Category Archives: Efficiency

Beekeeping economics

You are not going to make a million being a beekeeper. Or even a fraction of that.

I know a couple of beekeepers who have all the trappings of wealth … the big house, the big car with the personal number plate, the holiday place in France and the beesuit with no smoker-induced holes in the veil.

Neither of them made their money beekeeping.

Anyone aboard Murray?

I’ve met a few of the large commercial beekeepers here and abroad, operations with 500 to 1000 times the number of hives I’ve got.

None of them seemed to have yachts or Ferraris.

Or any free time to enjoy them if they had 😉

If you want to have a lot of money when you finally lose your last hive tool you probably need to start with lots more 1.

But the vast majority of beekeepers aren’t commercial. Most are hobbyists.

A hobby that (sometimes) makes a profit

In the UK there are ~25,000 beekeepers. Of these, the Bee Farmers Association represent the interests of the ~400 commercial beekeeping businesses.

Over 98% of UK beekeepers therefore do not consider themselves as commercial. These amateur or hobby beekeepers have on average 3-5 hives each, according to relatively recent surveys. Most probably have just one or two, with a few having more 2.

It’s worth emphasising (again) that it is always better to have more than one colony. The small increase in work involved – the apiary visits, the inspections, extracting all that honey 😉 – is more than justified by the experience and resilience it brings to your beekeeping.

Two are better than one …

For the remainder of the post I’m going to consider a (hypothetical) beekeeper with four colonies.

What are the costs involved in running four colonies and how much ‘profit’ might be expected?

Inevitably, this is going to be very, very approximate.

I’m going to make a load of assumptions, some loosely based on real data. I’ll discuss some of the more important assumptions where appropriate.

I’m also going to ignore a load of variables that would be little more than guesstimates anyway e.g. petrol costs to get to your apiary 3, the purchase of additional hive hardware or rent for the apiary.

Why four hives?

I’ve chosen four hives for a number of reasons.

Firstly, it’s a small enough number you could house them in a small(ish) suburban garden and, wherever they’re sited, they will not exploit all the forage in range.

Abelo poly hives

Abelo poly hives on wooden pallets

Secondly, it’s a manageable number for one beekeeper with a full time job and lots of other commitments. However, it’s not so many you have to buy an electric extractor or build a honey-processing room 4.

Finally, some expenses are for items sold in multiples e.g. frames or miticides, and it saves me having to slice’n’dice every outgoing cost too much.

This hypothetical four hive beekeeper also, very sensibly, belongs to her local association. She therefore has access to the shared equipment (e.g. a honey extractor) that the association owns.

The costs of starting beekeeping

I’ve covered this before and will just summarise it here.

I reckon the minimum outlay is a bit less than £500. This covers the purchase of two hives (Thorne’s Bees on a Budget @ £160 for a complete hive, two supers, frames, foundation etc.), a good quality beesuit (perhaps another £100) together with the peripheral, but nevertheless essential, smoker, hive tool and gloves. It does not cover the cost of bees.

Two hives really should be considered the minimum. Even if you only start with one colony, swarm control or colony splits in your second year will necessitate the purchase of a second hive.

So, for the purpose of these back of an envelope calculations I’ll assume our hypothetical beekeeper has already spent about £1000 on starting up and then doubling up the numbers of hives.

Cedar or polystyrene hives should last more than 25 years. I’m not going to work out the depreciation on this initial outlay 5.

So, let’s get back on track.

In an average year, what is the expenditure and potential income from these four hives.

Expenditure

The outgoing costs are associated with maintaining a good environment for the bees, minimising disease and ensuring they have sufficient food for the winter (or during a nectar dearth).

Yet more frames ...

Yet more frames …

The first annual expense is the replacement of ~30% of the brood comb every season. This is necessary to reduce the pathogen load in the hive and to replace the old, black comb with fresh new comb.

Frames and the foundation to go in them are generally bought in 10’s or 50’s. With four hives (assuming Nationals) that means you need a fraction over 13 new frames a season. First quality frames bought in 10’s, together with premium quality foundation 6, work out at £2.99 each i.e. ~£40 for the year.

To control mites you need to use miticides 7. For the purpose of this exercise we’ll assume our beekeeper chooses to use Apivar in the autumn. This costs £31 for 5 hive treatments 8 and is required once per year. In midwinter our beekeeper wisely chooses to use an oxalic acid trickle as well, knowing that – while the colony is broodless – the mites are easier to slay. £13 buys you a ten-hive (35 g) pack of Api-Bioxal 9 which has a shelf-life of more than a year, so for one year the expense is £6.50 (which for convenience I’ve rounded up to £7).

Food is essentially sugar in some form or another. A single colony needs 10-20 kg of stores for the winter (depending – very much – upon the strain of bee, the harshness of the winter etc.). You therefore need to feed about 12.5 litres of heavy syrup (2:1 by weight, sugar to water) which weighs about 16kg (and finally generates ~14 kg of stores) and contains about 10 kg of sugar. Tesco sell granulated sugar for 64p per kilogram. So, for four colonies, our beekeeper needs to purchase ~£26 of granulated sugar.

Remember two of those figures in particular – 14 kg of stores and the 10 kg of sugar that needs to be purchased to make them 10.

Expenditure totals

In total, four hives are likely to cost about £104 to maintain per year.

Yes, I know I’ve omitted all sorts of things such as stimulative feeding in the spring, replacement super frames and hive tools. I’ve not costed in the honey buckets or any number of other ‘odds and sods’ like replacement Posca pens for queen marking. Let’s keep this simple 🙂

The essentials work out at a little over £25 per hive.

But wait … there is something I’ve omitted.

Not expenditure per se, but losses that have to be made good to ensure that our beekeeper still has 4 colonies in subsequent seasons.

Isolation starvation ...

Isolation starvation …

These are the ‘losses’ due to colonies dying overwinter or during the season. I think these should be included because they are the reality for most beekeepers. On average ~20-25% of colonies are lost each season. Not by everyone (which I’ll cover in a follow-up article on economies in beekeeping) of course, but winter losses are so common for most beekeepers that they need to be factored in – either by making increase or by avoiding losing them in the first place.

Enough on these hidden costs, what about the the income?

Products of the hive

Bees, as well as providing critical ecosystem services (pollination) and being fascinating animals, also produce very valuable products.

The best known and most obvious product is of course honey. However, the products of the hive also includes wax, propolis and Royal Jelly.

Local honey

I’m going to ignore everything but the honey. Royal Jelly and propolis are too specialised for the sort of ‘average beekeeper’ we’re considering and four hives produce relatively small amounts of wax each year.

There’s an additional product of the hive … bees. Don’t forget these as they can be the most valuable product made in any quantity.

You can sell complete hives, small nucleus colonies (nucs) and mated queen bees 11. For convenience I’m going to assume the only ‘live’ product of the hive our beekeeper might sell is a five frame nuc if they have one spare. What’s more, I’m going to assume that our beekeeper either recoups the cost of the box or has it returned (but pays £15 for the frames and foundation in the nuc).

So, how much honey and how many bees?

Income from honey

The average honey yield in 2018 in the UK was ~31 lb per hive.

2018 was a very good season.

The annual BBKA survey of 2017 showed the average that year was ~24 lb per hive.

Yields vary year by year and according to where you keep bees. The 2010 figure was ~31 lb, 2012 was a measly 8 lb per hive and 2014 was ~31 lb. I can’t find a record of the 2016 figure (but haven’t looked too hard).

Yields are higher in the south and lower in the north.

I’m going to err on the slightly generous side and assume that the honey yield per hive is 25 lb and that our hypothetical beekeeper therefore generates 100 lb of honey per year.

More local honey

As we saw last week, honey prices vary considerably across the country.  For the purposes of these calculations we can use the BBKA survey which showed that ~56% of beekeepers sold honey at an average price of £5.49 per lb (cf. £5.67 in 2017).

And here’s the first dilemma … did the 44% of beekeepers who did not sell honey not have any honey to sell?

How does this affect the average per hive?

Or did they simply give everything away?

Or just eat it themselves 😉

The annual BBKA surveys are not ideal datasets to base these calculations on. They are voluntary and self-selecting. Perhaps the 23,000 beekeepers who did not complete the survey 12 produced 150 lb per colony.

No, I don’t think so either.

I’m going to make the assumption that the average yield per hive was 25 lb and that our beekeeper chooses to sell her honey at an average price of £5.50.

So the gross income from honey is £550 13.

However, selling this honey requires packaging – jars, labels etc. Like everything else, costs vary, but 12 oz hexagonal honey jars plus lids from C Wynne Jones cost ~39p each, with a standard custom label and a plain anti-tamper label adding a further 10p per jar.  Therefore to sell that 100 lb of honey our beekeeper will have an outlay of £63, reducing the net income to £487.

