Category Archives: Principles

Time to deploy!

It’s early April. The weather is finally warming up and the crocus and snowdrops are long gone. Depending where you are in the UK the OSR may start flowering in the next fortnight or so.

All of which means that colonies should be expanding well and will probably start thinking of swarming in the next few weeks.

So … just like any normal season really.

Except that the Covid-19 pandemic means that this season is anything but normal.

Keep on keeping on

The clearest guidelines for good beekeeping practice during the Covid-19 pandemic are on the National Bee Unit website. Essentially it is business as usual with the caveats that good hygiene (personal and apiary) and social distancing must be maintained.

Specifically this excludes inspections with more than one person at the hive. Mentoring, at least the really useful “hands-on” mentoring, cannot continue.

A veil is no protection against aerosolised SARS-CoV-2. Don’t even think about risking it.

This means that there will be a lot of new beekeepers (those that acquired bees this year or late last season) inspecting colonies without the benefit of help and advice immediately to hand.

Mistakes will be made.

Queen cells will be missed.

Colonies will swarm 1.

Queen cells

Queen cells …

It’s too early to say whether the current restrictions on society are going to be sufficient to reduce coronavirus spread in the community. It’s clear that some are still flouting the rules. More stringent measures may be needed. For beekeepers who keep their bees in out apiaries, the most concerning would be a very restrictive movement ban. In China and (probably) Italy these measures proved to be effective, although damaging to beekeeping, so the precedent is established.

Many hives and apiaries are already poorly managed 2. I would expect that additional coronavirus-related restrictions would only increase the numbers of colonies allowed to “fend for themselves” over the coming season.

Which brings me back to swarming.

Swarmtastic

The final point of advice on the NBU website is specifically about swarms and swarm management:

You should use husbandry techniques to minimise swarming. If you have to respond to collect a swarm you need to ensure that you use the guidelines on social distancing when collecting the swarm. If that is not possible, then the swarm then should not be collected. Therefore trying to prevent swarms is the best approach. 

Collecting swarms can be difficult enough at the best of times 3. And cutouts of established colonies are even worse.

In normal years I always prefer to reduce the swarms I might be called to 4 by setting out bait hives.

Swarm recently arrived in a bait hive with a planting tray roof …

Let the bees do the work.

Then all you need do is collect them once they’re all neatly tucked away in a hive busy drawing comb.

This year, with who-knows-what happening next, I’ll be setting out more bait hives than usual with the expectation that there may well be additional swarms.

If they’re successful I’ll have more bees to deal with when the ‘old normal’ finally returns. If they remain unused then all I’ve lost is the tiny investment of time made in April to set them out.

Not just any dark box

I’ve discussed the well-established ‘design features’ of a good bait hive several times in the past. Fortunately the requirements are easy to meet.

  • A dark empty void with a volume of about 40 litres.
  • A solid floor.
  • A small entrance of about 10cm2, at the bottom of the void, ideally south facing.
  • Something that ‘smells’ of bees.
  • Ideally located well above the ground.

I ignore the last of these. I’d prefer to have an easy-to-reach bait hive to collect rather than struggle at the top of a ladder. If I wanted to do some vertically-challenging beekeeping I’d go out and collect more swarms 😉

So, ignoring the final point, what I’ve described is the nearly perfect bait hive.

Those paying attention at the back will realise that it’s also a nearly perfect description of a single brood National hive.

How convenient 🙂

All of my bait hives are either single National brood boxes or two stacked National supers. The box does need a solid floor and a crownboard and roof. If you haven’t got a spare solid floor you can easily build them from Correx 5 for a few pence.

Inside ...

Bait hive floor

Alternatively, simply tape down a piece of cardboard or Correx over the mesh of an open mesh floor 6. In some ways this is preferable as it’s convenient to be able to monitor Varroa levels after a swarm arrives.

Do not be tempted to use a nuc box as a bait hive. You can easily fit a small swarm into a brood box, but a really big prime swarm will not fit in a 5 frame nuc box.

Big swarms are better 🙂 7

More to the point, bees are genetically programmed to search for a void of about 40 litres, so many swarms will simply overlook your nuc box for a more spacious nest site.

What’s in the box?

No, this has nothing to do with Gwyneth Paltrow in Se7en.

How do you make your bait hive even more desirable to the scout bees that search out nest sites? How do you encourage those scouts to advertise the bait hive to their sister scouts? Remember, that it’s only once the scouts have reached a democratic consensus on the best local nest site that the bivouacked swarm will move in.

The brood box ideally smells of bees. If it has previously held a colony that might be sufficient.

Bait hive ...

Bait hive …

However, a single old, dark brood frame pushed up against one sidewall not only provides the necessary ‘bee smell’, but also gives the incoming queen space to immediately start laying 8.

You can increase the attractiveness by adding a couple of drops of lemongrass oil to the top bar of this dark brood frame. Lemongrass oil mimics the pheromone produced from the Nasonov gland. There’s no need to Splash it all over … just a drop or two, replenished every couple of weeks. I usually soak the end of a cotton bud, and lay it along the frame top bar.

Lemongrass oil and cotton bud

The old brood frame must not contain stores – you’re trying to attract scouts, not robbers.

The incoming swarm will be keen to draw fresh comb for the queen to lay up with eggs. Whilst you can simply provide some frames and foundation, this has two disadvantages:

  • the vertical sheets of foundation effectively make the void appear smaller than it really is. The scout bees estimate the volume by walking around the perimeter and taking short internal flights. If they crash into a sheet of foundation during the flight the box will seem smaller than it really is.
  • foundation costs money. Quite significant amounts of money if you are setting out half a dozen bait hives. Sure, they’ll use it but – like putting a new carpet into a house you’re trying to sell – it’s certainly not the deal-clincher.

No foundation for that

Rather than filling the box with about £10 worth of premium foundation, a far better idea is to use foundationless frames. Importantly these provide the bees somewhere to draw new comb whilst not reducing the apparent volume of the brood box.

If you’ve not used foundationless frames before, a bait hive is an ideal time to give them a try.

There are two things you should be on the lookout for. The first is that the bait hive is horizontal 9. Bees draw comb vertically down, so if the hive slopes there’s a good chance the comb will be drawn at an angle to the top bar.

And that’s just plain irritating … because it’s avoidable with a bit of care.

Bamboo foundationless frames

Bamboo foundationless frames

The second thing is that the colony needs checking as it starts to draw comb. Sometimes the bees ignore your helpful lollipop stick ‘starter strips’ and decide to go their own way, filling the box with cross comb.

Beautiful … but equally irritating 🙂

Final touches

For real convenience I leave my bait hives ready to move from wherever they’re sited to my quarantine apiary (I’ll deal with both these points in a second).

Wedge the frames together with a small block of expanded cell foam so that they cannot shift about when the hive is moved.

Foam block ...

Foam block …

And then strap the whole lot up tight so you can move them easily and quickly when you need to.

Bait hive location and relocation

Swarms tend to move relatively modest distances from the hives they, er, swarmed from. The initial bivouac is usually just a few metres away. The scout bees survey a wide area, certainly well over a mile in all directions. However, several studies have shown that bees generally choose to move a few hundred yards or less.

It’s therefore a good idea to have a bait hive that sort of distance from your own apiaries.

Or even tucked away in the corner of the apiary itself.

I’ve had bees move out of one box, bivouac a short distance away and then occupy a bait hive on a hive stand adjacent to the original hive.

It’s probably definitely poor form to position a bait hive a short distance from someone else’s apiary 😉

But there’s nothing stopping you putting a bait hive at the bottom of your garden or – whilst maintaining social distancing of course – in the gardens of friends and family.

If you want to move a swarm that has occupied a bait hive the usual “less than 3 feet or more than 3 miles” rule applies unless you move them within the first couple of days of arrival. Swarms have an interesting plasticity of spatial memory (which deserves a post of its own) but will have fully reorientated to the bait hive location within a few days.

So, if the bait hive is in grandma’s garden, but grandma doesn’t want bees permanently, you need to move them promptly … or move them over three miles.

Or move grandma 😉

Lucky dip

Swarms, whether dropped into a skep or attracted to a bait hive, are a bit of a lucky dip. Now and again you get a fantastic prize, but often it’s of rather low value.

The good ones are great, but even the poor ones can be used.

But there’s an additional benefit … every one that arrives self-propelled in your bait hive is one less reported to the BBKA “swarm line” or that becomes an unwelcome tenant in the eaves of a house 10.

As long as they’re healthy, even a bad tempered colony headed by a queen with a poor laying pattern, can usefully be united to create a stronger colony to exploit late season nectar.

Varroa treatment of a new swarm in a bait hive…

But they must be healthy.

