarm control looming, I decided to reduce colony numbers by uniting de-queened aggressive colonies with others in the same apiary. There were only a couple of these (identified the previous season and seemingly unimproved after the winter) … but every little bit helps.

United colonies, three supers, strapped up well … 25th April 2020

Finally, with the oil seed rape about to flower, I added three supers to the majority of the colonies. In a normal season these would have been added incrementally as needed. This year I had to assume (or hope) they might need them.

Swarm control

On my return to the west coast the spring was warming up. The primroses were looking fantastic and we had several weeks of outstanding weather.

Primroses – late April 2020

I enjoyed the good weather and spent the time fretting about the timing of swarm control.

My colonies tend to make swarm preparations between mid-May and the first week of June – a good example of a moveable fixture.

A priority this year was not to lose any swarms.

I did not want to inconvenience other beekeepers (or civilians’ 5) with swarms I managed to lose by ineptly doing my beekeeping from the other side of the country.

With most people trying to keep themselves isolated, 30,000 bees moving into a chimney would be a lot more than unwelcome.

Even in a normal year I do my very best not to lose swarms, and this was anything but a normal year.

I therefore decided to conduct pre-emptive swarm control on every colony in the third week of May. ‘Pre-emptive’ meaning that, whether the colonies showed any signs of swarming or not, I’d remove the queen and let them rear another.

Colonies do not swarm every year. Every now and again a strong colony of mine will show no inclination to swarm. These are great … I just pile another super or two on top and am thankful not to have to intervene.

However, strong colonies are more than likely to swarm and I didn’t feel I had the luxury of waiting around to find which wanted to and which didn’t.

A swarm in May (and how I avoided it … )

With the exception of a couple of our research colonies that seemed to be on a ‘go slow’ I treated all my colonies in the same way.

I used the nucleus method of swarm control. I removed the queen and one frame of emerging brood and put them into a 5 frame nuc box with a frame of foundation or drawn comb and a frame of stores. To ensure there were sufficient bees in the box I then shook in another frame of bees before sealing them up for transport.

All the nucs were moved to distant apiaries so there was no risk of bee numbers being depleted as they returned to the original hive.

And then there were three … nucs for pre-emptive swarm control

The parental colonies were left for 6 days and then checked for queen cells.

Ideally this should have been 7 days. By this time there would be no larvae young enough to generate additional queen cells from. However, there was a large storm moving in from the west and it was clear that there would be no possibility of doing any beekeeping while it moved through.

I therefore checked on the sixth day, knocked back all the queen cells, leaving just one good one, and then scarpered back to the west coast (meeting the storm en route).

However, before I disappeared I also checked all the nucs. All were doing fine. There was a good nectar flow and they had already drawn and laid up the frame out I’d given them. I therefore added two foundationless frames flanking the central frame. With frames either side these are usually drawn straight and true.

New comb with queen already laying it up

If you give the bees lots of foundationless frames together, particularly if the hive isn’t perfectly level, they will often make a real mess of drawing the comb out. By interleaving the new frames with those that were already drawn the bees are forced to maintain the required bee space on either side, so usually draw the frame out satisfactorily.

Getting the timing right … at least partly

When I left Fife on the 22nd of May the OSR was in full flower. It would finish sometime in early June.

My next dilemma was to time the following visit for the spring honey harvest. Too soon and the frames wouldn’t be capped. Too late and, being OSR, it might start to crystallise in the comb.

But I also wanted to deal with all the requeening colonies during the same visit and all of the nucs.

I’ve previously discussed the time it takes for a new queen to develop, emerge, mature, mate and start laying. It always takes longer than you’d like. The absolute minimum time is about two weeks, but it usually takes longer. Ideally I wanted to go through all the requeening colonies, find, mark and clip the queens or re-unite (with the nuc) those that had failed.

At the same time, with a strong nectar flow and a strongly laying queen, there was a real risk that the nucs were going to get overcrowded very fast. The longer they were left, the more chance that they would think about swarming.

I employed a number of local spies (beekeeping friends in the area) and queried them repeatedly 6 about the state of the OSR. Shortly after it finished, I returned to take off the spring honey.

A minor catastrophe

It was the 10th of June; this was exactly 20 days since leaving the requeening colonies with a single freshly-sealed queen cell.

I’ve previously mentioned that one of my apiaries is rather exposed to strong westerlies. Despite the wind-reduction netting and the rapidly growing willow hedge, this apiary had been really hammered by the storm on the 22nd/23rd of May.

Nuked nucs

Two nucs had lost their lids and crownboards and a full strapped-up hive had been blown over, denting the fence on its descent but remaining more or less intact.

How is the queen supposed to find the entrance?

The apiary hadn’t been checked since my last visit, so I’m assuming the damage happened during the storm in late May. That being the case, the nucs would have been open to the elements for about 18 days. Amazingly, both still contained laying queens and – despite looking a little the worse for wear – eventually recovered.

In contrast, the strapped up hive was not ‘open to the elements’. It had fallen entrance-first onto the ground. I think a few bees could fly from a gap where the ground didn’t quite block the entrance, but I was more concerned about getting them upright again to check too carefully.

Despite my best efforts I failed to find a queen in this hive. My frames are arranged ‘warm way’, so all the frames had slid together when the hive fell and it’s possible the queen didn’t survive 7.