Income from bees

A strong hive in a good year should be able to produce both bees and honey. With good beekeeping, good forage and good weather it is possible to generate a super or two of honey and a nuc colony for sale or to make increase.

However, you can’t produce large amounts of both from a single hive … it’s an either or situation if you want to maximise your production of honey or nucs.

I’m not aware of any good statistics on nuc production by amateur beekeepers (or even poor statistics). My assumption – justified below – is that the majority of beekeepers produce few, if any, surplus nucs.

Everynuc

Everynuc …

Why do I think that?

Firstly, nuc and package imports from overseas are very high. Demand is enormous and is clearly not met by local supply 14. Secondly, winter losses (25%, discussed above) need to be made good. I presume that this is what many/most nucs are used for.

If they’re produced at all.

There are some major gaps in the available information meaning that the next bit is a guesstimate with a capital G.

For the purpose of this exercise I’m going to assume that our hypothetical beekeeper produces one nuc per year that it is used to compensate for overwintering losses, thereby keeping colony numbers stable.

In addition, she generates one surplus nuc every four years for sale.

I’ve chosen four years as it’s approximately every four years that there is a ‘good bee season’ giving high yields of honey and the opportunity for good queen mating and surplus nuc production.

This surplus nuc is sold locally for £175 which, after subtraction of £15 for the frames, leaves an annual profit from bees of £40 (£160 every 4 years).

Income totals and overall ‘profit’

That was all a bit turgid wasn’t it?

Here are the final figures. Remember, this is for a four hive apiary, per annum (4 year average).

Item Expenditure (£) Income (£)
Frames and foundation 40.00
Miticides 38.00
Food 26.00
Honey (jars/labelling) and gross 63.00 550.00
Nucleus colony 15.00 40.00
Sub totals 182.00 590.00
Profit 408.00

Experienced beekeepers reading this far 15 will appreciate some of the assumptions that have been made. There are many.

They’ll also probably disagree with half of the figures quoted, considering them too high.

And with the other half, considering them too low.

They’ll certainly consider the average ‘profit’ per hive per year is underestimated.

Mid-May ... 45,000 bees, 17 frames of brood, one queen ... now marked

Mid-May … 45,000 bees, 17 frames of brood, one queen … now marked and clipped

But remember, our hypothetical beekeeper is based upon the average productivity and number of hives reported in the BBKA annual surveys.

As you will probably realise, a limited amount of travel to and from the apiary, or to shops/markets to sell honey, very quickly eats into the rather measly £102 “profit” per hive.

Observations

I think there are two key things worth noting immediately:

  1. Miticide treatments cost ~£7.50 per hive per annum. Even at the rather derisory £5.50/lb honey price quoted, this is still less than one and a half jars of honey. It is false economy to not treat colonies for Varroa infestation. If you compare the cost of the treatment vs. the ‘value’ of a replacement nuc to make up losses (£175) it further emphasises how unwise it is to ignore the mites.
  2. Some beekeepers leave a super or two at the end of the season ‘for the bees’. This is also false economy if you want to have any profit. The ~14 kg of stores (honey) needed will be replaced with a heavy syrup feed containing 10 kg of granulated sugar. At £5.50 per pound this honey could be sold for ~£170 16. The granulated sugar costs about £6.40. Do the maths, as they say. There is no compelling (or even vaguely convincing) evidence that bees overwinter more successfully on honey rather than after a granulated sugar feed. None 17.

Summary

This article highlights some of the major expenses involved in beekeeping. Where possible I’ve based the figures on a hypothetical ‘average’ beekeeper with an average number of hives.

I’ve assumed that all outgoing costs were at list price from large suppliers (and excluded shipping costs).

I’ve left out the almost invaluable pleasure you get from working with the bees to produce lovely delicious local honey (or wax, or propolis, or bees or queens).

Do not underestimate this 🙂 Many – and I’m one – would keep some bees simply for this pleasure and the odd jar of honey.

No one is going to get rich quickly on £100 per hive per year 18. However, the purpose of this post was to provide a framework to consider where potential cost savings can be made. In addition, it will allow me to emphasise the benefits, to the bees and the beekeeper (and potentially her bank balance), of strong, healthy, highly productive colonies rather than the ‘average’ 25% colony losses per autumn with less than a full super per hive honey … which is then sold for less than it’s worth.

But that’s for another time …


Colophon

Beekeeping economics as in “The management of private or domestic finances; (also) financial position.” which is distinct from economy in beekeeping (which I will cover in a later post) meaning “The careful management of resources; sparingness”.

Cabinet reshuffle

Don’t worry, this isn’t a post about the totally dysfunctional state of British politics at the moment 1.

Once the honey supers are removed there’s seemingly little to do in the apiary. There is a temptation to catch up on all those other jobs postponed because I was “just off to the bees”.

Well, maybe temptation is a bit strong. After all, like all good procrastinators, I can usually find an excuse to postpone until next week something that could be left until at least tomorrow.

However, as I said last week, preparations for winter are very important and should not be delayed.

I covered feeding and the all-important late summer mite treatments in that post. Here I’m going to briefly discuss the various late season hive rearrangements that might be needed.

Clearing additional supers

I use very simple clearer boards to get the bees out of my supers. However, there are a couple of instances when not all the supers end up being removed:

  1. If some frames are empty or fail the ‘shake test’ I’ll rearrange these into the bottom super 2. I then clear the bees down into the bottom super and leave it for the bees.
  2. If the colony is really strong and is unlikely to fit into the brood box(es) I’ll often add a super above the queen excluder to clear the bees down into. Sometimes the bees will add a few dribbles of nectar to this … not enough to ever extract, and I’d prefer they put it in the brood box instead.

In both these situations I’ll want to remove the additional super before winter. I don’t want the bees to have a cold empty space above their heads.

Feed & clear together

I usually do this at the same time that I feed the bees.

I rearrange the boxes so that the ‘leftover’ super is above a crownboard on top of the super that is providing the headspace to accommodate the fondant blocks.

Since access to this top super is through a small hole the bees consider it is ‘outside’ the hive and so empty the remaining nectar and bring it down to the brood box 3.

If there are sealed stores in any of these super frames I bruise 4 the cappings with a hive tool and they’ll then move the stores down.

Substandard colonies

A very good piece of advice to all beekeepers is to “take your winter losses in the autumn”. This means assess colonies in the late summer/early autumn and get rid of those that are weak or substandard 5.

Substandard might mean those with a poor temper.

This is the colony which you put up with all season (despite their yobbo tendencies) because you believe that aggressive bees are productive bees’.

Were they?

Was that one half-filled super of partially-capped honey really worth the grief they gave you all summer?

Unless substandard (not just aggression … running, following, insufficiently frugal in winter etc.) colonies are replaced the overall standard of your bees will never improve.

I’ll discuss how to ‘remove’ them in a few paragraphs.

It’s probably a reasonable estimate to suggest that the ‘best’ third of your colonies should be used to rear more queens and the ‘worst’ third should be re-queened with these 6.

Over time 7 the quality will improve.

Of course, a substandard colony might well make it through the winter perfectly successfully. The same cannot be said for weak colonies.

TLC or tough love?

At the end of the summer colonies should be strong. If they are not then there is probably something wrong. A poorly mated queen, an old and failing queen, disease?

The exception might be a recently requeened colony or a new 5 frame nuc.

Everynuc

Everynuc …

Colonies that are weak at this stage of the season for no obvious reason need attention. Without it they are likely to succumb during the winter. And they’ll do this after you’ve gone to the trouble and expense of feeding and treating them … 8

There are essentially two choices:

  1. Mollycoddle them and hope they pick up. Boosting them with a frame or two of emerging brood may help (but make sure you don’t weaken the donor colony significantly). Moving them from a full hive to a nuc – preferably poly to provide better insulation – may also be beneficial. In a nuc they have less dead space to heat. An analogous strategy is to fill the space in the brood box with ‘fat dummies‘ or – low-tech but just as effective – a big wodge of bubble wrap with a standard dummy board to hold it in place.
  2. Sacrifice the queen from the weak hive and unite them with a strong colony.

Sentimentalism

Of the two I’d almost always recommend uniting colonies.

It’s less work. There’s no potentially wasted outlay on food and miticides. Most importantly, it’s much more likely to result in a strong colony the following spring.

However, we all get attached to our bees. It’s not unusual to give a fading favourite old queen ‘one more chance’ in the hope that next year will be her last hurrah.