Swarms will potentially have a reasonably high mite count and will probably need treating within a week of arrival in the bait hive 11. Dribbled or vaporised oxalic acid/Api-Bioxal would be my choice; it’s effective when the colony has no sealed brood 12 and requires a single treatment.

But swarms can bring even more unwelcome payloads than Varroa mites. If you keep bees in an area where foulbroods are established be extremely careful to confirm that the arriving swarm isn’t affected. This requires letting the colony rear brood while isolated in a quarantine apiary.

How do you know whether there are problems with foulbroods in your area? Register your apiary on Beebase and talk to your local bee inspector.

My bait hives go out in the second or third week of April … but I’m on the cool east coast of Scotland. When I lived in the Midlands they used to be deployed in early April. If you’re in the balmy south they should probably be out already 13.

What are you waiting for 😉 ?


 

Do bees feel pain?

Even the most careful hive manipulations sometimes result in bees getting rolled between frames, or worse, crushed when reassembling the hive. Some beekeepers clip one wing of the queen to reduce the chance of losing a swarm, or uncap drone brood in the search for Varroa.

All of these activities can cause temporary or permanent damage, or may even kill, bees. A careful beekeeper should try and minimise this damage, but have you ever considered whether these damaged bees suffer pain?

Before considering the scientific evidence it’s important to understand the distinction between the detection of, for example, tissue damage and the awareness that the damage causes is painful and causes suffering.

Detection is a physiological response that is present in most animal species, the pain associated with it may not be.

What is pain?

Tissue damage, through chemical, mechanical or thermal stimuli, triggers a signal in the sensory nervous system that travels along nerve fibres to the brain. Or to whatever the animal has that serves as the equivalent of the brain 1.

This response is termed nociception (from the Latin nocēre, meaning ‘to harm’) and has been recorded in mammals, other vertebrates and in all sorts of invertebrates including leeches, worms and fruit flies. It has presumably evolved to detect damaging stimuli and to help the animal avoid it or escape.

But nociception is not pain.

Pain is a subjective experience that may result from the nociceptive response and can be defined as ‘an aversive sensation or feeling associated with actual or potential tissue damage’.

Most humans, being sentient, experience pain following the triggering of a nociceptive response and, understandably, conflate the two.

But they are separate and distinct. How do we know? Perhaps the first hint is that different people experience different levels of pain following the same harmful experience; an excruciatingly painful experience for one might be “just a scratch’ to another.

‘Tis but a scratch

With people it’s easy to demonstrate the distinction between nociception and pain – you simply ask them.

Can you feel that?

Does that hurt?

For the same stimuli you may receive a range of answers to the second question, depending upon their subjective experience of pain.

Painkillers

But you cannot ask a leech, or a worm or a fruit fly or – for the purpose of this post – a bee, whether a particular stimulus hurts.

Well, OK, you can ask but you won’t get an answer 😉

You can determine whether they ‘feel’ the stimulus. Since this is a simply physiological response you can measure all sorts of features of the electrical signal that passes from the nociceptors (the receptors in the tissue that detect damaging events) through the nerve fibres to the brain. This involves electrophysiology, a well established experimental science.

But how can we determine whether animals feel pain?

What do you do when you have a bad headache?

You take a painkiller – an aspirin or paracetamol. You self-medicate to relieve the pain.

Actually, even before you reach for the paracetamol, your body is already self-medicating by the release of endogenous opioids which help suppress the pain.

In cases of extreme pain injection of the opiate morphine may be necessary. Morphine is a very strong painkiller, or analgesic. Opioids bind to opioid receptors and this binding is blocked by a chemical called naloxone, an opiate antagonist. I’ll come back to naloxone in a minute.

But first, back to the unhelpfully unresponsive bee that may or may not feel pain …

It is self-medication with analgesics that forms the basis of the standard experiment to determine whether an animal feels pain.

The principle is straightforward. Two identical foods are prepared, one containing a suitable analgesic (e.g. morphine) and the other a placebo. If an animal is in pain it will preferentially eat the food containing the morphine.

Conversely, if they do not feel pain they will – on average – eat both types of food equally 2.

But this experiment will only work if morphine ‘works’ in bees.

Does morphine ‘work’ in bees?

An unpleasant or harmful stimulus induces a nociceptive response which might include taking defensive action like retreating or flying away. Studies have shown that the magnitude of this defensive action in honey bees is reduced or blocked altogether by prior injection with morphine.

This is a dose-response effect. The more morphine injected the smaller the nociceptive response by the bee. Importantly we know it’s the morphine that is having the effect because it can be counteracted by injection with naloxone.

So, morphine does work in bees 3.

We can therefore test whether bees choose to self-medicate with morphine to determine whether they feel pain.

And this is precisely what Julie Groening and colleagues from the University of Queensland did, and published three years ago in Scientific Reports. The full reference is Groening, J., Venini, D. & Srinivasan, M. In search of evidence for the experience of pain in honeybees: A self-administration study. Sci Rep 7, 45825 (2017); https://doi.org/10.1038/srep45825

Ouch … or not?

The experiment was very simple. Bees were subjected to one of two different injuries; a continuous pinch to the hind leg, or the amputation of part of the middle leg. They were then offered sugar syrup alone and sugar syrup containing morphine.

The hypothesis proposed was that if bees felt pain they would be expected to consume more of the sugar syrup containing morphine.

To ensure statistically relevant results they used lots of bees. Half were injured and half were uninjured and used as controls. If syrup laced with morphine tasted unpleasant you would expect the control group to demonstrate this by eating less.

Throughout the experiments the authors were therefore looking for a difference in syrup alone or syrup with morphine consumption between the injured bee and the uninjured controls.

All of the experiments produced broadly similar results so I’ll just show one data figure.

Relative consumption of morphine (M) and pure sucrose solution (S) by injured (i; amputated) or control (c) bees.

Both groups of bees preferred the pure syrup (the two box plots on the right labelled S_c or S_i) over the morphine-laced syrup (M). However, the bees with the amputation did not consume any more of the morphine-containing syrup (M_i) than the controls (M_c).

Therefore they did not self-medicate.

Very similar results were obtained with the bees carrying the hind leg clip (recapitulating an attack by a competing forager or predator, which often target the rear legs). The injured bees consumed statistically similar amounts of plain or morphine-laced syrup as the control group.

The one significant difference observed was that bees with amputations consumed about 20% more syrup overall than those with the rear leg ‘pinch’ injury. The authors justified this as indicating that the amputation likely induced the innate immune system, necessitating the production of additional proteins (like the antimicrobial peptides that fight infection), so leading to elevated energy needs. Speculation, but it seems reasonable to me.

Feeling no pain

This study, using a pretty standard and well-accepted experimental strategy, strongly suggests that bees do not feel pain.

It does not prove that bees feel pain. It strongly supports the theory that they do not. You cannot prove things with science, you can just disprove them. Evidence either supports or refutes a hypothesis; in this case the evidence (no self-medication) supports the hypothesis that bees do not feel pain because, as has been demonstrated with several other animals, they would self-medicate if they did feel pain.

In the discussion of the paper the authors suggest that further work is necessary. Scientists often make that kind of sweeping statement to:

  • encourage funders to provide money in the future 😉
  • allow them to incorporate additional, perhaps contradictory, evidence that could be interpreted in a different way to their own results.

Skinning a cat

That is painful … but the proverb There’s more than one way to skin a cat 4 means that there is more than one way to do something.

And there are other ways of interpreting behavioural responses as an indication that animals feel pain.

For example, rather than measuring self-medication with an analgesic, you could look at avoidance learning or protective motor reactions as indicators of pain.

Protective motor reactions include things like preferential and prolonged grooming of regions of the body which have been injured 5. There is no evidence that bees do this.

Avoidance learning

However, there is evidence that bees exhibit avoidance learning. This is a behavioural trait in which they learn to avoid a harmful stimulus that might cause injury.

If a forager is attacked by a predator at a food source (and survives) it stops other bees dancing to advertise that food source when it returns to the hive 6.

Whilst avoidance learning does not indicate that bees feel pain, it does imply central processing rather than a simple nociceptive response. It shows that bees are able to weigh up the risk vs. reward of something good (a rich source of nectar) with something bad (the chance of being eaten when collecting the nectar). This type of decision making demonstrates a cognitive capacity that might make pain experience more likely.

We’re now getting into abstruse areas of neuropsychology … dangerous territory.

Let’s assume, as I do based upon the science presented here and in earlier work, that bees do not feel pain. What, if anything, does this mean for practical beekeeping.

Practical beekeeping

It certainly does not mean we should not attempt to conduct hive manipulations in a slow, gentle and controlled manner. Just because rolled bees are not hurting, or crushed bees are not feeling pain, doesn’t give us carte blanche to be heavy handed.