Spring honey, nucs and queens

The spring honey harvest went well. The OSR frames were mostly capped. Those that weren’t could still be extracted as the honey would not shake out of the frame.

A fat frame of spring honey

It was my best year for spring honey since returning to Scotland in 2015. With the exception of that one big storm the weather had been pretty good and the bees had had ample opportunity to be out foraging.

However, although a few of the colonies had newly mated and laying queens, the majority did not. In most of them I found evidence that there would be a laying queen sometime soon … I usually infer this from the presence of ‘polished’ cells in the centre of the one or two of the central frames in the hive. This gave me confidence that there was likely to be an unmated, or just mated, queen in the box. There’s nothing much to be gained from actually finding her, so I would have to be a bit more patient.

Just as these things cannot be rushed, an overcrowded nuc cannot be ignored.

Almost all the nucs were fast running out of space. I therefore removed 2-3 frames of brood from each and replaced them with fresh frames. I used the frames of brood to boost the honey production colonies that were ‘busy’ requeening.

Mid-June and the foxgloves are in flower

By the 14th of June I was back on the west coast.

Late June rearrangements

I returned a fortnight later for a very busy couple of days of beekeeping.

By this time the summer nectar flow was starting. The nucs, even those ‘weakened’ by removing brood, were busy filling spaces with brace comb.

Comb in feeder

All of the requeening colonies were checked for a laying queen. A handful had failed, disappeared or whatever and now looked queenless. These were requeened by uniting them with a nuc containing the ‘saved’ queen from earlier in the season.

What could be simpler? That’s one of the main attractions of this method of swarm control.

The colonies with the first of the new laying queens were doing really well, with lovely fresh frames of wall-to-wall brood. It’s only after a queen has laid up a full frame or two that you get a proper impression of her quality. I can never properly judge this in the tiny little frames of a mini-mating nuc, so – despite the extra resources (bees, frames, boxes) needed – prefer to get queens mated and laying in hives with full-sized frames.

Good laying pattern

The remaining ‘unused’ nucs were all expanded up to full hives and given a super. All the strong colonies in the apiaries were again given three supers and left to get on with things.

Expanded nucs on the left, production hives on the right

It was a backbreaking few days, particularly because I spent the evenings jarring honey 8, but it left the apiaries in a good state for the summer nectar flow.

Summer honey

The only beekeeping I did in July was on the west coast of Scotland. I moved a couple of nucs up to full hives and, since the heather wasn’t yet in full flower, I gave them each a gallon or so of thin syrup to encourage the bees to draw comb to give the queen space to lay.

Welcome to your new home … nuc ‘promoted’ to hive with contact feeder in place

I finally returned to Fife to take the summer honey off in late August. I’ve recently posted a brief description of clearing supers during Storm Francis so won’t repeat it here.

In four days I removed all the supers and extracted the honey, fed and treated the bees for the winter, and left the colonies strapped up securely for … goodness knows when.

The summer honey harvest was unusual. One of my apiaries did fantastically well, more than the last two seasons combined, and by far my best year since 2015.

The other apiary was just slightly worse than … utterly pathetic.

This second apiary is usually very reliable. The forage in the area has been dependable and, in some years, the lime has yielded very well. However, not this year and, since I wasn’t about, I don’t know why.

I did it my way … but it wasn’t very satisfying

That last paragraph rather neatly sums up the 2020 beekeeping season.

Overall the season must be considered a success; I didn’t lose any swarms, the majority of colonies were requeened successfully, all of the colonies are going into the winter strong, fed and treated, and the overall honey crop was very good.

However, it’s all been done ‘remotely’, both literally and figuratively. I’ve not felt as though I’ve been able to watch the season and the colonies develop together. I don’t feel as though I was ‘in tune’ with what was happening in the hives. I can’t explain why some things worked well and other things – like the apiary with no honey 🙁 – failed miserably.

My notes are perfunctory at best, “+3 supers, Q laying well”, and contain none of the usual asides about what’s happening in the environment. There’s no indication of what was flowering when, whether the year was ‘early’, ‘late’, or ‘about normal’, when the migrant birds arrived or left.

I’ve done less beekeeping this year than in any year in at least a decade. Since I rather like beekeeping, this means it has been a bit of a disappointment. Since I’ve spent less time with the bees, and I’ve been so rushed when I have been working with them, I feel as though I’ve learnt less this year than normal.

What didn’t get done?

With irregular and infrequent visits some things were simply ignored this season.

I did very little Varroa monitoring. With the Apivar strips now in it’s clear that some hives have higher Varroa counts than I’ve seen in the last few years 9. However, not all of them. Some colonies appear to have extremely low mite loads.

We finally managed to check the levels of deformed wing virus in our research colonies quite late in the season once the labs partially reopened. The levels were reassuringly low. This strongly suggests that the mite levels are not yet at a point threatening the health of the colonies.

I’ve singularly failed to do much in the way of brood comb exchange this season. This means I’m going to have to take a bit more care next year to cycle out the old, dark frames and replace them with brand new ones.

Here’s one I did manage to replace

Again, not the end of the world, but ‘bad beekeeping’ all the same.