Uniting notes

I’ve covered uniting before and so will only add some additional notes here …

Uniting a nuc with a full colony

Uniting a nuc with a full colony …

  • You cannot generate a strong colony by uniting two weak colonies. They’re weak for a reason. Whether they’re weak for the same or different reasons uniting them is unlikely to help.
  • Never unite a colony with signs of disease. All you do is jeopardise the healthy colony.
  • Find the queen and permanently remove her from the weak or poor quality (substandard) colony.
  • If you can’t find the queen unite them with a queen excluder between the colonies. In my limited experience (I usually manage to find the unwanted queen) the bees usually do away with a failing queen when offered a better one, but best to check in a week or so.
  • I generally move the de-queened colony and put it on top of the strong queenright colony.
  • Unite over newspaper and don’t interfere with the hive for at least another week.
  • You can unite one strong colony and two weak colonies simultaneously.
  • Uniting and feeding at the same time is possible.
  • You can unite and treat with a miticide like Amitraz simultaneously. You will have to make a judgement call on whether both boxes need miticide treatment, depending on the strength of the weak colony.
  • If you’re uniting a strong substandard colony and a strong good colony you will need to use an amount of miticide appropriate for a double brood colony (four strips in the case of Amitraz).
Successful uniting ...

Successful uniting …

Season of mists and mellow fruitfulness

The goal of all of the above is to go into autumn with strong, healthy, well-fed colonies that will survive the winter and build up strongly again in the spring.

A very small or weak colony 9 in autumn may survive, but it’s unlikely to flourish the following spring.

“It takes bees to make bees.”

And a weak colony in spring lacks bees, so cannot build up fast.

In contrast, an overwintered strong colony can often yield a nuc in May the following year. You’ve regained your colony numbers, but have a new, young queen in one hive with most of the season ahead for her to prove her worth.

I’ve merged three topics here – clearing supers, stock improvement and getting rid of weak colonies before winter – because all involve some sort of hive manipulation in the early autumn. I usually complete this in late September or early October, with the intention of overwintering strong colonies in single brood boxes packed with bees and stores.


Colophon

The heading of the final paragraph is the opening line of To Autumn by John Keats (1795-1821). Keats wrote To Autumn exactly two hundred years ago (September 1819, his last poem) while gradually succumbing to tuberculosis. Despite this, and his doomed relationship with Fanny Brawne, the poem is not about sadness at the end of summer but instead revels in the ripeness and bounteousness of the season.

Of course, all beekeepers know that the first stanza of To Autumn closes with a reference to bees.

Season of mists and mellow fruitfulness,
  Close bosom-friend of the maturing sun;
Conspiring with him how to load and bless
  With fruit the vines that round the thatch-eves run;
To bend with apples the moss’d cottage-trees,
  And fill all fruit with ripeness to the core;
    To swell the gourd, and plump the hazel shells
  With a sweet kernel; to set budding more,
And still more, later flowers for the bees,
Until they think warm days will never cease,
    For summer has o’er-brimm’d their clammy cells.

 

Women without men

The title of the post last week was The end is nigh which, looking at the fate of drones this week, was prophetic.

Shallow depth of field

Watch your back mate … !

After the ‘June gap’ ended queens started laying again with gusto. However, there are differences in the pattern of egg laying when compared to the late spring and early summer.

Inspections in mid/late August 1 show clear signs of colonies making preparations for the winter ahead.

For at least a month the amount of drone brood in colonies has been reducing (though the proportions do not change dramatically). As drones emerge the cells are being back-filled with nectar.

Seasonal production of sealed brood in Aberdeen, Scotland.

The data in the graph above was collected over 50 years ago 2. It remains equally valid today with the usual caveats about year-to-year variation, the influence of latitude and local climate.

Drones are valuable …

Drones are vital to the health of the colony.

Honey bees are polyandrous, meaning the queen mates with multiple males so increasing the genetic diversity of the resulting workers.

There are well documented associations between colony fitness and polyandry, including improvements in population growth, weight gain (foraging efficiency) and disease resistance.

The average number of drones mating with a queen is probably somewhere between 12 and 15 under real world conditions. However studies have shown that hyperpolyandry further enhances the benefits of polyandry. Instrumentally inseminated queens “mated” with 30 or 60 drones show greater numbers of brood per bee and reduced levels of Varroa infestation.

Why don’t queens always mate with 30-60 drones then?

Presumably this is a balance between access, predation and availability of drones. For example, more mating would likely necessitate a longer visit to a drone congregation area so increasing the chance of predation.

In addition, increasing the numbers of matings might necessitate increasing the number of drones available for mating 3.

… and expensive

But there’s a cost to increasing the numbers of drones.

Colonies already invest a huge amount in drone rearing. If you consider that this investment is for colony reproduction it is possible to make comparisons with the investment made in workers for reproduction i.e. the swarm that represents the reproductive unit of the colony.

Comparison of the numbers of workers or drones alone is insufficient. As the graph above shows, workers clearly outnumber drones. Remember that drones are significantly bigger than workers. In addition, some workers are not part of the ‘reproductive unit’ (the swarm).

A better comparison is between the dry weight of workers in a swarm and the drones produced by a colony during the season.

It’s worth noting that these comparisons must be made on colonies that make as many drones as they want. Many beekeepers artificially reduce the drone population by only providing worker foundation or culling drone brood (which I will return to later).

In natural colonies the dry weight of workers and drones involved in colony reproduction is just about 1:1 4.

Smaller numbers of drones are produced, but they are individually larger, live a bit longer and need to be fed through this entire period. That is a big investment.

Your days are numbered

And it’s an investment that is no longer needed once the swarming season is over. All those extra mouths that need feeding are a drain on the colony.

Even though the majority of beekeepers see the occasional drone in an overwintering colony, the vast majority of drones are ejected from the hive in late summer or early autumn.

About now in Fife.

In the video above you can see two drones being harassed and evicted. One flies off, the second drops to the ground.

As do many others.

There’s a small, sad pile of dead and dying drones outside the hive entrance at this time of the season. All perfectly normal and not something to worry about 5.

Drones are big, strong bees. These evictions are only possible because the workers have stopped feeding them and they are starved and consequently weakened.

A drone’s life … going out with a bang … or a whimper.

An expense that should be afforded

Some of the original data on colony sex ratios (and absolute numbers) comes from work conducted by Delia Allen in the early 1960’s.

Other colonies in these studies were treated to minimise the numbers of drones reared. Perhaps unexpectedly these colonies did not use the resources (pollen, nectar, bee bread, nurse bee time etc) to rear more worker bees.

In fact, drone-free or low-drone colonies produced more bees overall, a greater weight of bees overall and collected a bit more honey. This strongly suggests that colonies prevented from rearing drones are not able to operate at their maximum potential.

This has interesting implications for our understanding of how resources are divided between drone and worker brood production. It’s obviously not a single ‘pot’ divided according to the numbers of mouths to feed. Rather it suggests that there are independent ‘pots’ dedicated to drone or worker production.

Late season mating and preparations for winter

The summer honey is off and safely in buckets. Colonies are light and a bit lethargic. With little forage about (a bit of balsam and some fireweed perhaps) colonies now need some TLC to prepare them for the winter.

If there’s any reason to delay feeding it’s important that colonies are not allowed to starve. We had a week of bad weather in mid-August. One or two colonies became dangerously light and were given a kilogram of fondant to tide them over until the supers were off all colonies and feeding and treating could begin. I’ll deal with these important activities next week.

In the meantime there are still sufficient drones about to mate with late season queens. The artificial swarm from strong colony in the bee shed was left with a charged, sealed queen cell.

Going by the amount of pollen going in and the fanning workers at the entrance – see the slo-mo movie above – the queen is now mated and the colony will build up sufficiently to overwinter successfully.


Colophon

Men without Women

Men without women was the title of Ernest Hemingway’s second published collection of short stories. They are written in the characteristically pared back, slightly macho and bleak style that Hemingway was famous for.

Many of these stories have a rather unsatisfactory ending.

Not unlike the fate of many of the drones in our colonies.

Women without men is obviously a reworking of the Hemingway title which seemed appropriate considering the gender-balance of colonies going into the winter.

If I’d been restricted to writing using the title Men without Women I’d probably have discussed the wasps that plague our picnics and hives at this time of the year. These are largely males, indulging in an orgy of late-season carbohydrate bingeing.

It doesn’t do them any good … they perish and the hibernating overwintering mated queens single-handedly start a new colony the following spring.

The hairdryer treatment

I must be missing a couple of fingers. When I wrote the last post on hive and queen numbering I counted off the days to the end of this week, scheduled the post and was then quite surprised when it appeared on Wednesday.

D’oh!

That Friday feeling

That’s spoilt the pattern a bit.

To get back on schedule here’s a note about the well-known trick to revitalise foundation 1.