One of the nociceptive responses is the production of alarm pheromones (sting and mandibular) which are part of the defensive response. Alarm pheromones agitate the hive and make the colony aggressive, much more likely to sting and much more difficult to inspect carefully.

So we should conduct inspections carefully, not because we are hurting the bees, but because they might hurt us.

But there are other reasons that care is needed as well. Crushed bees are a potential source of disease in the hive. One reason undertaker bees remove the corpses is to remove the likelihood of disease spreading in the hive. If bees are crushed the heady mix of viruses, bacteria and Nosema they contain are smeared around all over the place, putting other hive members at risk.

And, as we’re all learning at the moment, good hygiene can be a life-saver.


Colophon

This is the first post written under ‘lockdown’. It’s a little bit later than usual as it has had to travel a   v  e  r  y    l  o  n  g   way along the fibre to ‘the internet’. It’s going to be a very different beekeeping season to anything that has gone before.

At least spring is on the way …

Primroses, 27-3-20, Ardnamurchan

 

Bees in the time of corona

I usually write a review of the past year and plans for the year ahead in the middle of winter. This year I reviewed 2019 and intended to write about my plans when they were a little better formulated.

Inevitably, with the coronavirus pandemic, any plans would have had to be rapidly changed. It’s now not clear what the year ahead will involve and, with the speed things are moving at, anything I write today 1 may well be redundant by publication time on Friday.

Nothing I write here should be taken as medical advice or possibly even current information. I teach emerging virus infections and have studied RNA viruses (like DWV, coronavirus also has an RNA genome but it is a fundamentally different beast) for 30 years but defer to the experts when hardcore epidemiology is being discussed.

And it’s the epidemiology, and what we’ve learned from the outbreak in Italy, that is determining the way our society is being restructured for the foreseeable future.

Talking the talk

I gave three invited seminars last week. It was good to see old friends and to meet previously online-only contacts. It was odd not to shake hands with people and to watch people seek out the unoccupied corners of the auditorium to maintain their ‘social distancing’.

All of the beekeeping associations I belong to have cancelled or postponed talks for the next few months. Of course, there are usually far fewer talks during the beekeeping season as we’re all too busy with our bees, but those that were planned are now shelved.

Not me …

I expect that forward-thinking associations will be looking at alternative ways to deliver talks for the autumn season. If they’re not, they perhaps should as there’s no certainty that the virus will not have stopped circulating in the population by then.

I already have an invitation to deliver a Skype presentation in mid/late summer (to an association in the USA) and expect that will become increasingly commonplace. Someone more entrepreneurial than me will work out a way to give seminars in which the (often outrageous 2) speaker fee is replaced by a subscription model, ensuring that the audience can watch from the comfort of their armchairs without needing to meet in a group.

There is a positive spin to put on this. My waistline will benefit from not experiencing some of the delicious homemade cakes some beekeeping associations produce to accompany tea after the talk 😉 … I’m dreaming thinking in particular of a fabulous lemon drizzle cake at Fortingall & District BKA 🙂

It will also reduce the travel involved. For everyone. It’s not unusual for me to have a 2-3 hour journey to a venue 3 and, much as I enjoy talking, the questions, the banter and the cake, driving for 2-3 hours back can be a bit wearing.

At risk populations

Everyone is getting older … but beekeepers often have a head start. In the UK the average age of bee farmers is reported to be 66 years old. In my many visits to beekeeping associations I meet a lot of amateur (backyard) beekeepers and suspect that the majority are the wrong side of 50 4.

And that’s significant as Covid-19 is a more serious infection for those over 50.

Infection outcomes are also worse for men, and the majority (perhaps 65%) of beekeepers are men. The rates of infection appear similar, but men – particularly elderly men – often have less good underlying health; they are more likely to smoke and have less effective immune responses.

Enough gloom and doom, what does this mean for beekeeping?

Mentoring

If you took a ‘beginning beekeeping‘ course this winter you may struggle to find a mentor. If you’ve been allocated one (or someone has generously volunteered) think twice about huddling over an open hive with them.

Actually, don’t huddle with them at all … the veil of a beesuit is no barrier to a virus-loaded 5μm aerosol.

Mentoring is one of the most important mechanisms of support for people starting beekeeping.  I benefitted hugely from the experienced beekeepers who generously answered all my (hundreds of) idiotic questions and helped me with frames of eggs when I’d inadvertently ‘lost’ my queen and knocked back all the queen cells.

Without mentoring, learning to keep bees is a lot more difficult. Not impossible, but certainly more challenging. Beekeeping is fundamentally a practical pastime and learning by demonstration is undoubtedly the best way to clear the initial hurdles.

But thousands before have learnt without the benefit of mentoring.

However, if you can wait, I suggest you do.

If you cannot 5, you need to find a way to compensate for the potential absence of experienced help ‘on hand’.

All of us are going to have to learn to communicate more effectively online. Camera phones are now so good that a quick snap (or video) sent via WhatsApp may well be good enough to diagnose a problem.

Get together (virtually!) with other beginners at a similar stage and compare notes. Discuss how colonies are building up, early signs of swarming and when hives are getting heavier.

Bees in the same environment tend to develop at about the same rate. If your (virtual) ‘bee buddy’ lost a swarm yesterday you should check your colonies as soon as possible.

Getting bees

Thousands of nucs, packages and queens are imported to the UK every year. I’ve no idea what will happen to the supply this season. It might be unaffected, but I suspect it will be reduced.

If you’re waiting for an “overwintered nuc” and your supplier claims now not to be able to supply one 6 all is not lost.

Under offer ...

Under offer …

Set out one or two bait hives. With isolation, movement restrictions, curfews and illness 7 it’s more than likely that some nearby colonies will be poorly managed. If you use a bait hive you can attract a swarm with almost no work and save an overworked beekeeper from having to do a cutout from the roofspace of the house the swarm would have otherwise selected.

At the very least, you can have the pleasure of watching scout bees check out the hive in the isolated comfort of your own garden.

Keeping bees

I think the last few days have shown that the future is anything but predictable. Who knows where we’ll be once the swarming season is here. You can practice swarm control with social distancing in your out apiary unless there are movement controls in place.

In that case, you cannot get there in the first place.

Let us hope that it doesn’t come to that.

What you can do is be prepared. Give the bees plenty of space when the first nectar flow starts. Two supers straight away, or three if your knowledge of local conditions suggests two may not be enough.

Clip one of the wings of the queen. This doesn’t stop the bees swarming (almost nothing does) but it does stop you losing the bees. Although I cannot be certain that queen clipping is painless – because I’m not sure that bees feel pain (evidence suggests they don’t) – I do know that clipped queens have as long and as productive lives as unclipped queens.

There she goes ...

There she goes …

Clipped queens buy you a few days grace. The colony tends to swarm when the new virgin queen emerges rather than when the queen cell was capped. That can make all the difference.

The colony swarms but the queen spirals groundwards and usually then climbs back up the hive stand, around which the swarm then clusters. Sometimes the queen returns to the hive, though it doesn’t always end well for her there in the subsequent duel with the virgin now in residence.

1002, 1003, 1004, 1005, er, where was I? Damn!

Not lost swarm

Honey sales

Selling honey is not without risk of virus transmission, in either direction. When I sell “from the door” it often involves an extended discussion about hay fever, local forage, bumble bees and the weather. All of that can still continue but both parties will have to speak a bit louder to maintain social distancing.

Selling through shops might be easier … if the shops stay open. Farmers markets, village fetes and country fairs (fayres?) are likely to all be cancelled or postponed, at least temporarily.

There’s a neighbourhood initiative here selling high quality local produce, ordered online and collected at a set date and time. Similar things are likely to be developed elsewhere as customers increasingly want to support local producers, to buy quality food and to avoid the panic buying masses fighting over toilet tissue 8 in the supermarkets.

Peter Brookes, Panic Buying, 7-3-20, The Times

An initiative like Neighbourfood might make even more sense if there was a local delivery service to reduce further the need for contact. No doubt these things exist already.

The unknown unknowns

I’ve discussed the unknown knowns previously. These are the things you know will happen during the season, you’re just not quite sure when they’ll happen. Swarming, Varroa management, winter feeding etc.

To add to the uncertainty this year we will have the unknown unknowns … things you didn’t expect and that you might not know anything about. Or have any warning about. Social distancing, quarantine, school closures and potential lockdowns all fall into this category.

Preparing for things that cannot be predicted is always tricky. All we can do is be as resilient and responsible as possible.

My beekeeping season will start in late April or early May. I’m self-sufficient for frames and foundation and can switch entirely to foundationless frames if needed. I have enough boxes, supers, nucs etc 9 to maintain my current colonies.