As I’m putting the finishing words together for this post the government is re-introducing further curfews and restrictions … maybe next year will be more of the same?


 

Trees for bees

The pollen and nectar sources available to bees depend upon the time of the year and the area of the country. The bees will enthusiastically exploit what’s available, but will struggle if there’s a dearth of either.

For much of this year I’ve been living on the remote west coast of Scotland, in an area with a very low population density and an even lower density of beekeepers … by my calculations less than 1 per 25 km2.

It’s very different from Fife (on the east coast of Scotland). It’s warmer and wetter here and there is almost no arable farming. One or two of the crofts on the coast might grow a bit of barley or wheat, but the few fields tend to be used for grazing and hay production. There’s probably no oil seed rape within 50 miles.

And there’s also no Varroa 🙂 … but I’ll discuss that another time.

Trees – in this case providing shelter from the westerlies – and bees

It goes without saying, since I’m spending so much time here, I now have bees here 🙂

Triffids and mad honey

The primary nectar source for honey is heather, which doesn’t yield until August. I have less than zero experience with heather honey – other than on toast – so have a lot to learn.

The land is on the edge of moorland with a mix of larch and scots pine, with a shrubby understorey of birch and some rowan. It’s awash with wildlife; pine marten, eagles, crossbills and the elusive Scottish wildcat 1.

Pine marten raiding the bird table

However, at least until a year or two ago, much of the land was covered in a triffid-like invasive mass of rhododendron. Swathes of the west of Scotland and Ireland are blighted by this shrub which was first introduced as an ornamental plant in the 18th Century.

Rhododendron as far as the eye can see – now cleared and planted with hazel and rowan

I’m biased, but I’d argue that rhododendron has no redeeming features. It seeds itself everywhere and smothers all other groundcover, leaving a near sterile environment. It’s terrible for wildlife. The flowers are briefly showy but not hugely attractive, either to me or to bees – whether wild or managed.

Oh yes, and the nectar produces hallucinogenic honey. I’ve even less experience of this than I do of heather honey … but in this case I have no desire to learn more.

So, I’ve been slowly clearing the rhododendron and replanting the cleared areas.

Trees for Life

A friend who used to keep bees in this are a few years ago commented that there was a shortage of early season pollen, meaning that colonies could sometimes struggle to build up. A colony that fails to build up well early in the season will struggle to reproduce i.e. swarm.

Of course, like most beekeepers, I don’t really want my bees to swarm.

However, I do want my colonies to be strong enough to want to swarm. That way, there will be loads of foragers to exploit the heather from late July. In addition, I’m particularly interested in queen rearing and building my stocks up, and for both these activities I need the colonies to have good access to pollen and nectar … and to be big and strong.

With no agriculture to speak of there are also no pesticides. Perhaps as a consequence of this there are a very large number of bumble bees about. These give me hope that there might actually be sufficient pollen, but more can only be beneficial.

And more will certainly be helpful if I end up with a reasonable number of colonies that could compete with the native bees for environmental resources 2.

I’m therefore busy planting trees in some of the areas cleared of rhododendron. Not quite on the same scale as the Trees for Life rewilding at Dundreggan, but every little bit helps 😉

Why trees?

Partly because they’ll take the longest to grow, so need to go in first, and partly because many of them are excellent sources of early season pollen and nectar.

It’s also the sort of epic-scale ‘gardening’ involving chainsaws and brushcutters, huge bonfires, cubic metres of firewood and lots of digging that I have an affinity for. I don’t have the patience for pricking-out and growing on bedding plants, or weeding the herbaceous border 😉

Native trees

I’m keen to re-plant with native trees and shrubs. I know they’ll do well in this environment and they can be readily sourced, either locally or at little expense.

As will become clear shortly, the ‘expense’ part is a not an insignificant consideration with the grazing pressure from deer in this area.

I’ve initially focused on just six species; alder, hazel, wild cherry (gean), poplar, willow and  blackthorn.

Of these I’ll skip over the blackthorn (Prunus spinosa). Although the white spring flowers produce nectar, I chose it to make a spiky hedge and for the distant opportunity of making sloe gin. However, I’m going to have to try again as the bareroot whips I planted last winter have done almost nothing.

Alder

Alder (Alnus glutinosa) produces large amounts of early season pollen. It also thrives in damp ground and we have plenty of that. I’ve planted quite a bit of alder and it’s all doing pretty well. There is already a lot along the banks of nearby streams and in boggy areas at the side of the loch, so I know it will do well in this area. In fact, the few dozen I’ve planted are insignificant in comparison to what’s growing locally, but I wanted to create an area of mixed alder and willow carr 3. I planted 30 cm bareroot whips last winter and those that have survived the deer have doubled or trebled in height.

Alder

Alder, once established, seems reasonably resistant to browsing by deer, presumably because they find it relatively unpalatable. The long-term plan is to coppice the alder – it makes good firewood when properly dried. It has also historically been used to make clogs, but I’ll be cutting it back before it’s grown enough for anything but the tiniest feet.

Hazel

Like alder, hazel (Corylus avellana) is a good source of early season pollen. Most readers will be familiar with the catkins which appear as early as mid-February. The area shown in a picture (above), now cleared of rhododendron, has been planted with hazel. It’s a south-facing slope with thin soil but most seem to be doing OK so far.