Frames and foundation

It’s the time of the season when many beekeepers will be running out of frames as they try and keep up with splits and swarming.

It’s sometimes difficult to get new foundation precisely when you need it. The suppliers sell out or delivery takes a week and you need it that afternoon 2. I therefore usually buy in bulk and store it somewhere cool and flat.

If you look after it properly foundation lasts for ages. Don’t go piling things on top of the stack and try not to damage the fragile edges. However, over time it becomes brittle and develops a pale waxy bloom on the surface. It also loses that lovely ‘new foundation’ smell.

The bees draw out this old rather tired foundation appreciably less well than they do new fragrant sheets. In my experience this is particularly noticeable in supers.

However, a few seconds with a hairdryer on a medium setting quickly restores the foundation to its original state.

Revitalising foundation

Don’t overheat it. The sheet will bow slightly as it is warmed. Treat both sides to try and keep it as flat as possible. The foundation will become slightly translucent and regains that lovely ‘new foundation’ smell as oils are released from the warmed wax.

It’s easier to do this once the foundation is fitted in the frame. However, old, brittle foundation is less easy to work with when you’re making up frames in the first place.

Or you could use foundationless frames 😉

Your call.


Colophon

The phrase ‘hairdryer treatment’ is most often associated with the last but one, two, three, four 3 managers of Manchester United FC, Sir Alex Ferguson. The BBC’s Learning English website describes it very well … When Sir Alex Ferguson was angry with his players, he shouted at them with such force, it was like having a hairdryer switched on in their faces.

Since I’m interested in etymology 4 and not football I’ve no idea what prompted the rise in use of the term in May 2013, visualised below on Google Trends.

Hairdryer treatment – Google Trends

Perhaps the May 2013 peak wasn’t Fergie or football at all … perhaps it was a flurry of articles on restoring old wax foundation 😉

Keeping track

It’s mid-May and the beekeeping season in Fife has segued from the early spring ‘phoney war’, where there’s not enough to do, to an earlier-than-normal swarming season where there’s not enough time to do everything needed.

I’ve got more colonies than ever, spread across three apiaries. Work, home and the Naughty Corner 1.

Numbered nuc and production colonies.

I’ve previously written about that stage in a beekeepers ‘career’ when he or she makes the transition from struggling to keep one colony to struggling to keep up with all the bees they have.

Some never achieve this transition.

Most can with suitable help, support and perseverance.

Others are ‘naturals’ – what’s the equivalent of green-fingered for beekeeping? Sticky fingered (er, probably not) or perhaps propolis-fingered? Whatever, these new beginners smoothly progress to a level of competency well above the norm.

Struggling to keep

Beekeeping is easy in principle, but subtly nuanced in practice. The enthusiastic beginner can struggle. They lose their first colony in the first winter. They buy another, it swarms and throws off several casts and they end up queenless in mid-season. A new queen is purchased, but too late for the main nectar flow.

No honey again 🙁

And, it turns out, too late to build up the colony to get through the winter 🙁

Thoroughly demoralised now, they are resigned to more of the same or giving up altogether.

The overwintered nuc of fashionably dark native bees they ordered from Bob’s Craptastic Bees 2 fails to materialise 3.

As does the refund of the £35 deposit 🙁

The empty hive sits forlornly in a patch of weeds at the end of the garden, smelling faintly of propolis and unmet promises.

Smelling faintly of propolis and unmet promises

And, in mid-May, a huge prime swarm moves in 🙂

The beekeeper has never seen so many bees in their life 4. How on earth do all those bees manage to squeeze into that little box?

Following advice from their new mentor, the beekeeper gently slides 11 frames into the box and is encouraged to treat for Varroa before there is any sealed brood. Considering their previous experience things go surprisingly well, not least because the bees have a lovely temperament.

The bees ignore, or at least gracefully tolerate, the beekeeper’s novice fumblings. Instead they single-mindedly focus on drawing comb, rearing brood and collecting nectar.

Struggling to keep up with

The summer is long and warm, with just enough rain to keep the nectar flowing. The hive gets taller as supers are added. By autumn there’s enough honey for friends and family and a partially capped super to leave for the bees.

The bees are lovely to work with and the confidence and competence of the beekeeper improves further.

After overwintering well, the colony builds up strongly again and by mid-May of the following year the beekeeper has used the nucleus method for swarm control and now has two hives. The bees remain calm, steady on the comb, well tempered and prolific.

Very prolific.

By the end of this second ‘proper’ year the beekeeper has two full colonies and a nuc to overwinter.

Overwintering 5 frame poly nuc

Overwintering 5 frame poly nuc

And so it goes on.

With good bees, good weather, a determination to succeed and supportive training and mentoring the problem should be keeping up with the bees, not keeping them at all.

Stock improvement

Some bees are better than others. Once you have more than one colony – and you should always have at least two – you start to see differences in behaviour and performance.

Frugal colonies overwinter on minimum levels of stores and, if fed properly, don’t need a fondant topup in Spring.

Well behaved colonies are steady on the comb, only get protective when mishandled and don’t follow you around for 200 yards pinging off your veil.

Some bees are great at making more bees but promptly eat all their stores as soon as the weather takes a downturn. Others regularly need three supers per brood box 5.

These traits become apparent over the course of a season and, of course, are diligently recorded in your hive notes 😉

Primarily these characteristics are determined by the genetics of the bees.

Which means you can improve your stock by culling poor queens and uniting colonies and expanding – by splitting or queen rearing – your better bees.

Keeping track

And in between the swarming, splitting, uniting, moving and re-queening the overworked (but now hugely more experienced) beekeeper needs to keep track of everything.

Or, if not everything, then the things that matter.

Which bees are in which box, where that old but good queen was placed for safety while the hive requeened, which box did the overwintered nuc get moved to?

I’ve discussed the importance of record keeping a few years ago 6. I still score colonies by objective (e.g. levels of stores, frames of brood, number of supers added) and subjective (e.g. temper/defensiveness, steadiness on the frame, following) criteria.

This takes just a minute or so. I don’t write an essay, just a simple series of numbers or ticks, followed if necessary by a short statement “Skinny queen, laying rate ⇓, demaree’d” or “Nuc swarm ctrl. O charged QC on W • frame. Knock rest off in 7 days. Emergence ~24th”.

Objective and subjective notes

I still use pretty much the same hive record sheet for these notes (available here as a PDF) as it has served me well.

Numbering colonies, hives, boxes and queens

What hasn’t served me so well are the numbers painted on the side of some of my hives.

These were supposed to help me identify which colony was which when I’m reading my notes or in the apiary.

Trivial in the overall scheme of things I know, but as colony numbers have increase and my memory goes in the opposite direction I’ve realised that numbers painted on boxes can be limiting.

For example:

  • The colony expands from single to double brood. There are now two numbers on the hive. Which do you use?
  • You do a Bailey comb change, consequently changing one brood box for another. Do you record the changed number or continue to refer to it by the old number?
  • You use the nucleus method of swarm control. The nuc is numbered. All good. The nuc expands and has to be moved into a hive. It’s the same colony 7, does the number change? It has to if the numbers are painted on the boxes.
  • Some hives seem to have never been numbered (or the number has worn off) in the first place. These end up being named ‘The pale cedar box’ or ‘Glued Denrosa’. Distinctive, but not necessarily memorable.

And that’s before we’ve even considered keeping track of queens. For work (and for some aspects of practical beekeeping) queens are sometimes moved.

“Easy” some would say. The characteristics of the colony are primarily due to their genetics. These are determined by the queen. The hive number moves with the queen.

It’s easy to move a queen. It’s a bit more work to move the 60,000 bees she’s left behind to free up the numbered box to accompany her.

More work yes, but not impossible 8.

OK, what about a colony that goes queenless and then rears a new queen? If the logic of hive/colony=queen prevails then logically the requeened colony should be renumbered.

There has to be a better way to do this.

Numbered boxes and numbered queens

I purchased some waterproof plastic numbered cards and some small red engraved disks 9. Both are designed for identifying tables in pubs or restaurants.

Numbers for hives and queens

Numbers for hives and queens

I use the plastic card numbers to identify colonies. These accompany the bees and brood if they move from one apiary to another, or as colonies are split and/or united. It’s the colony I inspect, so this provides the relevant geographic reference and is the thing I’m writing about to when my notes state “Nuc swarm ctrl. O charged QC on W • frame. Knock rest off in 7 days. Emergence ~24th”.

I use the red numbers to identify the queen. A queenless colony will therefore have no red disk on it.

When a nuc is promoted to a full hive the number moves with it. If the colony swarms and  requeens, one red number is ‘retired’ and a new one is applied.