I’m actually planning to reduce my colony numbers which I’ll achieve by uniting weak colonies or selling off the surplus. With a bit more free time from work (and I’m working very remotely some of the time) I intend to rear some queens when the weather is good. These will be used to requeen a few tetchy colonies for research, though it’s increasingly looking like we’ll lose this field season as the labs are effectively closed.

I’m not dependent on honey sales other than to offset the costs of the hobby. If I cannot buy fondant for autumn feeding I’ll just leave the supers on and let them get on with it.

This is why we treat ...

This is why we treat …

Which leaves only the treatments for Varroa management as essential purchases … and if I cannot mail order Apivar then things have got very serious indeed 🙁 10

In the meantime, I’m planning some more science and beekeeping posts for the future. This includes one on a new collaborative study we’re involved in on chronic bee paralysis virus which, like Covid-19, is classed as causing an emerging viral disease.


Colophon

Love in the time of cholera

The title is a rather contrived pun based on the book Love in the time of cholera by the Columbian author Gabriel García Márquez. There are no other similarities between this post and the Nobel laureates work … cholera isn’t even a virus.

Cholera, which has characteristic and rather unpleasant symptoms, might be an excuse to panic buy toilet rolls.

Covid-19, which has equally characteristic and unpleasant (but totally different) symptoms, is not 😉

 

Measles, mites and anti-vaxxers

About 11,000 years ago nomadic hunter-gatherers living near the river Tigris discovered they could collect the seeds from wild grasses and, by scattering them around on the bare soil, reduce the distance they had to travel to collect more grain the following year.

This was the start of the agricultural revolution.

They couldn’t do much more than clear the ground of competing ‘weeds’ and throw out handfuls of collected seed. The plough wasn’t invented for a further 6,000 years and wouldn’t have been much use anyway as they had no means of dragging it through the baked-hard soil.

But they could grow enough grains and cereals to settle down, doing less hunting and more gathering. Some grains grew better than others, with ‘ears’ that remained intact when they were picked, making harvesting easier. The neophyte farmers preferentially selected these and, about 10,000 years ago, the first domesticated wheat was produced.

Einkorn wheat (Triticum monococcum), one of the first domesticated cereals

Since they were less nomadic and more dependent upon the annual grain harvest they took increasing care to protect it. They were helped with this by the hunting dogs domesticated from wolves several thousands years earlier. The dogs protected the crops and kept the wild animals, primarily big, cloven-hooved ungulates and the native wild sheep and goats, at a distance.

But those that got too close were trapped and were remarkably good to eat.

And since it was easier to keep animals penned up to avoid the need to actively hunt them it was inevitable that sheep and goats were eventually domesticated (~9,000 years ago) … and the nomadic hunter-gatherers became settled farmers practising recognisably mixed agriculture.

Domestication of cattle

The sheep and goats were a bit weak and scrawny. The large ungulates, the aurochs, gaur, banteng, yak and buffalo 1 had a lot more meat on them.

Inevitably, first aurochs (which are now extinct) and then other wild ungulates, were independently domesticated to produce the cattle still farmed today. This process started about 8,000 years ago.

Auroch bull (left) and modern domesticated bull (right). Auroch were big, strong (tasty) animals.

Cattle were great. Not only did they taste good, but they could be managed to produce milk and were strong enough to act as beasts of burden.

The plough was invented and crop yields improved dramatically because the grain germinated better in the cleared, tilled soil. Loosely knit families and groups started to build settled communities in the most fertile regions.

Bigger farms supported more people. Scattered dwellings coalesced and became villages.

Not everyone needed to farm the land. The higher yields (of grain and meat) allowed a division of labour. Some people could help defend the crops from marauders from neighbouring villages, some focused on weaving wool (from the sheep) into textiles while others taught the children the skills they would need as adults.

Communities got larger and villages expanded to form towns.

Zoonotic diseases

Hunter-gatherers had previously had relatively limited contact with animals 2. In contrast, the domestication of dogs, sheep, goats and cattle put humans in daily contact with animals.

Many of these animals carried diseases that were unknown in the human population. The so-called zoonotic diseases jumped species and infected humans.

There’s a direct relationship between the length of time a species has been domesticated and the number of diseases we share with it.

Domestication and shared zoonotic diseases (years, X-axis)

The emergence of new diseases requires that the pathogen has both the opportunity to jump from one species to another and that the recipient species (humans in this case) transmits the disease effectively from individual to individual.

The nomadic hunter-gatherers had been exposed to many of these diseases as well but, even if they had jumped species, their communities were too small and dispersed to support extensive human-to-human transmission.

Rinderpest and measles

Until relatively recently rinderpest was the scourge of wild and domesticated cattle across much of the globe. Rinderpest is a virus that causes a wide range of severe symptoms in cattle (and wild animals such as warthog, giraffe and antelope) including fever, nasal and eye discharges, diarrhoea and, eventually, death. In naÏve populations the case fatality rate approaches 100%.

Rinderpest outbreak in South Africa, 1896

Animals that survive infection are protected for life by the resulting immune response.

Rinderpest is closely related to canine distemper virus and measles virus. Virologically they are essentially the same virus that has evolved to be specific for humans (measles), dogs (canine distemper) or cattle (rinderpest).

Measles evolved from rinderpest, probably 1,500 to 2,000 years ago, and became a human disease.

Rinderpest was almost certainly transmitted repeatedly from cattle to humans in the 6,000 years since auroch or banteng were domesticated. However, the virus failed to establish an endemic infection in the human population as the communities were too small.

However, by about 1,500 – 2,000 years ago the largest towns had populations of ~250,000 people. Subsequent studies have demonstrated that you need a population of this size to produce enough naÏve hosts (i.e. babies) a year to maintain the disease within the population.

This is because, like rinderpest, measles induces lifelong immunity in individuals that survive infection.

Measles is a devastating disease in an unprotected community. Case fatality rates of 10-30% or higher are not unusual. It is also highly infectious, spreading very widely in the community 3. Survivors may suffer brain damage or a range of other serious sequelae.

Measles subsequently changed the course of history, being partially responsible (along with smallpox) for Cortés’ defeat of the Aztec empire in the 16th Century.

John Enders, Maurice Hilleman and Andrew Wakefield

In the late 1950’s John Enders developed an attenuated live measles vaccine. When administered it provided long-lasting protection. It was an excellent vaccine. Maurice Hilleman, in the early 1970’s combined an improved strain of the measles vaccine with vaccines for mumps and rubella to create the MMR vaccine.

Widespread use of the measles and MMR vaccines dramatically reduced the incidence of measles – in the UK from >500,000 cases a year to a few thousand.

Incidence of measles in England and Wales

If vaccine coverage of 92% of the population is achieved then the disease is eradicated from the community. This is due to so-called ‘herd immunity’ 4 in which there are insufficient naÏve individuals for the disease to be maintained in the population.

Measles cases (and deaths) continued to fall everywhere the vaccine was used.

There was a realistic possibility that the vaccines would – like rinderpest 5 – allow the global eradication of measles.

And then in 1986 Andrew Wakefield published a paper in the Lancet suggesting a causative link between the MMR vaccine and autism in children.

Subsequent studies showed that this was a deeply flawed and biased study. And totally wrong.

There is not and never was a link between autism and measles vaccination 6. But that didn’t stop a largely uncritical press and subsequently even less critical social media picking up the story and disseminating it widely.

Measles and the anti-vaccine movement

Measles vaccination rates dropped because a subset of parents refused to have their kids vaccinated with the ‘dangerous’ measles vaccine.

Several successive birth cohorts had significantly lower than optimal vaccination rates. Measles vaccine coverage dropped to 84% by 2002 in the UK, with regional levels (e.g. parts of London) being as low as 61%. By 2006, twenty years after the thoroughly discredited (and now retracted) Lancet paper vaccine rates were still hovering around the mid-80% level.

As immunisation rates dropped below the critical threshold, measles started to circulate again in the population. 56 cases in 1998 to ~450 in the first 6 months of 2006. In that year there was also the first death from measles for many years – an entirely avoidable tragedy.

In 2008 measles was again declared endemic (i.e. circulating in the population) in the UK.

Similar increases in measles, mumps and rubella were occurring across the globe in countries where these diseases were unknown for a generation due to previous widespread vaccination.

The distrust of the MMR vaccine was triggered by the Wakefield paper but is part of a much wider ‘anti-vaccination movement‘.

“Vaccines are dangerous, vaccines themselves cause disease, there are too many vaccines and the immune system is overloaded, vaccines contain preservatives (thiomersal) that are toxic, vaccines cause sterility etc.”

None of these claims stand up to even rudimentary scientific scrutiny.