Hazel

There are a couple of mature hazel nearby and I managed to find a few seedlings which I transplanted, however the majority went in as bareroot whips.

Hazel is popular with deer and with the red squirrels. The fact I needed to buy barerooted trees probably reflects the fact that the squirrels get most of the nuts, and those that do germinate are then eaten by the deer. It’s a tough life.

Gean

Gean is the Scottish name for the wild cherry (Prunus avium) 4. It flowers in April and is a great source of nectar and pollen for the bees. I’ve only planted a few of these, in scattered groups of three, or along the side of the track. Despite gean not really flourishing in acid, peaty soil they seem to have established well and are already approaching shoulder height. Gean, like rowan 5, is also great for the birds and the thrushes will probably get the majority of the fruit that sets.

Poplar or aspen

Poplar or aspen (Populus tremula) is a favourite of mine. The leaves have pale undersides and are held on long, flattened petioles. As a consequence they flutter in the faintest of breezes and are a wonderful sight, particularly planted against a backdrop of dark brooding conifers.

Poplar or aspen (Populus tremula)

In fact, poplar is so attractive I’d have planted it even if it was of no interest to the bees.

Poplar is wind pollinated and the bees probably only get a little pollen from it. Some species also produce early season sap that is a major component of propolis apparently. Finally, poplar are susceptible to a rust or fungus called Melampsora, and the bees collect the spores if they need protein and there’s no pollen to be found.

Inaccessible aspen

The standard way to propagate poplar is by root cuttings. There is relatively little poplar around here, and none I could have easily grubbed up the roots from. However, after a bit of searching I discovered Eadha Enterprises in Lochwinnoch, near Glasgow. Eadha is derived from the old gaelic word for aspen. They are a social enterprise specialising in aspen production from stocks of known provenance. The cell-grown saplings I received, which are going in this winter, are derived from trees on the Isle of Arran.

Willow

In contrast to the relative difficulty of propagating aspen, you have to try hard not to propagate willow. A foot long, pencil-thick cutting – taken more or less any time of the year – will root very quickly. Even if left in a bucket of water for a fortnight.

Willow cuttings ready for planting

I’ve planted a lot of willow from local trees (probably goat willow, Salix caprea, but they hybridise so freely you can never be certain) and planted it in variously boggy bits of ground, alongside some of the alder. Willow is generally dioecious (male or female) and you need to plant male trees for the pollen. I planted some female as well as they both produce nectar.

Willow male catkins

In addition to just planting them directly, I grew a few on in tubs in potting compost. These developed good root systems and grew better.

Pot grown cutting ready for planting

However, willow is a favourite of deer and the cuttings I’ve planted have periodically been hammered by both red and roe deer.

Sabre planting and oversize cuttings

The obvious way to prevent deer damage is to build a 6 foot high fence but, because of the rocky nature of the ground, this is impractical (which is an easier way of saying eye-wateringly expensive).

If you visit the Scottish highlands you’ll be familiar with the site of small burns cascading down gulleys in the hillside. Often the the sides of the gulleys have dense growth of alder, birch or willow.

This is not just because of the nearby water supply. After all, much of the land receives 2000 mm of rain or more a year.

The other reason the trees are there (and not on the open moor) is that the gulley is steep sided and the trees therefore experience less grazing pressure. You can recapitulate this by so-called sabre planting 6. In this you plant trees of 1m+ height perpendicular on slopes of at least 40°. The slope makes the growing tips less accessible and they gradually grow out and away, straightening up as they do.

I’ve only discovered this strategy recently 7 and will be trying it in a couple of locations.

An alternative strategy, particularly suitable for willow, is to plant ‘cuttings’ that are already too big for the deer to reach the growing tips.

A ‘big’ willow cutting – there’s a game trail 2m from this that’s used every night.

To avoid grazing by red deer this means at least 1.5-1.8 m in height. The technique is almost the same as planting the foot long, pencil-thick cuttings … you just push them into the ground. It’s worth noting that you need to push them a good distance into the ground and stake them. About 50% of the big cuttings I’ve planted have apparently rooted. I’m pretty certain that those that didn’t failed because they were not staked firmly enough. This makes sense … as the leaves sprout they become wind-resistant and gales will quickly damage the developing root system through simple leverage.

Gimme Shelter

I’ve planted trees for bees before. We planted lots of goat willow and mixed hedging around our research apiary in Fife in early 2018. The combination of a major fire in my research institute the following year, and Covid this year, meant that the trees have been just left to get on with it.

Mixed hedging and willow and wildflowers (aka weeds, but the bees don’t know that)

And they have. This was a bare earth bank in February 2018. We still need a windbreak, but even that can probably be dispensed with in a year or so. Not all the trees have thrived, but I’m more than satisfied considering the neglect they received.

Oh deer

Scotland is overrun with deer. A review over 50 years ago stated that the optimum number of red deer the land could maintain was ~60,000. They defined ‘optimum’ in terms of avoiding agricultural damage, while allowing natural regeneration with no necessity for fencing. This would also ensure that there’s enough food for the deer during the winter months.

The current estimate is that there are over 450,000 red deer in Scotland. As a consequence there are many areas with no natural tree regeneration without installing expensive and intrusive fencing. In addition, the deer are often in lousy condition and/or starve to death in hard winters.