My notes carry both the colony number and the queen number. I have a separate record of queens, with some more generic comments about the performance of the colonies they head.

Colony and queen numbering

The numbers are sold in 50’s … I use them at random 10. About half of them are in use at the moment.

If queen rearing goes well, swarming goes badly or things get out of hand, numbers 51-100 and engraved black disks are also available 😉

Finally, to make life a little simpler I bought a box of stainless steel 11 map pins. These are easy to grip with a gloved hand and don’t need to be prised out with a hive tool. They have the additional advantage of being short enough to not project beyond the handhold recess on the sides of most hive boxes so they can be pushed together if they’re being moved.

I’ve got no excuse for mix-ups now… 😉


 

 

 

A tale of two swarms

Or … why it’s good practice to clip the wing of the queen.

After a cool start to May it’s now (s)warmed up nicely. Colonies are piling in nectar, mainly from the OSR, and building up really strongly.

It’s at times like these that vigilance is needed. A skipped inspection, a missed queen cell, and the season can go from boom to bust as 75% of your workforce departs in a swarm.

Not the entire season … but certainly the first half of it.

All beekeepers lose swarms … but should try not to

Natural comb

Natural comb …

All beekeepers lose swarms.

At least, all honest ones do 😉

However, I can think of at least four reasons why it’s pretty shoddy beekeeping practice to repeatedly lose swarms 1.

  1. Beekeepers like bees, but some of the general public do not. Some are frightened of bees and a few risk a severe (or even fatal) anaphylactic reaction if stung. Beekeepers have a responsibility not to frighten or possibly endanger non-beekeepers.
  2. Most swarms do not survive. Studies of ‘wild’ bees have shown that swarming is an inherently risky business 2. The swarm needs to find a suitable new home and then collect sufficient nectar to draw enough comb to build up the colony and store food for the  winter. The vagaries of the weather, forage availability and disease ensure that most swarms do not overwinter successfully.
  3. Swarms have a high Varroa load. The mites transfer a heady mix of unpleasant viruses within the colony, shortening the lives of the overwintering bees. With high virus and mite loads the swarm colony is likely to be robbed by nearby strong colonies. This effectively transfers the mites and viruses to nearby managed colonies, so risking their survival.
  4. The swarmed colony is left with a new virgin queen. She has to mate successfully to ensure the continued survival of the colony. Again, the vagaries of the weather mean that this isn’t certain.

And you get less honey 🙁

Regular inspections help prevent the loss of swarms. But it’s good to get all the help you can.

Here’s a brief account of two recent events that illustrate the differences between swarms from colonies with clipped queens or unclipped queens.

Swarm in an out apiary

I have an out apiary in a reasonably remote spot containing half a dozen colonies. I keep my poorly behaved bees there 🙂 There are other apiaries in the area as the forage is good.

I went to inspect the hives at the end of April. This was only the second inspection of the year. On arriving I found most colonies were very active, but one was suspiciously quiet.

Thirty metres away there was a swirling mass of bees settling in the low branches of a conifer.

My three initial thoughts were “Aren’t swarms a great sight?”“Dammit, they shouldn’t have swarmed!” and “Perfect timing, where’s the skep?”.

Skep and swarm

Skep and swarm

The skep was in the car. It usually lives there during the swarming season. The bees were spread over two or three branches, all drooping under the weight. After a bit of gardening I managed to drop the majority of the bees into the upturned skep 3.

I inverted the skep over a white sheet laid out on the grass and propped one side up using a bit of wood.

The air was full of bees. While I busied myself inspecting the lively (in more ways than one 😉 ) colonies, the swarm gradually started to settle into the skep.

Skep and swarm

Skep and swarm

There were lots of bees exposing the Nasonov’s gland at the end of the abdomen, fanning frantically at the entrance to the upturned skep. This is a pretty certain indication that I’d managed to get the queen into the skep.

Fanning bees

Fanning bees

An hour later I’d finished all but one inspection – the quiet colony – it was beginning to get cool and the light was fading.

I could no longer see eggs, not because there weren’t any but because I’m not an owl.

The swarm still needed to be hived so I left the quiet colony until the following day, wrapped the skep in the sheet and took it to another apiary.

Brrrr!

And then the temperature plummeted. For the following week the daytime highs barely reached double figures. Nighttime temperatures were low single digit Centigrade.

The swarm would likely have perished and had a virgin queen emerged in the ‘quiet hive’ she’d have not got out to mate.

I didn’t look in another hive until the 7th, but when I did I got a surprise.

The ‘quiet hive’ contained a marked laying queen. I’d requeened this colony late in 2018 and my notes were a little, er, shambolic 🙁

I’d not recorded whether the queen was clipped and marked (the usual situation), marked only (not entirely unusual) or clipped only (not unknown!).

Whatever, they hadn’t swarmed after all 🙂

They were quiet because they had a high Varroa load with overt signs of DWV infection. Mite and virus levels in late September had been checked and confirmed to be very low. Presumably the mites had been acquired by drifting or robbing late in the season 4.

The hived swarm contained an unmarked laying queen and are lovely calm bees 🙂

A swarm in my home apiary

Fewer photos for this one as I didn’t have a camera with me …

I arrange my hives with the frames oriented ‘warm way’ 5 and inspect them standing behind the hive to avoid returning foragers.

Number 29, your time is up.

Number 29, your time is up.

Earlier this week I noticed a few bees flying under the DIY open mesh floor (OMF) from behind one hive. It’s not unusual to have bees at knee height during inspections but since all I was doing was dropping a nuc off in the apiary I didn’t give it much more thought.

Later in the week I returned to do the weekly inspection.

There were more bees going underneath the hive.

With a bit of effort I peered under the floor to find a 5cm deep slab of bees almost entirely filling the space under the OMF.

Better notes means you know what to expect

My notes were much more comprehensive this time 😉

I knew that the colony had a 2018 white marked and clipped queen.

I removed the supers (which were reassuringly heavy) and quickly inspected the brood box.

Lots of bees, lots of sealed brood, some late-stage larvae but no eggs.

In addition I could see two queen cells … one sealed and one about 3-4 days old, unsealed and with a fat larva sitting in a thick bed of Royal Jelly.

Don’t panic

It was pretty obvious what had happened.

The colony had swarmed 6 but the clipped queen, being unable to fly, had crashed to the ground in a very unregal manner, climbed back up the hive stand and sheltered under the OMF. The swarm had then clustered around her.

They had probably been there for a few days.

Another swarm hived

I placed a new floor and brood box next to the swarmed colony, with the entrance facing the ‘back’. I removed the swarmed brood box and, with a sharp shake, dumped the entire slab of swarmed bees from underneath the OMF into the new hive.

Before adding back all the brood frames I peered into the box as a tsunami of bees started moving from the floor up the side walls.

There! A white marked clipped queen 🙂

White clipped and marked queen returning to the colony

You’ll now have a better chance of finding and keeping her if they swarm.

It’s always reassuring to know where the queen is … and to have good enough notes to know what to look for 😉

I assembled and closed up the new hive and put the swarmed hive back in its place. I then carefully went through every frame checking for queen cells again.

There were only two. I destroyed the sealed cell. I didn’t know how old it was and couldn’t be certain it contained a developing queen.

In contrast, I could ‘age’ the unsealed cell (3-4 days) and knew it contained a larva and copious amounts of food.

I prefer to know when a queen emerges rather than save a few days by leaving the sealed cell. I only generally leave one cell to prevent casts being lost.

There were very young larvae in the colony. It is therefore possible the bees could generate more queen cells in the next day or so. Since I know when the queen will emerge I can check the colony before then and destroy any further cells they generate.

Two swarms, the same outcome … lessons learned

As far as this beekeeper (and I hope the bees 7) is concerned both swarms had a satisfactory outcome.

A number of lessons can be learned from events like these:

  • All beekeepers ‘lose’ swarms. Weather, work, emergencies and life generally can conspire to interrupt the 7 day inspection cycle. Sod’s Law dictates that when it does, the colony will swarm. I’m reasonably conscientious about inspections but I completely missed the signs the home apiary colony was about to swarm.
  • The weather can change suddenly. The swarm in the conifer would have probably perished from the cold in early May. If the weather had stayed warm the scout bees would have found a welcoming church tower or roof space to occupy in a day or so. In both cases the swarm would have been truly lost.
  • It’s always good to carry equipment to capture a swarm. A sheet and a skep, or a large nuc box. Secateurs make ‘gardening’ easier (mine are no longer AWOL). Spare equipment (hives) is essential during the swarm season.
  • An obviously smaller-than-expected colony and a nearby swarm may well be completely unrelated. Check why the colony is weak and take remedial action if needed (mine has Apivar strips in now).
  • Colonies near my out apiary appear to have high mite levels. Since that’s where the conifer swarm came from this also now has Apivar strips in.
  • When is a lost swarm not lost? When the queen is clipped. The queen cannot go far so neither can the swarm. If she returns to the hive stand or the underside of the floor, so will the swarm. If she perishes for some reason the swarm usually returns to the original hive.
  • You can keep bees without knowing where the queen is, but it’s easier if you do. Marking her helps find her, clipping her wing helps keep her there 8.
  • Similarly, knowing when the queen will emerge allows you to predict when she will be mated and start laying. You can avoid interrupting her returning from her mating flight and – before then – you can remove other queen cells to prevent the loss of a cast from a strong colony.
  • Good notes help. Keep them 😉

It’s relatively easy to find unmarked queens in smallish colonies early in the season. It’s a lot harder to find them in a strong colony in mid-May.