All have been totally debunked by very extensive scientific analysis.

The World Health Organisation consider the anti-vaccine movement (anti-vaxxers) one of the top ten threats to global health. Vaccination levels are lower than they need to be to protect the population. Diseases – not just measles – that should be almost eradicated now kill children every year.

Where are the bees in this beekeeping blog?

Bear with me … before getting to the bees I want to move from fact (all of the above) to fantasy. The following few paragraphs (fortunately) has not happened (and to emphasise the point it is all italicised). However, it is no more illogical than the claims already being made by the anti-vaccine movement.

Childhood measles

The inexorable rise of internet misinformation and social media strengthened the anti-vaxxers beliefs further. Their claims that vaccines damage the vaccinees were so widespread and, for the uncritical, naturally suspicious or easily influenced who simply wanting to protect their kids, so persuasive that vaccine rates dropped further. They refused to consider the scientific arguments for the benefits of vaccines, and refused to acknowledge the detrimental effects diseases were having on the community.

The obvious causative link to the inevitable increase in disease rates was not missed – by both the anti-vaxxers and those promoting vaccination. However, the solutions each side chose were very different. Measles remained of particular concern as kids were now regularly dying from this once near-forgotten disease. The symptoms were very obvious and outbreaks spread like wildfire in the absence of herd-immunity 7.

The anti-vaxxers were aware that population size was a key determinant of the ability of measles to be maintained in the population. Small populations, such as those on islands or in very isolated regions, had too few new births annually to maintain measles as an endemic disease.

With the increase in remote working – enabled by the same thing (the internet) responsible for lots of the vaccine misinformation – groups of anti-vaxxers started to establish remote closed communities. Contact with the outside world was restricted, as was the size of the community itself.

A quarter of a million was the cutoff … any more than that and there was a chance that measles could get established in the unprotected population.

Small communities 8 work very well for some things, but very badly for others. Efficiencies of scale, in education, industry, farming and trade became a problem, leading to increased friction. When disease did occur in these unprotected communities it wreaked havoc. Countless numbers of people suffered devastating disease because of the lack of vaccination.

In due course this led to further fragmentation of the groups. They lived apart, leading isolated lives, flourishing in good years but struggling (or failing completely) when times were hard, or when disease was introduced. Some communities died out altogether. 

They chose not to travel because, being unvaccinated, they were susceptible to diseases that were widespread in the environment. Movement and contact between villages, hamlets and then individual farm settlements was restricted further over time.

The benefits of large communities, the division of labour, the economies and efficiencies of scale, were all lost.

They didn’t even enjoy particularly good health.

They had ‘evolved’ into subsistence farmers … again.

OK, that’s enough! Where are the bees?

Anyone who has bothered to read this far and who read Darwinian beekeeping last week will realise that this is meant to be allegorical.

The introduction of Varroa to the honey bee population resulted from the globalisation of beekeeping as an activity, and the consequent juxtaposing of Apis mellifera with Apis cerana colonies.

Without beekeepers it is unlikely that the species jump would have occurred.

Apis cerana worker

Undoubtedly once the jump had occurred transmission of mites between colonies was facilitated by beekeepers keeping colonies close together. We do this for convenience and for the delivery of effective pollination services.

The global spread of mites has been devastating for the honey bee population, for wild bees and for beekeeping.

But (like the introduction to measles in humans) it is an irreversible event.

However, it’s an irreversible event that, by use of effective miticides, can at least be partially mitigated.

Miticides do not do long-term harm to honey bees in the same way that vaccines don’t overload the immune response or introduce toxins or cause autism.

There can be short term side effects – Apiguard stinks and often stops the queen laying. Dribbled oxalic acid damages open brood.

But the colony benefits overall.

Many of the miticides now available are organic acids, acceptable in organic farming and entirely natural (even being part of our regular diet). Some of the hard chemicals used (e.g. the lipid-soluble pyrethroids in Apistan) may accumulate in comb, but I’d argue that there are more effective miticides that should be used instead (e.g. Apivar).

I’m not aware that there is any evidence that miticides ‘weaken’ colonies or individual bees. There’s no suggestion that miticide treatment makes a colony more susceptible to other diseases like the foulbroods or Nosema.

Of course, miticides are not vaccines (though vaccines are being developed) – they are used transiently and provide short to medium term protection from the ravages of the mite and the viruses it transmits.

By the time they are needed again the only bee likely to have been previously exposed is the queen. They benefit the colony and they indirectly benefit the environment. The colony remains strong and healthy, with a populous worker community available for nectar-gathering and pollination.

The much reduced mite load in the colony protects the environment. Mites cannot be spread far and wide when bees drift or through robbing. Other honey bee colonies sharing the environment therefore also benefit.

The genie is out of the bottle and will not go back

Beekeepers (inadvertently) created the Varroa problem and they will not solve it by stopping treatment. Varroa will remain in the environment, in feral colonies and in the stocks of beekeepers who choose to continue treating their colonies.

And in the many colonies of Apis mellifera still kept in the area that overlaps the natural (and currently expanding) range of Apis cerana.

Treatment-free beekeepers may be able to select colonies with partial resistance or tolerance to Varroa, but the mite will remain.

So perhaps the answer is to ban treatment altogether?

What would happen if no colonies anywhere were treated with miticides? What if all beekeepers followed the principles of Darwinian (bee-centric, bee friendly, ‘natural’) beekeeping – well-spaced colonies, allowed to swarm freely, killed off if mite levels become dangerously high – were followed?

Surely you’d end up with resistant stocks?

Yes … possibly … but at what cost?

Commercial beekeeping would stop. Honey would become even scarcer than it already is 9. Pollination contracts would be abandoned. The entire $5bn/yr Californian almond crop would fail, as would numerous other commercial agricultural crops that rely upon pollination by honey bees. There would be major shortages in the food supply chain. Less fruits, more cereals.

Pollination and honey production require strong, healthy populous colonies … and the published evidence indicates that naturally mite resistant/tolerant colonies are small, swarmy and only exist at low density in the environment.

Like the anti-vaxxers opting to live as isolated subsistence farmers again, we would lose an awful lot for the highly questionable ‘benefits’ brought by abandoning treatment.

And like the claims made by the anti-vaxxers, in my view the detrimental consequences of treating colonies with miticides are nebulous and unlikely to stand up to scientific scrutiny.

Does anyone seriously suggest we should abandon vaccination and select a resistant strain of humans that are better able to tolerate measles?


Notes

It is an inauspicious day … Friday the 13th (unlucky for some) with a global pandemic of a new zoonotic viral disease threatening millions. As I write this the UK government is gradually imposing restrictions on movement and meetings. Governments across Europe have already established draconian regional or even national movement bans. Other countries, most notably the USA and Africa, have tested so few people that the extent of Covid-19 is completely unknown, though the statistics of cases/deaths looks extremely serious.

What’s written above is allegorical … and crudely so in places. It seemed an appropriate piece for the current situation. The development of our globalised society has exposed us – and our livestock – to a range of new diseases. We cannot ‘turn the clock back’ without dissasembling what created these new opportunities for pathogens in the first place. And there are knock-on consequences if we did that many do not properly consider.

Keep washing your hands, self-isolate when (not if) necessary, practise social distancing (no handshakes) and remember that your bees are not at risk. There are no coronaviruses of honey bees.

Darwinian beekeeping

A fortnight ago I reviewed the first ten chapters of Thomas Seeley’s recent book The Lives of Bees. This is an excellent account of how honey bees survive in ‘the wild’ i.e. without help or intervention from beekeepers.

Seeley demonstrates an all-too-rare rare combination of good experimental science with exemplary communication skills.

It’s a book non-beekeepers could appreciate and in which beekeepers will find a wealth of entertaining and informative observations about their bees.

The final chapter, ‘Darwinian beekeeping’, includes an outline of practical beekeeping advice based around what Seeley (and others) understand about how colonies survive in the wild.

Differences

The chapter starts with a very brief review of about twenty differences between wild-living and managed colonies. These differences have already been introduced in the preceding chapters and so are just reiterated here to set the scene for what follows.

The differences defined by Seeley as distinguishing ‘wild’ and ‘beekeepers’ colonies cover everything from placement in the wider landscape (forage, insecticides), the immediate environment of the nest (volume, insulation), the management of the colony (none, invasive) and the parasites and pathogens to which the bees are exposed.

Some of the differences identified are somewhat contrived. For example, ‘wild’ colonies are defined fixed in a single location, whereas managed colonies may be moved to exploit alternative forage.

In reality I suspect the majority of beekeepers do not move their colonies. Whether this is right or not, Seeley presents moving colonies as a negative. He qualifies this with studies which showed reduced nectar gathering by colonies that are moved, presumably due to the bees having to learn about their new location.