If you look carefully you can see a couple more coming down the track. There’s also a beehive in the video above, though it’s tricky to spot.

In addition to red deer we also have a smaller number of roe deer … equally attractive and almost equally destructive.

Don’t get me wrong, I love deer … particularly braised slowly with a good quality, full-bodied red and winter vegetables.

Not beekeeping?

OK, in terms of specifics, not beekeeping. However, I’d argue that beekeepers have a responsibility to maintain and protect their environment. This includes ensuring that their charges do not impact negatively on the native wildlife.

This area is towards the extreme north-west corner of the country and the introduction of a quarter of a million bees (~5 hives) will inevitably impact the pollen and nectar available for the established native pollinating insects.

I could choose to avoid the latter by ‘not beekeeping’, but I’ve instead chosen to try and improve the resources available in the environment. Time will tell if there is a shortage of pollen and if my bees thrive.

If they don’t, at least there will be a bit less bloody rhododendron 😉


Notes

If you’re interested in native trees I thoroughly recommend the Handbook of Scotland’s Trees by Reforesting Scotland. It has lots of good advice about collecting seed and planting, but also has details of uses for trees and folklore. Whilst it focuses on Scotland’s trees (the clue is in the title), most grow elsewhere as well, and it’s packed with information. If you are interested more generally in the history, uses and planting of woodlands it’s probably worth reading all 16,452 pages (a slight exaggeration, but it is a magnum opus) of Oliver Rackham’s Woodlands which is a masterpiece.

 

Swarm prevention

Swarm prevention and control are distinct phases in the management of colonies during the next few weeks of the beekeeping season 1.

Not all beekeepers practice them and not all colonies need them.

But most should and will … respectively 😉

Swarm prevention involves strategies to delay or stop the colony from initiating events that lead to swarming.

Swarm control strategies are more direct interventions that are used to prevent the loss of a swarm.

Why do colonies swarm?

Without swarming there would be no honey bees.

Swarming is honey bee colony reproduction. Without management (e.g. splitting colonies) colony numbers would remain static. And, since bees have only been managed for a few thousand years, they must have been successfully reproducing – by swarming – for millions of years before then.

So one of the major drivers of swarming is the innate need to reproduce.

Bees also swarm if their current environment is unable to accommodate further colony expansion. Therefore, another driver of swarming is overcrowding.

And, of course, there is some overlap in these two drivers of swarming.

You can therefore expect that strong, healthy, populous colonies will probably try to swarm on an annual basis.

The mechanics of swarming

When a colony swarms about 75% of the worker bees – of all age groups – leave with the queen. They set up a temporary bivouac near the original hive and subsequently relocate to a new nest site identified by the scout bees.

The original colony is left with all the brood (eggs, larvae and sealed brood), a significantly-depleted adult bee workforce and almost 2 all of the honey stores.

What they lack is a queen.

But what the swarm also leaves behind, amongst the brood, is one – or more often several – newly developing queens. These occupy specially enlarged cells that are located vertically on the edges or face of the comb.

Queen cells ...

Queen cells …

Queen cells look distinctive and their initial appearance – before the swarm leaves – is a clear indication that the time for swarm prevention has gone and swarm control is now urgently needed 3.

This is one of the reasons why regular colony inspections are essential, particularly during mid/late Spring and early summer which is the time of the season when swarming is most likely.

Colony fate and the risks of swarming

But back to the recently swarmed colony. In a few days the new queen(s) emerges. If there’s more than one they usually fight it out to leave just one. She goes on one or more mating flights and a few days later starts laying eggs.

This colony should survive and thrive. They have time to build up strength (and collect more stores) before the end of the season. Under natural conditions 87% of swarmed colonies overwinter successfully 4.

Alternatively, the swarmed colony may swarm again (and again), each with a virgin queen and each further depleting the worker population. Colonies can swarm themselves to destruction like this.

Swarms headed by virgin queens are termed casts. I’m not sure what determines whether a swarmed colony also produces one or more casts. Colony strength is a determinant, but clearly not the only one as some casts contain little more than a cup full of bees.

Under natural conditions swarming is a very risky business. Swarm survival is less than 25% 5 – many will not collect sufficient stores to overwinter – and the survival of casts will be even lower because of their size and the risks associated with queen mating.

But ‘our’ bees don’t live under natural conditions

For beekeeping the ‘risks’ associated with swarming are somewhat different.

When a colony swarms you lose the majority of the workforce. Therefore honey production will be significantly reduced. You’re unlikely to get a surplus from the swarmed colony.

Of course, honey might not interest you but propolis and wax production are also reduced, as is the strength of the colony to provide efficient ecosystem services (pollination).

Secondly, despite swarms being one of the most captivating sights in beekeeping, not everyone appreciates them. Non-beekeepers may be scared and – extraordinary as it may seem – resent the swarm establishing a new nest in the eaves of their house.

Incoming! from The Apiarist on Vimeo.

Inevitably some beekeepers will claim they’ve never met anyone scared of bees, or swarms are always welcomed in the gardens that abut their apiary.

Unfortunately, that does not alter the reality that – to many – swarms are a nuisance, a potential threat and (to a small number of people 6 ) a very real danger.