Mid-May ... 45,000 bees, 17 frames of brood, one queen ... now marked

Mid-May … 45,000 bees, 17 frames of brood, one queen … now marked and clipped

But it’s worth finding her, marking her and clipping one wing.

If you don’t the swarm you lose might really be lost 😉


 

 

Unknown knowns

If there’s one thing that can be almost guaranteed about the beekeeping season ahead it’s that it will be unpredictably predictable. I can be pretty sure what is going to happen, but not precisely when it’s going to happen.

These are the unknown knowns.

The one thing I can be sure about is that once things get started it will go faster than I’d like … both in terms of things needing attention now (or yesterday 🙁 ) and in the overall duration of the season.

So, if you know what is coming – spring build up, early nectar flow, swarming, queen rearing, splits, summer nectar flow, robbing, uniting, wasps, Varroa control and feeding colonies up for winter – you can be prepared.

As Benjamin Franklin said …

By failing to prepare, you are preparing to fail

Preparation involves planning for the range of events that the season will (or could) produce.

It also involves ensuring you have additional equipment to cope with the events you’ve planned for.

Ideally, you’ll also have sufficient for the events you failed to include in your plans but that happened anyway 😉

Finally, it involves purchasing the food and treatments you need to manage the health and winter feeding of the colony 1 .

So what do you need to plan for?

Death and taxes 2

The two utterly dependable events in the beekeeping season are – and this is likely to be a big disappointment for new 3 beekeepers – Varroa control and feeding.

Not an outrageous early spring honey crop, not ten weeks of uninterrupted balmy days for queen rearing, not even lots of swarms in your bait hives (freebees) … and certainly not supers-full of fabulous lime or heather honey.

Sorry 😉

So … plan now how you are going to feed the colony and how you are going to monitor and manage mites during the season.

Feeding usually involves a choice between purchased syrup, homemade syrup or fondant. I almost exclusively use fondant and so always have fondant in stock. I also keep a few kilograms of sugar to make syrup if needed.

Buy it in advance because you might need it in advance. If it rains for a month in May there’s a real chance that colonies will starve and you’ll need to feed them.

Early June 2017 ...

Early June 2017 …

I’ve discussed mites a lot on this site. Plan in advance how you will treat after the summer honey comes off and again in midwinter. Buy an appropriate 4 treatment in advance 5. That way, should your regular mite-monitoring indicate that levels are alarmingly high, you can intervene immediately.

Having planned for the nailed-on certainties you can now turn your attention to the more enjoyable events in the beekeeping year … honey production and reproduction.

Honey production

Preparing for the season primarily means ensuring you have sufficient equipment, spares and space for whatever the year produces.

In a good season – long sunny days and seemingly endless nectar flows – this means having more than enough supers, each with a full complement of frames.

How many is more than enough?

More supers

More supers

Here on the east coast of Scotland I’ve not needed more than three and a bit per hive i.e. a few hives might need four in an exceptional summer (like 2018). When I lived in the Midlands it was more.

Running out of supers in the middle of the nectar-flow-to-end-all-nectar-flows is a frustrating experience. Boxes get overcrowded, the bees pack the brood box with nectar, the queen runs out of laying space and the honey takes longer to ripen 6.

Without sufficient supers 7 you’ll have to beg, borrow or steal some mid-season.

Which is necessary because … it’s exactly the time the equipment suppliers have run out of the supers, frames and foundation you desperately need.

And so will all of your beekeeping friends …

Ready to extract

Ready to extract …

Not that you’ve necessarily got the time to assemble the things anyway 😉

Don’t forget the brood frames

You’ll need more brood frames every season. A good rule of thumb is to replace a third of these every year.

There are a variety of ways of achieving this. They can be rotated out (moving the oldest, blackest frames to the edge of the box) during regular inspections, or you can remove frames following splits/uniting or through Bailey comb changes.

Irrespective of how it’s achieved, you will need more brood frames and – if you use foundation – you’ll need more of that as well.

Foundationless frames

Foundationless frames …

And the suppliers will sell out of these as well 🙁

But that’s not all …

You will also need sufficient additional brood frames for use during swarm prevention and control and – if that didn’t work – subsequent rescue of the swarm from the hedge.

Swarmtastic

In a typical year the colony will reproduce. Reproduction involves swarming. If the colony swarms you may lose the bees that would have produced your honey.

You can make bees or you can make honey, but it takes real skill and a good year to make both.

And to make both you’ll need spare equipment.

Pagdens' artificial swarm ...

Pagdens’ artificial swarm …

Knowing that the colony is likely to swarm in late spring, you need to plan in advance how you will manage the hive to control or prevent swarming. This generally means providing them with ample space (a second brood box … so yet more brood frames) and, if that doesn’t work 8, manipulating the colony so that it doesn’t swarm.

Which means an additional complete hive (floor, brood box, yet more brood frames, crownboard, roof) if you plan to use Pagdens’ artificial swarm.

Alternatively, with slightly less equipment, you can conduct a vertical split which is essentially a vertically orientated artificial swarm.

Or you can use a nucleus (nuc) box to house the old queen … a very straightforward method I’ll discuss in more detail later this season.

Bait hives and skeps

I don’t like losing swarms. I’ve previously discussed the responsibilities of beekeepers, which includes not subjecting the general public to swarms that might harm or frighten them, or establish a colony in their roof space.

But I do like both attracting swarms and re-hiving swarms of mine that ‘escaped’ (temporarily 😉 ). I always set out bait hives near my apiaries. If properly set up these efficiently attract swarms (your own or from other beekeepers) and save you the trouble of teetering at the top of a ladder to recover the swarm from an apple tree.

But if you end up doing the latter you’ll need a skep 9 or a nice, light, large poly nuc box to carefully drop the swarm into.

Paynes nuc box ...

Paynes nuc box …

Don’t forget the additional brood frames you will need in your bait hive or in the hive you eventually place the colony in the skep into 😉

Planned reproduction

You’re probably getting the idea by now … beekeeping involves a bit more than one hive tucked away in the corner of the garden.

Not least because you really need a minimum of two colonies.

A quick peek inside the shed of any beekeeper with more than 3 years experience will give you an idea of what might be needed. Probably together with a lot of stuff that isn’t needed 😉

Storage shed

Storage shed

By planned reproduction I mean ‘making increase’ i.e. deliberately increasing your colony numbers, or rearing queens for improving your own stocks (or those of others).

This can be as simple as a vertical split or as complicated as cell raising colonies, grafting and mini mating nucs.

By the time most beekeepers get involved in this aspect of the hobby 10 they will have a good idea of the additional specialised equipment needed. This need not be complicated and it certainly is not expensive.

I’ve covered some aspects of queen rearing previously and will write more about it this season.

3 day old QCs ...

3 day old QCs …

Of course, once you start increasing your colony numbers you will need additional brood boxes, supers, nuc boxes, floors, roofs, stands, crownboards, queen excluders and – of course – frames.

And a bigger shed 😉


Colophon

The title of this post is an inelegant butchering of part of a famous statement from Donald Rumsfeld, erstwhile US Secretary of Defense. While discussing evidence for Iraqi provision of weapons of mass destruction Rumsfeld made the following convoluted pronouncement:

Reports that say that something hasn’t happened are always interesting to me, because as we know, there are known knowns; there are things we know we know. We also know there are known unknowns; that is to say we know there are some things we do not know. But there are also unknown unknowns—the ones we don’t know we don’t know. And if one looks throughout the history of our country and other free countries, it is the latter category that tend to be the difficult ones.

The unknown known

The unknown known

If you can be bothered to read through that lot you’ll realise the one thing Rumsfeld didn’t mention are the unknown knowns.

However, as shown in the image, this was the title of the 2013 Errol Morris documentary on Rumsfeld’s political career. In this, Rumsfeld defined the “unknown knowns” [as] “things that you know, that you don’t know you know.”