However, the main reason beekeepers move colonies is to exploit abundant sources of nectar. Likewise, a static ‘wild’ colony may have to find alternative forage when a particularly good local source dries up.

If moving colonies to exploit a rich nectar source did not usually lead to increased nectar gathering it would be a pretty futile exercise.

Real differences

Of course, some of the differences are very real.

Beekeepers site colonies close together to facilitate their management. In contrast, wild colonies are naturally hundreds of metres apart 1. I’ve previously discussed the influence of colony separation and pathogen transmission 2; it’s clear that widely spaced colonies are less susceptible to drifting and robbing from adjacent hives, both processes being associated with mite and virus acquisition 3.

Abelo poly hives

50 metres? … I thought you said 50 centimetres. Can we use the next field as well?

The other very obvious difference is that wild colonies are not treated with miticides but managed colonies (generally) are. As a consequence – Seeley contends – beekeepers have interfered with the ‘arms race’ between the host and its parasites and pathogens. Effectively beekeepers have ‘weaken[ed] the natural selection for disease resistance’.

Whilst I don’t necessarily disagree with this general statement, I am not convinced that simply letting natural selection run its (usually rather brutal) course is a rational strategy.

But I’m getting ahead of myself … what is Darwinian beekeeping?

Darwinian beekeeping

Evolution is probably the most powerful force in nature. It has created all of the fantastic wealth of life forms on earth – from the tiniest viroid to to the largest living thing, Armillaria ostoyae 4. The general principles of Darwinian evolution are exquisitely simple – individuals of a species are not identical; traits are passed from generation to generation; more offspring are born than can survive; and only the survivors of the competition for resources will reproduce.

I emphasised ‘survivors of the competition’ as it’s particularly relevant to what is to follow. In terms of hosts and pathogens, you could extend this competition to include whether the host survives the pathogen (and so reproduces) or whether the pathogen replicates and spreads, but in doing so kills the host.

Remember that evolution is unpredictable and essentially directionless … we don’t know what it is likely to produce next.

Seeley doesn’t provide a precise definition of Darwinian beekeeping (which he also terms natural, apicentric or beefriendly beekeeping). However, it’s basically the management of colonies in a manner that more closely resembles how colonies live in the wild.

This is presumably unnnatural beekeeping

In doing so, he claims that colonies will have ‘less stressful and therefore more healthful’ lives.

I’ll come back to this point at the end. It’s an important one. But first, what does Darwinian mean in terms of practical beekeeping?

Practical Darwinian beekeeping

Having highlighted the differences between wild and managed colonies you won’t be surprised to learn that Darwinian beekeeping means some 5 or all of the following: 6

  • Keep locally adapted bees – eminently sensible and for which there is increasing evidence of the benefits.
  • Space colonies widely (30-50+ metres) – which presumably causes urban beekeepers significant problems.
  • Site colonies in an area with good natural forage that is not chemically treated – see above.
  • Use small hives with just one brood box and one super – although not explained, this will encourage swarming.
  • Consider locating hives high off the ground – in fairness Seeley doesn’t push this one strongly, but I could imagine beekeepers being considered for a Darwin Award if sufficient care wasn’t taken.
  • Allow lots of drone brood – this occurs naturally when using foundationless frames.
  • Use splits and the emergency queen response for queen rearing i.e. allow the colony to choose larvae for the preparation of new queens – I’ve discussed splits several times and have recently posted on the interesting observation that colonies choose very rare patrilines for queens.
  • Refrain from treating with miticides – this is the biggy. Do not treat colonies. Instead kill any colonies with very high mite levels to prevent them infesting other nearby colonies as they collapse and are robbed out.

Good and not so good advice

A lot of what Seeley recommends is very sound advice. Again, I’m not going to paraphrase his hard work – you should buy the book and make your own mind up.

Sourcing local bees, using splits to make increase, housing bees in well insulated hives etc. all works very well.

High altitude bait hive …

Some of the advice is probably impractical, like the siting of hives 50 metres apart. A full round of inspections in my research apiary already takes a long time without having to walk a kilometre to the furthest hive.

The prospect of inspecting hives situated at altitude is also not appealing. Negotiating stairs with heavy supers is bad enough. In my travels I’ve met beekeepers keeping hives on shed roofs, accessed by a wobbly step ladder. An accident waiting to happen?

And finally, I think the advice to use small hives and to cull mite-infested colonies is poor. I understand the logic behind both suggestions but, for different reasons, think they are likely to be to the significant detriment of bees, bee health and beekeeping.

Let’s deal with them individually.

Small hives – one brood and one super

When colonies run out of space for the queen to lay they are likely to swarm. The Darwinian beekeeping proposed by Seeley appears to exclude any form of swarm prevention strategy. Hive manipulation is minimal and queens are not clipped.

They’ll run out of space and swarm.

Even my darkest, least prolific colonies need more space than the ~60 litres offered by a brood and super.

Seeley doesn’t actually say ‘allow them to swarm’, but it’s an inevitability of the management and space available. Of course, the reason he encourages it is (partly – there are other reasons) to shed the 35% of mites and to give an enforced brood break to the original colony as it requeens.

These are untreated colonies. At least when starting the selection strategy implicit in Darwinian beekeeping these are likely to have a very significant level of mite infestation.

These mites, when the colony swarms, disappear over the fence with the swarm. If the swarm survives long enough to establish a new nest it will potentially act as a source of mites far and wide (through drifting and robbing, and possibly – though it’s unlikely as it will probably die – when it subsequently swarms).

A small swarm

A small swarm … possibly riddled with mites

Thanks a lot!

Lost swarms – and the assumption is that many are ‘lost’ – choose all sorts of awkward locations to establish a new nest site. Sure, some may end up in hollow trees, but many cause a nuisance to non-beekeepers and additional work for the beekeepers asked to recover them.

In my view allowing uncontrolled swarming of untreated colonies is irresponsible. It is to the detriment of the health of bees locally and to beekeepers and beekeeping.

Kill heavily mite infested colonies

How many beekeepers reading this have deliberately killed an entire colony? Probably not many. It’s a distressing thing to have to do for anyone who cares about bees.

The logic behind the suggestion goes like this. The colony is heavily mite infested because it has not developed resistance (or tolerance). If it is allowed to collapse it will be robbed out by neighbouring colonies, spreading the mites far and wide. Therefore, tough love is needed. Time for the petrol, soapy water, insecticide or whatever your choice of colony culling treatment.

In fairness to Seeley he also suggests that you could requeen with known mite-resistant/tolerant stock.

But most beekeepers tempted by Darwinian ‘treatment free’ natural beekeeping will not have a queen bank stuffed with known mite-resistant mated queens ‘ready to go’.

But they also won’t have the ‘courage’ to kill the colony.

They’ll procrastinate, they’ll prevaricate.

Eventually they’ll either decide that shaking the colony out is OK and a ‘kinder thing to do’ … or the colony will get robbed out before they act and carpet bomb every strong colony for a mile around.

Killing the colony, shaking it out or letting it get robbed out have the same overall impact on the mite-infested colony, but only slaying them prevents the mites from being spread far and wide.

And, believe me, killing a colony is a distressing thing to do if you care about bees.

In my view beefriendly beekeeping should not involve slaughtering the colony.

Less stress and better health

This is the goal of Darwinian beekeeping. It is a direct quote from final chapter of the book (pp286).

The suggestion is that unnatural beekeeping – swarm prevention and control, mite management, harvesting honey (or beekeeping as some people call it 😉 ) – stresses the bees.

And that this stress is detrimental for the health of the bees.

I’m not sure there’s any evidence that this is the case.

How do we measure stress in bees? Actually, there are suggested ways to measure stress in bees, but I’m not sure anyone has systematically developed these experimentally and compared the stress levels of wild-living and managed colonies.

I’ll explore this topic a bit more in the future.

I do know how to measure bee health … at least in terms of the parasites and pathogens they carry. I also know that there have been comparative studies of managed and feral colonies.

Unsurprisingly for an unapologetic unnatural beekeeper like me ( 😉 ), the feral colonies had higher levels of parasites and pathogens (Catherine Thompson’s PhD thesis [PDF] and Thompson et al., 2014 Parasite Pressures on Feral Honey Bees). By any measurable definition these feral colonies were less healthy.

Less stress and better health sounds good, but I’m not actually sure it’s particularly meaningful.

I’ll wrap up with two closing thoughts.

One of the characteristics of a healthy and unstressed population is that it is numerous, productive and reproduces well. These are all characteristics of strong and well-managed colonies.

Finally, persistently elevated levels of pathogens are detrimental to the individual and the population. It’s one of the reasons we vaccinate … which will be a big part of the post next week.