Therefore, as beekeepers, we have a responsibility to practice both swarm prevention and control. This prevents our hobby/obsession irritating other people and means we have more bees to make delicious honey for family, friends and customers.

Overcrowding

I’ve already defined the event that separates swarm prevention from swarm control. It is the appearance of queen cells during the weekly colony inspection.

Swarm prevention involves managing the colony to delay the appearance of queen cells. Once queen cells are produced, swarm control is required 7

I’ve also defined the two major drivers of swarming – overcrowding and the need to reproduce 8.

How does a colony determine that it is overcrowded? As beekeepers, how can we monitor and prevent overcrowding?

As a colony expands during the spring the queen lays concentric rings of eggs from the centre of the brood nest. Imagine this initially as a kiwi fruit-sized ball, then an orange, then a grapefruit, until it is the size of a large football.

Brood frame

Perhaps a slightly squashed football, but you get the general idea.

Running out of storage space

It takes bees to make bees. The initial brood reared helps feed subsequent larvae and keeps the maturing brood warm.

As the season develops more sources of nectar and pollen become available. These are collected in increasing amounts by the expanding numbers of foragers.

This all needs to be stored somewhere.

One possibility is that the stores are loaded into the cells recently vacated by emerging workers within the brood nest. This is often termed “backfilling”. Sometimes you find a frame in which the central concentric rings of brood have emerged and, before the queen has had a chance to re-lay the frame with new eggs, workers have backfilled the cells with nectar (or, less frequently, pollen).

But, at the same time as the space available for the queen to lay is reducing, the colony population is increasing. Very fast. There are larger numbers of unemployed young bees. Unemployed because there are reduced amounts of brood to rear because the queen is running out of space.

Pheromones

And the increased number of workers means that the pheromones produced by the queen, in particular the queen mandibular pheromone, are effectively diluted. Studies by Mark Winston and colleagues 9 investigated the relationship between queen mandibular pheromone (an inhibitor of queen cell production) and colony congestion. In it he concluded that overcrowding inhibits the transmission of this pheromone, so favouring queen cell production.

Play cup or queen cell?

Play cup or are they planning their escape …?

The distribution of other pheromones is also reduced in overcrowded colonies. Lensky and Slabezki 10 showed that the queen rarely visited the bottom edges of comb in overcrowded colonies. Consequently, the levels of queen footprint pheromone was reduced. This pheromone is an inhibitor of queen cup production, the very earliest stages of queen cell development.

So, overcrowded colonies start to prepare queen cells … and swarm control is needed.

Make space

If the colony is overcrowded then you have to provide more space for colony expansion.

Just piling supers on top may not be sufficient, though it may temporarily ease congestion and partially help. Leaving a colony with no supers during a strong nectar flow is a surefire way to fill the brood box with nectar and trigger swarm preparation.

If the colony is backfilling the brood nest with nectar then the addition of supers is likely to encourage them to move the stores up, providing more space for the queen.

It will additionally have the beneficial effect of moving some bees ‘up’, to store and process the nectar, again reducing congestion in the brood nest.

However, you probably also need to encourage the bees to expand the brood nest by providing frames for them to draw out as comb. Essentially you’re spreading the brood nest by inserting one or two empty frames within it.

Expanding or spreading the brood nest

I routinely do this by removing the outer frames, which often contain stores, and adding new foundationless frames on one or both sides of the centre of the brood nest. Usually I would place these about three to four frames apart 11.

Effectively I’m providing the bees with the space to draw more comb and, in due course, for the queen to lay more eggs.

And all this keeps the workers gainfully employed and so helps alleviate overcrowding.

But what do you do if the box is full of full brood frames?

Brood frame with a good laying pattern

You provide another brood box.

Don’t just dump another brood box on top and expect the bees to immediately move up. It’s a big empty space. Ideally provide some drawn comb and move a frame or two up with emerging bees and the queen. She will rapidly start to lay up the vacated cells and the adjacent frames. Push the original frames together and add new empty frames to fill the box.

You are expanding the brood nest … vertically.

My colonies rarely need this as they are the less prolific, darker bees which tend to perform better overall in Scotland. However, some strains of bees readily fill two stacked brood boxes every season.

It’s worth emphasising again that these swarm prevention interventions are of little or no use for swarm control. If there are queen cells already present adding a frame or two of foundation will have no effect at all.

Young queens

Young queens produce more pheromones than ageing queens. Therefore, all other things being equal, the inhibitory effects of queen mandibular and footprint pheromones will be stronger in a colony headed by a young queen.

This is why colonies are less likely to swarm in their first full season 12.

You can routinely replace queens by purchasing new ones, by rearing your own, or through colony manipulation during swarm control e.g. by reuniting a vertical split.

Of these, I’d strongly recommend one of the last two approaches. It’s more interesting, it’s a whole lot more satisfying and it is a lot easier than many beekeepers realise.

Locally bred queen ...

Locally bred queen …

You have the additional advantage that the queens produced in your own apiary will – by definition – be local and there is good evidence that local queens are better adapted to local conditions.

Robbing brood and making nucs

There are at least two additional, and related, ways of increasing the space available so helping swarm prevention in a rapidly expanding colony.

The first is stealing a frame of brood 13 and using it to boost a weaker colony.