Perhaps unsurprisingly Condoleezza Rice, Secretary of State, claimed that Rumsfeld doesn’t know what he’s talking about.” ... though she wasn’t referring to the unknown knowns.

 

Line ’em up

Honey sold via a third party needs to carry a label with all sorts of information on it 1. A well-labelled jar of honey looks good on the shelves and undoubtedly helps sales.

However, an attractive label does not need to be fancy, printed in colour or expensive to produce. I firmly believe that the contrast between a simple black and white label and the rich golden colour of the honey enhances the appearance of the end product. This helps sales.

Honey

Honey

If you are selling via a shop they are often have more than one type of honey on display. Your honey might well be next to a row of brightly labelled, mass produced (Product of EU and non-EU countries … and we all know what that means), factory packed jars … all looking uniformly – though perhaps blandly – identical.

In contrast you’re selling a top-quality, artisan product that is probably being sold at a premium price.

And if it’s not, it should be.

Artisans and amateurs

Remember that artisan does not mean amateur. It means traditionally produced, high quality and handmade by a skilled tradesman.

Therefore, your honey should not look amateur. If the jar contents look attractive, with no antennae or obvious wax crumbs, and the label is good then the individual jar should be very appealing.

But how do they look half a dozen at a time? All lined up in a row?

If the labels are all higgledy piggledy 2, neither being level on the individual jar or level with its neighbours, then you might not be conveying the impression you want.

Or if you are, you might be able to convey a better impression 😉

Line ’em up

With a steady hand, good lighting and a convenient ‘guide’ it is easy to reproducibly label jar after jar after jar after jar after jar 3 of honey.

I use offcuts of wood laminate flooring as the guide 4. These are available in a range of thicknesses from about 8 to 15mm. For the sizes of jars I use these represent a suitable distance to place place the label from the bottom of the jar.

I ‘offer up’ the label just touching the wood ‘guide’, check that it’s level and centred on the jar, then press it into place with my thumbs.

Labelling honey jars

Labelling honey jars

Four things that help in getting a reproducible finished effect:

  1. Easy peel labels that can be removed and reattached if you get it wrong
  2. Working at a reasonably high table to help with the lateral alignment
  3. Using square rather than round jars
  4. Practice

The square jars really help. More specifically it’s the guide butting up against the side of the jar that helps. If I routinely used round jars I’d cut a semi-circular hole in the edge of the guide – in a choice of sizes reflecting the diameter of the jar – to help align the label.

Once the front label is in place it’s a simple (but repetitive) task to turn the jar around and add the anti-tamper label, unless you’re the type who prefers to ‘trap’ it under the front label … in which case it obviously has to go on first.

Alternative approaches

There was a prize awarded recently at one of the large conventions (perhaps the National Honey Show?) for a lovely handcrafted wooden ‘cradle’ that held the jar and aligned the label. The principle was identical to that described above … just implemented much more elegantly. I thought this was made by Thomas Bickerdike who also produces lovely handcrafted wooden spoons. However, my Google-foo has failed to find it, so if you remember seeing it please post a link below.

Or, for a few hundred pounds, you could buy a labelling machine …


Colophon

Nice to see you ...

Nice to see you …

Line ’em up was a game from US version of the eternally popular game show The Price is Right. Amazingly (have you ever seen it?) this was recently voted the fifth best gameshow of all time.

Extraordinary … but not in a good way.

Anticipation

Finally, the winter appears to be receding and there’s pretty good evidence that the beekeeping season will shortly be starting. The early season pollen sources for the bees – snowdrops and crocus – are almost completely finished, but the willow is looking pretty good and the gorse is flowering well.

Actually, gorse flowers quite well year-round, but it’s only now warm enough for the bees to access it.

Difurzeion

From an evolutionary point of view I’ve wondered why gorse ‘bothers’ to flower in mid-winter when there must be almost no pollinating insects about. Of course, as Dobzhansky said in the 1970’s “Nothing in Biology Makes Sense Except in the Light of Evolution” … gorse flowers all year because there must be a selective advantage for it to do so.

Late December gorse ...

Late December gorse …

It turns out that it’s a little more complicated than me just being unable to observe winter-flying pollinating insects. Gorse probably flowers in midwinter for a couple of reasons.

Firstly, there are winter-flying pollinators, at least on warmer days. Secondly, the flowers are a cunning design 1 that allows self-pollination, even when tightly closed on a cold, midwinter day when covered in snow. This probably explains the clonal expansion and invasiveness of the plant. Finally 2 weevils of the Exapion genus eat the seeds … by flowering, and subsequently setting seed in midwinter, the gorse can avoid the attention of the weevils, which need warmer weather 3.

Winter-flowering in gorse is genetically-determined. A winter-flowering plant probably gives rise to progeny plants that also flower in winter.

An apology

That was all a bit off-topic. However, it does explain the shocking pun used to head the previous section. Furze is another name for gorse, Ulex europaeus.

Now back to the bees …

Moving to higher ground ...

Moving to higher ground …

Inevitably we’ve had some April showers and the final bee moves over the last fortnight involved dodging the rain and wading through some minor flooding. Almost everything is now where it should be and – although perhaps a little later than usual – I can make some of the last-minute preparations for the season ahead.

Frames and supers

The beekeeping season in Scotland – or at least my beekeeping season – involves long periods of near-total inactivity interrupted by May and June, which are usually totally manic. This ~9 week period covers the major swarming season and the best time of the year to rear queens. Both can happen at other – generally later – times of the year, but the weather becomes a major influence on their success. The last two seasons have been characterised by rubbish weather in July and August, resulting in poorly mated late season queens.

A consequence of the expected frenetic activity in May and June is that there’s no time to leisurely make up a few frames, or assemble a few supers. If they’re not ready now, they probably won’t ever be.

I’ve therefore already built a couple of hundred frames and just have to fit the foundation into some of them. Many of the frames I use are foundationless, but a proportion still have foundation. The latter are useful to intersperse with foundationless to encourage the bees to draw parallel comb.

Supers and frames with drawn comb are all safely stacked up from last season. Sometime over the next fortnight I’ll finish checking the last of these boxes over. Do they have a full set of frames? Are all the frames drawn? It’s irritating grabbing a box or two in the middle of a good nectar flow to find they only contain three frames, or it’s unwired thin foundation and unsuitable for the OSR.

The other thing I do is tidy up wavy or bulging sections of drawn comb. These are the frames that the bees have drawn out, maintaining bee space with the adjacent frame, but that leave gaping holes when put next to a different drawn comb 4. Life is too short to try and pair up the frames correctly 5. Instead I just use a sharp breadknife to make the comb reasonably parallel with the frame top bar. The bees tidy it up quickly and it certainly makes mixing and matching frames from different supers much easier.

Fermenting honey

The other frame-related task is to go through the stacked up boxes of brood frames saved from last year. These, and the drawn super frames, are some of the most valuable resources a beekeeper has. Assuming the frames are in good condition and there haven’t been too many rounds of brood reared in the frames they are invaluable when making up nucs during the season.

Some of these brood frames will have inevitably contained nectar or uncapped honey at the end of the previous season. Over the winter this tends to ferment and make a bit of a mess. The nectar drips out unless the frames are held vertically. It can look bubbly or frothy and it pongs a bit (usually, and unsurprisingly, of yeast).

Washing frames ...

Washing frames …

I don’t like using these without cleaning them up a bit first. The bees usually clean up small amounts of fermented honey, but often ignore frames packed with the stuff. I shake out the fermented honey and soak the frames in a tub of water for a few minutes. I then shake out the water and leave them to air dry before storing them for the season ahead.

This is the sort of job that needs to be done on a cool, dry day. If it’s warm you’ll likely be plagued with bees investigating the smell.

Drying brood frames ...

Drying brood frames …

Brood frames just containing capped honey can be used ‘as is’. The bees don’t cap it until the water content is low enough to stop fermentation.

In contrast, the really old, black frames are either discarded outright or used for making up bait hives. There’s no point in trying to extract wax from them as there’s almost none left.

Be(e) prepared

Finally, the bee bag gets a spring clean. I empty everything out and chuck away all the rubbish that seems to accumulate during the season … the squeezed-together bits of brace comb, the torn nitrile gloves, the sheets of newspaper for uniting etc. Everything goes back together in labelled ice-cream cartons (‘daily’, ‘queen rearing’), having checked they contain the essentials – sharp scissors, Posca marking pens and a queen marking cage, additional cages for queen introduction, grafting glasses and a sable paintbrush etc.