 

Which is the best … ?

It’s (slowly) approaching the start of the beekeeping season.

From draughty church halls across the land newly trained beekeepers are emerging (or eclosing, to use the correct term), blurry-eyed from studying their Thorne’s catalogues, desperate to get their hands on some bees and start their weekly inspections.

Their enthusiasm is palpable 1.

The start of the beekeeping season, any season, after the long winter is always a good time. Longer days, better weather, more light 🙂 . For current beekeepers we can stop fretting over stores or winter losses. The long days with plentiful forage are getting nearer. We’ll soon be doing inspections in our shirtsleeves and thinking about swarm prevention.

New beekeepers, those who haven’t had to worry about Storm Ciara wrecking their apiaries or subsequent flooding washing hives away, simply want to get started as soon as possible.

Moving to higher ground ...

Moving to higher ground …

But, of course, they want to do things properly.

They don’t want to cut corners, they don’t want to skimp or make false economies. They want the best for their (as yet, non-existent) bees.

They’re committed and serious and determined to make a success of beekeeping … and get a great honey crop.

It needs to be great as they’ve already ‘promised away’ half of it to friends and family 🙂

Which is the best …?

If you look on the online beekeeping discussion fora, or questions to the BBKA Q&A monthly column or listen to discussions at local association meetings, many start with the words “Which is the best …”.

Which is the best hive, the best strain of bees, the best fuel for your smoker etc.

These questions reflect a couple of things:

  1. A lack of experience coupled with an enthusiasm to properly care for their charges.
  2. The generally misguided belief that these things make any substantive difference to the welfare or productivity of the bees.

Neither of these are criticisms.

All beekeepers should want the best for their bees.

Inexperienced beekeepers don’t know what works and what does not work, but they want to ensure that – whatever they do – the bees do not suffer (or fail to thrive).

They want the best bees, presumably defined as those that are calm, frugal, populous and productive and they want the best hive so these bees are warm enough in winter and cool enough in summer, or have enough space, or are easiest to manipulate, or best resembles a tree trunk.

And the smoker fuel should be the best so that it’s easy to light, never goes out and calms the bees quickly.

The best smoker fuel

Logic dictates that if there was a ‘best’ smoker fuel then almost everyone would be using it.

The septuagenarian ‘expert’ with 50 years experience would have said “Stuff your smoker with XYZ” when describing hive inspections on the beginners course. Other experienced beekeepers around the room would nod sagely and that would be the end of the matter.

If a beginner were to ask “Why don’t you use hessian rather than XYZ?” over a cuppa and a digestive afterwards there would be an awkward silence and a simple “Because XYZ is the best smoker fuel you can use” response.

The group would then move on to talk about something else.

Fuel bucket

XYZ …

And that happens … precisely never.

What actually happens is that eight beekeepers (with varying levels of expertise) contribute eleven different opinions of their personal view of the ‘best’ smoker fuel.

The only thing vaguely in common in these opinions is that some of the recommended fuels burn.

Note that I said ‘some’ 😉

The point I’m trying to make is that the ‘best’ smoker fuel does not exist. It’s what works for you when you need it … dried horse manure (yes, really), grass, wood chips, Thorne’s cardboard packaging, rotten dried wood etc.

It’s what’s in your bag, it’s what you carefully collected last month, it’s what you find in the car glove compartment when you can’t find anything else.

If it burns – ideally slowly and gently – producing good amounts of smoke, if it’s easy to light, light to carry, stays lit and is available when you need it, it’ll do.

The best hive

I’ve previously discussed the ridiculously wide range of hives and frames available to UK beekeepers.

Knowing that, or spending just half an hour perusing the Thorne’s catalogue, shows that there is clearly no ‘best’ hive. Any, and probably all, of the hives work perfectly satisfactorily. In the right conditions and with sympathetic and careful beekeeping all are capable of housing a colony securely and productively.

It’s the hive type that is compatible with those used by your mentor 2, it’s the type you have a stack of in the corner of the shed, it’s what you can borrow at short notice when you’ve run out of broods or supers.

It’s what’s available in the end of season sales or it’s what you started with (or your mother started with) and it ‘just works’.

If there was a best hive type, or hive tool or smoker fuel the Thorne’s catalogue would be about 3 pages long.

It’s not, it’s approaching 100 pages in length, with 12 pages of hive types alone (including a nice looking Layens hive). The 2020 catalogue has even more hive tools than the seventeen I counted in 2019 🙁

If there’s no ‘best’, will anything do?

Just because there might not be the perfect hive, smoker fuel or hive tool does not mean that it doesn’t matter what you use.

There are some that are unsuitable.

Smoker fuel that doesn’t stay lit, or that burns too fiercely. Hive tools with blunt edges, or that rust badly and are difficult to sterilise, or that bend 3. Hives with incorrect dimensions, ill-fitting floors, overly fussy designs or a host of other undesirable ‘features’.

Just because there’s no single best whatever definitely does not mean that anything will do.

Anthropocentrism

But, before we move on, note that all the things I used to define a smoker fuel or hive as ‘the best’ were anthropocentric 4 criteria.

It’s what suits us as beekeepers.

And, since there are a wide range of beekeepers (by education, age, height, intellect, shoe size, strength, wealth, petty likes and dislikes etc.) there is inevitably a very wide choice of stuff for beekeeping.

Which also emphasises the irrelevance of the ‘best type of ‘ question.

The full version of the question is “Which is the best type of hive tool for beekeepers” 5.

But what’s best for the bees?

None, or any, of the above.

Clearly no single hive tool is better than any other as far as the bees are concerned.

Take your pick ...

The bees do not care …

Likewise, as long as the smoker fuel generates cool, not-too-acrid, smoke, as far as the bees are concerned it’s just smoke. It masks the smell of the alarm pheromones and encourages the bees to gorge on honey, so they remain calm. Used judiciously, which is nothing to do with the fuel and everything to do with the beekeeper, one type of smoker fuel should be as good as any other.

And the same thing applies to hives. Assuming they’re secure, wind and watertight, large enough to fill with stores, have a defendable entrance and proper bee space around the frames, they’ll suit the bees perfectly well.

Think about the trees that wild-living bees naturally choose … do they prefer oak or lime, tall chimney-like cavities or largely spherical hollows?

Oak … preferred by bees. Or not.

Do they do better in one species of tree over another, one shape of space over another?

No.

Doing better …

How do we tell if the bees are ‘doing better’ anyway?

We can’t ask them.

We cannot, despite the assurances of the so-called bee-centric or bee-friendly beekeepers, tell whether they’re happy or not.

I’m a very bee-friendly beekeeper, but I don’t anthropomorphize and attribute feelings like happy or sad to my bees 6.

I determine whether a colony is doing well (or better) by very similar criteria to those you would use to judge whether a colony in a tree was flourishing.

Are they building up well, are they storing sufficient pollen and honey stores, is there overt disease, are they going to swarm?

The hive tool, smoker fuel or any one of a dozen or more hive types, have little or no influence on these measurable definitions of ‘doing well’.

What is it that determines the success or otherwise of a colony?

Essentially it comes down to two things – forage and colony health.

Bees ‘do well’ when they have ample and varied forage and when they are (largely) free of disease 7.

A healthy colony with ample forage will do better irrespective of the hive tool, hive type or smoker fuel used. You could house them in a plastic dustbin, prize the lid off with a screwdriver and waft a smouldering egg box across the entrance and they’ll still ‘do well’.

Egg box smoker

Smouldering egg box …

Conversely, put a disease-weakened colony in an area of poor forage and they’ll do badly (probably very badly) … again irrespective of the hive type, tool or smoker fuel.

Good forage does not just mean lots of it (though that helps). It means early-season pollen for colony build-up, it means late-season nectar and pollen to help develop a strong population of winter bees, it means a varied diet and it means season-long availability.

A healthy colony is one that has no overt disease. It has low levels of parasites and pathogens 8 and is able to survive periods of nectar shortages without succumbing to disease. In addition, it is resilient and genetically diverse.

And so back to those eclosing trainee beekeepers … the real ‘best’ questions they should be asking are:

  • Where is the best place to site my colonies to ensure good, season-long forage availability?
  • How to I best keep my colonies as disease-free as possible so that they can exploit that forage?

Focusing on these questions will help ensure the honey crop really is great so you can provide all those friends and family with the jars they have been promised 😉

Exceptions to the above

Inevitably there are exceptions.

It wouldn’t be beekeeping without qualifications and caveats.

The best bees are almost certainly local bees. There are several studies that demonstrate locally-adapted bees do better than imported bees. This does not mean that imported (and not necessarily from abroad) bees cannot do well. I’ve discussed some of these studies recently.