Take care when doing this.

If the recipient colony is weak due to disease or a failing queen then you’re just wasting the donated brood. However, if the colony is healthy but small it can be a good investment of resources and may help delay swarming in the donor colony as well.

More drastically, it may be possible to remove a frame (or perhaps even two) of brood and adhering bees to make up a nucleus colony. In my experience, a strong donor colony can almost always be used to produce a nuc without compromising honey production, and with the added benefit of delaying swarm preparations.

I’m going to write about nuc production in more detail in a few weeks as it deserves a full post of its own. It’s worth noting here that the nuc should also be provided with sufficient bees and stores to survive and you will need a queen for it (or at least a queen cell).

Do not just dump a couple of brood frames and bees into a box and expect them to rear a half-decent queen on their own.

However, if you have a queen (or mature queen cell) then splitting a nuc off a strong colony is usually a win-win solution for swarm prevention.


 

Time to deploy!

It’s early April. The weather is finally warming up and the crocus and snowdrops are long gone. Depending where you are in the UK the OSR may start flowering in the next fortnight or so.

All of which means that colonies should be expanding well and will probably start thinking of swarming in the next few weeks.

So … just like any normal season really.

Except that the Covid-19 pandemic means that this season is anything but normal.

Keep on keeping on

The clearest guidelines for good beekeeping practice during the Covid-19 pandemic are on the National Bee Unit website. Essentially it is business as usual with the caveats that good hygiene (personal and apiary) and social distancing must be maintained.

Specifically this excludes inspections with more than one person at the hive. Mentoring, at least the really useful “hands-on” mentoring, cannot continue.

A veil is no protection against aerosolised SARS-CoV-2. Don’t even think about risking it.

This means that there will be a lot of new beekeepers (those that acquired bees this year or late last season) inspecting colonies without the benefit of help and advice immediately to hand.

Mistakes will be made.

Queen cells will be missed.

Colonies will swarm 1.

Queen cells

Queen cells …

It’s too early to say whether the current restrictions on society are going to be sufficient to reduce coronavirus spread in the community. It’s clear that some are still flouting the rules. More stringent measures may be needed. For beekeepers who keep their bees in out apiaries, the most concerning would be a very restrictive movement ban. In China and (probably) Italy these measures proved to be effective, although damaging to beekeeping, so the precedent is established.

Many hives and apiaries are already poorly managed 2. I would expect that additional coronavirus-related restrictions would only increase the numbers of colonies allowed to “fend for themselves” over the coming season.

Which brings me back to swarming.

Swarmtastic

The final point of advice on the NBU website is specifically about swarms and swarm management:

You should use husbandry techniques to minimise swarming. If you have to respond to collect a swarm you need to ensure that you use the guidelines on social distancing when collecting the swarm. If that is not possible, then the swarm then should not be collected. Therefore trying to prevent swarms is the best approach. 

Collecting swarms can be difficult enough at the best of times 3. And cutouts of established colonies are even worse.

In normal years I always prefer to reduce the swarms I might be called to 4 by setting out bait hives.

Swarm recently arrived in a bait hive with a planting tray roof …

Let the bees do the work.

Then all you need do is collect them once they’re all neatly tucked away in a hive busy drawing comb.

This year, with who-knows-what happening next, I’ll be setting out more bait hives than usual with the expectation that there may well be additional swarms.

If they’re successful I’ll have more bees to deal with when the ‘old normal’ finally returns. If they remain unused then all I’ve lost is the tiny investment of time made in April to set them out.

Not just any dark box

I’ve discussed the well-established ‘design features’ of a good bait hive several times in the past. Fortunately the requirements are easy to meet.

  • A dark empty void with a volume of about 40 litres.
  • A solid floor.
  • A small entrance of about 10cm2, at the bottom of the void, ideally south facing.
  • Something that ‘smells’ of bees.
  • Ideally located well above the ground.

I ignore the last of these. I’d prefer to have an easy-to-reach bait hive to collect rather than struggle at the top of a ladder. If I wanted to do some vertically-challenging beekeeping I’d go out and collect more swarms 😉

So, ignoring the final point, what I’ve described is the nearly perfect bait hive.

Those paying attention at the back will realise that it’s also a nearly perfect description of a single brood National hive.

How convenient 🙂

All of my bait hives are either single National brood boxes or two stacked National supers. The box does need a solid floor and a crownboard and roof. If you haven’t got a spare solid floor you can easily build them from Correx 5 for a few pence.

Inside ...

Bait hive floor

Alternatively, simply tape down a piece of cardboard or Correx over the mesh of an open mesh floor 6. In some ways this is preferable as it’s convenient to be able to monitor Varroa levels after a swarm arrives.

Do not be tempted to use a nuc box as a bait hive. You can easily fit a small swarm into a brood box, but a really big prime swarm will not fit in a 5 frame nuc box.

Big swarms are better 🙂 7

More to the point, bees are genetically programmed to search for a void of about 40 litres, so many swarms will simply overlook your nuc box for a more spacious nest site.

What’s in the box?

No, this has nothing to do with Gwyneth Paltrow in Se7en.