I re-stock the honey bucket full of smoker fuel. This contains a mix of wood chip animal bedding, the lids of egg boxes not used to make firelighters and some lovely dried rotten wood. The smoker also gets its annual de-coke. Over the season you can get quite a build up of tarry, sooty deposits in the smoker, particularly on the inside of the lid. Using a blowtorch and a little encouragement from the pointed end of a hive tool it’s easy enough to clean all these out. As a result, the smoker will stay lit longer and generally work better.

Smoker de-coke ...

Smoker de-coke …

OK … bring it on 🙂


Colophon

This post was supposed to have been last week. However, a delayed flight meant I was stranded on the tarmac in ‘airplane’ mode when I should have been changing the scheduled posting date. D’oh! Instead Let there be light, which I’d written a couple of weeks ago and was already scheduled as a backup, snuck out. By the time it appears – the 20th of April – I expect to have conducted the first full set of inspections and I’ll be playing catch-up with the next couple of posts as the season kicks off.

Fife weather mid-April 2018

Fife weather mid-April 2018

Stop press … with great weather over the latter part of the week I’ve got round my apiaries and inspected all colonies. With the exception of the two known duds, all are queenright and building up to varying extents … from OK to very well. The strongest will need supering this weekend. Considering how long and cold the winter has been – average temperatures November to March have been 3-4°C – this was encouraging and 3 weeks earlier than I got into some colonies in 2017.

It was great to be beekeeping again 🙂

The Goldilocks principle

The Goldilocks principle refers to the concept of “just the right amount” of whatever is being considered.

In this case, honey bee colonies.

Beekeeping is a fascinating pastime. During the season – say April to September – there’s lots to keep you occupied and lots to keep your interest.

These are not always the same thing.

Weekly inspections for a start. Swarm prevention as the season properly gears up. Queen rearing. Swarms. Harvesting the early season honey. Possibly more swarms. The summer honey harvest. Autumn Varroa management. Uniting colonies and preparing colonies for winter.

Mid-April in the apiary ...

Mid-April in the apiary …

It’s quieter in the winter, but there’s still lots to do. Preparation for the coming season. Bottling and selling honey. Making equipment. Scouting new out apiaries. Buying more equipment. Midwinter Varroa treatment 1. Fondant top-ups for underweight colonies. Cleansing and sterilising equipment.

And all of the above needs to be done for every colony you have.

One is not enough

I’ve previously written of the importance of managing more than one colony.

The comparison is invaluable. Is the colony you’re worrying about really doing badly, or is it just that there’s a dearth of nectar and all colonies are struggling at the moment?

In addition, if there really are problems with one colony – queenlessness or bad temper for example – you can ‘rescue’ them by taking appropriate action and a frame of eggs from your other colony. Or you can unite the colonies if it’s too late in the season to rear another queen. Frankly, it’s a no brainer …

Two National hives and Himalayan balsam

Two will do …

Logically, the amount of work involved in managing two colonies is double that of one colony.

Except, it isn’t.

Quite a bit of beekeeping is preparation and clearing up afterwards. For example, travelling to and from the apiary, preparing syrup, lighting the smoker, cleaning the extractor and so on. Most of these tasks take little or no more time if you’re dealing with two colonies rather than one.

The actual inspections may take twice the time, but that’s about it.

Even then, you’ll be getting twice the practice when you do inspect, so you’ll probably get more efficient, faster, with two colonies rather than one. At the risk of repeating myself, it’s a no brainer.

From too few to more than enough

Beginners often struggle in their early years of beekeeping 2. Sometimes they have too few bees in the hive. The colonies are weaker than they should be to exploit the forage or to overwinter successfully. Or they lose queens during the season, suffer an extended broodless period, and need to beg or borrow a queen from elsewhere to keep the colony together. It all looked so easy in the books or in that midwinter theory course.

Except, it isn’t.

But, assuming they don’t give up, all this time they’re gaining valuable experience – week by week, month by month and year by year.

And then they pass some sort of invisible inflexion point in their beekeeping ‘career’. This is the point after which they will always have enough bees. Their colony management skills are now good enough to keep large, prolific hives. These crowded colonies necessitate careful swarm prevention and control. Colony numbers can be increased easily.

Six poly nucleus colonies on hive stands

Lots of poly nucs …

From having too few bees they can now rapidly reach the point of having too many. They learn how easy it is to make increase 3 using a well-timed vertical split of a vigorous, healthy colony, or by not reuniting after using the Pagden method for swarm control.

And then they learn to graft, to use mini-nucs, to overwinter 5 frame nucs and – before you know it – they’ve bought a truck 🙂

But is (many) more than two, too many?

And then, at some point, sooner or later, it can become a bit of a chore.

In my experience the swarm season and extremes of weather are the two most testing periods.

During the peak swarming period – mid/late May to mid-June here, but earlier further South – beekeeping can be a ‘full-on’ experience. Timing is critical. Miss a late open queen cell and they’ll swarm on the next available good day. You’ll run out of equipment. You’ll get phone calls in the office asking you to retrieve a swarm from a tree/swing/classroom 4.

And, at the same time you’re coping with all this, it’s also the best time of the year to rear queens.

Your agenda and that of your bees is partially overlapping, but almost certainly not in sync.

And then there’s the weather  … we live in a country where the weather report regularly uses the phrase ‘mainly dry’. Without specifically saying it, this means it will be wet. Almost certainly on the day you need to do your inspections, move the grafted larvae, collect a swarm and feed the mini-nucs. Too many bees and bad weather are a testing combination.

Mainly dry ...

Mainly dry …

But so are too many bees and spectacularly good weather.

Beekeeping is considered a gentle and relaxing pastime. The reality, on a bright sunny day with the temperature reaching 29°C, with full honey supers to remove is rather different. It is physically demanding and exhausting work. In a beesuit and veil you will sweat buckets. Literally. I’ve had to work so hard I could pour out the sweat that had pooled in my boots.

The pain will soon be forgotten, but there will be pain.

The Goldilocks zone

But somewhere between the too few and the too many (colonies) is the sweet spot. Enough that you can experience the wonderful and fascinating variation possible in bees and beekeeping. Sufficient to engage you and allow you to experiment and try new strategies out. Enough to cope with poor seasons and still to produce some lovely honey to give to the family at Christmas and to friends at dinner parties.

The sweet spot ...

The sweet spot …

This is the Goldilocks zone.

Quite where that sweet spot is will depend upon a whole host of different factors. Your interest in bees vs. other competing hobbies and pastimes 5, how full-time the full-time job is, your abilities as a beekeeper and the pressure others 6 put on you to take holidays mid-season 😉

It might be two colonies. Not ‘just’ two, with the sort of dismissive implication that that’s not what being a real beekeeper is. There are some outstanding beekeepers I know who have a couple of colonies in a good area for forage and who consistently produce spectacular honey yields per colony. They are excellent observers, skilled practitioners and really understand what’s happening in their colonies at all times of the season.

Or it might be 200 … in which case you’ve got a stronger back and a bigger truck than me 🙂

For me it’s about a dozen. I can produce enough honey to sell or give away and still have sufficient colonies to dabble or experiment with. Not ‘experiment’ as in my day job (I have more hives for that), but to investigate different ways of improving my stock, alternative approaches to queen rearing and introduction, other types of mite control etc.

Cell bar frame with three day old queen cells, The Apiarist.

3 day old queen cells …

Not all these experiments work. Some are an unmitigated disaster, others are no better than the way I previously did whatever ‘it’ was.

Have you used a Taranov board? Me neither. But I’d like to this season.

Space and spares

The Goldilocks principle can also be applied to having ‘just the right amount’ of equipment and space to manage your chosen number of colonies. This includes, but isn’t restricted to, apiaries, brood boxes, supers, split boards, crownboards, stands, clearers, hive tools, more supers, dummy boards, roofs, frames, more frames, yet more frames etc.

I’ve never met a beekeeper who has managed to achieve this 😉


Colophon

Goldilocks and the three bears fairy tale book cover

Look who is sleeping in my bed!

The Goldilocks principle is named after the well-known 19th Century fairy tale Goldilocks and the Three Bears in which Goldilocks, a little girl, always chooses the ‘just right’ option – of bed, porridge, chair etc. when lost in the forest and finding a house owned by three bears. In each case the ‘just right’ option is the one in the middle e.g. the bowl of porridge that was not too hot, or too cold, but was just right. Goldilocks, the little girl, was introduced in a variant of the original tale “The Story of the Three Bears” in place of a cantankerous, foul-mouthed old woman. Perhaps unsurprisingly, she was preferred by the target audience 😉

The Goldilocks zone has a  specific meaning in astronomy where it indicates the habitable zone around a star. This is defined as the range of orbits within which liquid water could occur if there is sufficient atmospheric pressure.