How do you make your bait hive even more desirable to the scout bees that search out nest sites? How do you encourage those scouts to advertise the bait hive to their sister scouts? Remember, that it’s only once the scouts have reached a democratic consensus on the best local nest site that the bivouacked swarm will move in.

The brood box ideally smells of bees. If it has previously held a colony that might be sufficient.

Bait hive ...

Bait hive …

However, a single old, dark brood frame pushed up against one sidewall not only provides the necessary ‘bee smell’, but also gives the incoming queen space to immediately start laying 8.

You can increase the attractiveness by adding a couple of drops of lemongrass oil to the top bar of this dark brood frame. Lemongrass oil mimics the pheromone produced from the Nasonov gland. There’s no need to Splash it all over … just a drop or two, replenished every couple of weeks. I usually soak the end of a cotton bud, and lay it along the frame top bar.

Lemongrass oil and cotton bud

The old brood frame must not contain stores – you’re trying to attract scouts, not robbers.

The incoming swarm will be keen to draw fresh comb for the queen to lay up with eggs. Whilst you can simply provide some frames and foundation, this has two disadvantages:

  • the vertical sheets of foundation effectively make the void appear smaller than it really is. The scout bees estimate the volume by walking around the perimeter and taking short internal flights. If they crash into a sheet of foundation during the flight the box will seem smaller than it really is.
  • foundation costs money. Quite significant amounts of money if you are setting out half a dozen bait hives. Sure, they’ll use it but – like putting a new carpet into a house you’re trying to sell – it’s certainly not the deal-clincher.

No foundation for that

Rather than filling the box with about £10 worth of premium foundation, a far better idea is to use foundationless frames. Importantly these provide the bees somewhere to draw new comb whilst not reducing the apparent volume of the brood box.

If you’ve not used foundationless frames before, a bait hive is an ideal time to give them a try.

There are two things you should be on the lookout for. The first is that the bait hive is horizontal 9. Bees draw comb vertically down, so if the hive slopes there’s a good chance the comb will be drawn at an angle to the top bar.

And that’s just plain irritating … because it’s avoidable with a bit of care.

Bamboo foundationless frames

Bamboo foundationless frames

The second thing is that the colony needs checking as it starts to draw comb. Sometimes the bees ignore your helpful lollipop stick ‘starter strips’ and decide to go their own way, filling the box with cross comb.

Beautiful … but equally irritating 🙂

Final touches

For real convenience I leave my bait hives ready to move from wherever they’re sited to my quarantine apiary (I’ll deal with both these points in a second).

Wedge the frames together with a small block of expanded cell foam so that they cannot shift about when the hive is moved.

Foam block ...

Foam block …

And then strap the whole lot up tight so you can move them easily and quickly when you need to.

Bait hive location and relocation

Swarms tend to move relatively modest distances from the hives they, er, swarmed from. The initial bivouac is usually just a few metres away. The scout bees survey a wide area, certainly well over a mile in all directions. However, several studies have shown that bees generally choose to move a few hundred yards or less.

It’s therefore a good idea to have a bait hive that sort of distance from your own apiaries.

Or even tucked away in the corner of the apiary itself.

I’ve had bees move out of one box, bivouac a short distance away and then occupy a bait hive on a hive stand adjacent to the original hive.

It’s probably definitely poor form to position a bait hive a short distance from someone else’s apiary 😉

But there’s nothing stopping you putting a bait hive at the bottom of your garden or – whilst maintaining social distancing of course – in the gardens of friends and family.

If you want to move a swarm that has occupied a bait hive the usual “less than 3 feet or more than 3 miles” rule applies unless you move them within the first couple of days of arrival. Swarms have an interesting plasticity of spatial memory (which deserves a post of its own) but will have fully reorientated to the bait hive location within a few days.

So, if the bait hive is in grandma’s garden, but grandma doesn’t want bees permanently, you need to move them promptly … or move them over three miles.

Or move grandma 😉

Lucky dip

Swarms, whether dropped into a skep or attracted to a bait hive, are a bit of a lucky dip. Now and again you get a fantastic prize, but often it’s of rather low value.

The good ones are great, but even the poor ones can be used.

But there’s an additional benefit … every one that arrives self-propelled in your bait hive is one less reported to the BBKA “swarm line” or that becomes an unwelcome tenant in the eaves of a house 10.

As long as they’re healthy, even a bad tempered colony headed by a queen with a poor laying pattern, can usefully be united to create a stronger colony to exploit late season nectar.

Varroa treatment of a new swarm in a bait hive…

But they must be healthy.

Swarms will potentially have a reasonably high mite count and will probably need treating within a week of arrival in the bait hive 11. Dribbled or vaporised oxalic acid/Api-Bioxal would be my choice; it’s effective when the colony has no sealed brood 12 and requires a single treatment.

But swarms can bring even more unwelcome payloads than Varroa mites. If you keep bees in an area where foulbroods are established be extremely careful to confirm that the arriving swarm isn’t affected. This requires letting the colony rear brood while isolated in a quarantine apiary.

How do you know whether there are problems with foulbroods in your area? Register your apiary on Beebase and talk to your local bee inspector.

My bait hives go out in the second or third week of April … but I’m on the cool east coast of Scotland. When I lived in the Midlands they used to be deployed in early April. If you’re in the balmy south they should probably be out already 13.

What are you waiting for 😉 ?