Finally, whilst the smoker fuel is irrelevant, the smoker is not.

The best smoker is the large Dadant smoker. The small Dadant is pretty good, but the large one is the bee’s knees 9.

Large Dadant smoker

I know, because my happy bees told me so 🙂


 

 

“Start beekeeping” courses

It’s mid-January. If you are an experienced beekeeper in the UK you’re being battered by the remnants of Storm Brendan and wondering whether the roofs are still on your hives.

If my experience is anything to go by, they’re not 🙁

But if you’re a trainee beekeeper you may well be attending a course on Starting Beekeeping, run by your local beekeeping association. Typically these run through the first 1- 3 months of the year, culminating in an apiary visit in April.

Trainee beekeepers

Trainee beekeepers

Sometimes a not-really-warm-enough-to-be doing-this apiary visit in April 🙁

Beekeeping, just like driving a car

Many years ago I attended the Warwick and Leamington Beekeepers Introduction to Beekeeping course. It was a lot of fun and I met some very helpful beekeepers.

But I learnt my beekeeping in their training apiary over the following years; initially as a new beekeeper, and subsequently helping instruct the cohort of trainees attending the course and apiary sessions the following year(s).

Teaching someone else is the best way to learn.

The distinction between the theoretical and practical aspects of the subject are important. You can learn the theory in a classroom, refreshed with tea and digestive biscuits, with the wind howling around outside.

Plain chocolate are preferable

However, it is practical experience that makes you a beekeeper, and you can only acquire these skills by opening hives up – lots of them – and understanding what’s going on.

Some choose never to go this far 1, others try but never achieve it. Only a proportion are successful – this is evident from the large number who take winter courses compared to the relatively modest growth in beekeeper numbers (or association memberships).

Beekeeping is like driving a car. You can learn the theory from a book, but that doesn’t mean you are able to drive. Indeed, the practical skills you lack may mean you are a liability to yourself and others.

Fortunately, the consequences of insufficient experience in beekeeping are trivial in comparison to inexperienced drivers and road safety.

Theoretical beekeeping

What should an ‘introduction to beekeeping’ course contain?

Which bits are necessary? What is superfluous?

Should it attempt to be all encompassing (queen rearing methods, Taranov swarm control, Israeli Acute Paralysis Virus) or pared back to the bare minimum?

Who should deliver it?

I don’t necessarily know, but for a variety of reasons I’ve been giving it some thought(s) … and here they are.

The audience and the intended outcome

You have to assume that those attending the course know little or nothing about bees or beekeeping. If you don’t there’s a good chance some of the audience will be alienated before you start 2.

When I started I had never seen inside a beehive. I don’t think I even knew what a removable frame was. Others on the course had read half a dozen books already. Some had already purchased a hive.

Some even had bees (or ‘hoped they were still alive’ as it was their first winter) 😯

I felt ignorant when others on the course were asking Wouldn’t brood and a half be better? or I’ve read that wire framed queen excluders are preferable.

Framed wire QE ...

Preferable to what?

What’s a queen excluder?

By working from first principles you know what has been covered, you ensure what is covered is important and you keep everyone together.

Some on the course like the idea of keeping bees, but will soon get put off by the practicalities of the discipline. That doesn’t mean they can’t still be catered for on the course. It can still be interesting without being exclusive 3.

But, of course, the primary audience are the people who want to learn how to keep bees successfully.

For that reason I think the intended outcome is to teach sufficient theory so that a new beekeeper, with suitable mentoring, can:

  • acquire and house a colony
  • inspect it properly
  • prevent it swarming, or know what to do if it does
  • manage disease in the colony
  • prepare the colony for winter and overwinter it successfully

The only thing I’d add to that list is an indication of how to collect honey … but don’t get their hopes up by discussing which 18 frame extractor to purchase or how to use the Apimelter 😉

Course contents

I’m not going to give an in-depth breakdown of my views of what an introduction to beekeeping course should contain, but I will expand on a few areas that I think are important.

The beekeeping year and the principles of beekeeping

I’d start with an overview of a typical beekeeping year. This shouldn’t be hugely detailed, it simply sets out what happens and when.

It provides the temporal context to which the rest of the course can refer. It emphasises the seasonality of beekeeping. The long periods of inactivity and the manic days in May and early June. It can be quite ‘light touch’ and might even end with a honey tasting session.

Or mead … 😉

‘Typical’ means you don’t need to qualify everything – if the spring is particularly warm or unless there’s no oil seed rape near you – just focus on an idealised year with normal weather, the expected forage and the usual beekeeping challenges.

The normal beekeeping challenges

But this part of the course should also aim to clearly emphasise the principles and practice of beekeeping.

Success, whether measured by jars of honey or overwintered colonies, requires effort. It doesn’t just happen.

Hive inspections are not optional. They cannot be postponed because of family holidays 4, weekend breaks in Bruges, or going to the beach because the weather is great.

Great weather … good for swarming and swimming

Quite the opposite. From late April until sometime in July you have to inspect colonies at weekly intervals.

Whatever the weather (within reason).

Not every 9-12 days.

Not just before and when you return from a fortnight in Madeira 🙁

Andalucian apiary

While you’re looking at these Andalusian hives your colony might be swarming.

And hive inspections involve heavy lifting (if you’re lucky), and inadvertently squidging a few bees when putting the hive back together, and possibly getting stung 5.

The discussion of the typical year must mention Varroa management. This is a reality for 99% of beekeepers and it is our responsibility to take appropriate action in a timely manner (though the details of how and when can be saved for a later discussion of disease).

Finally, this part of the course should emphasise the importance of preparing colonies properly for the winter. This again necessitates mentioning disease control.

By covering the principles and practice of a typical year in beekeeping the trainee beekeepers should be prepared from the outset for the workload involved, and have an appreciation for the importance of timing.

We have to keep up with the bees … and the pace they go (or grow) at may not be the same every year, or may not quite fit our diaries.

Bees and beekeeping

There is a long an interesting history of beekeeping and an almost limitless number of fascinating things about bees. Some things I’d argue are essential, others are really not needed and can be safely ignored.

Bee boles in Kellie Castle, Fife, Scotland … skep beekeeping probably isn’t an essential course component.

Of the essential historical details I’d consider the development of the removable frame hive is probably the most important. Inevitably this also involves a discussion of bee space – a gap that the bees do not fill with propolis or wax. Of course, bee space was known about long before Langstroth found a way to exploit it with the removable frame hive.

The other historical area often covered is the waggle dance, but I’d argue that this is of peripheral relevance to beekeeping per se. However, it could be used to introduce the concept of communication in bees.

And once the topic turns to bees there’s almost no limit what could be included. Clearly an appreciation of the composition of the colony and how it changes during the season is important. This leads to division of labour and the caste system.

It also develops the idea of the colony as a superorganism, which has a bearing on swarm preparation, management and control.

Queen development

Queen development …

Probably most important is the development cycle of the queen, workers and drones. A proper understanding of this allows an appreciation of colony build-up, the timing of swarming and queen replacement, and is very important for the correct management of Varroa.

As with the beekeeping year, sticking to what is ‘typical’ avoids confusion. No need to mention laying workers, two-queen hives, or thelytokous parthenogenesis.

Keep on message!

Equipment

What a minefield?!

As long as the importance of compatibility is repeatedly stressed you should be OK.

An Abelo/cedar hybrid hive ...

An Abelo/cedar hybrid hive …

A little forethought is needed here. Are you (or the association) going to provide your beginners with bees?

I’d argue, and have before, that you really should.

Will the bees be on National frames? 14 x 12’s? One of several different Langstroth frames? Smiths?

Or packages?

I said it was a minefield.

Beginners want to be ready for the season ahead. They want to buy some of that lovely cedar and start building boxes. They need advice on what to buy.

What they buy must be influenced by how they’re going to start with bees. One of the easiest ways around this is to allocate them a mentor and let them lead on the specifics (assuming they’ll be getting bees from their mentor).

One thing that should be stressed is the importance of having sufficient compatible equipment to deal with swarming (which we’ll be coming to shortly).

Dummy board needed ...

5 frame poly nucleus hive needing a dummy board …

My recommendation would be to buy a full hive with three supers and a compatible polystyrene nucleus hive. In due course beginners will probably need a second hive, but (if you teach the simplest form of swarm control – see below) not in the first year. A nuc box will be sufficient.

Swarming and swarm control

Swarming is often considered to be confusing 6.

It doesn’t need to be.

The life cycle of the bee and the colony have been covered already. Swarming and queen cells is just honey bee reproduction … or it’s not swarming at all but an attempt to rescue the otherwise catastrophic loss of a queen 🙁

Deciding which is important and should influence the action(s) taken.

The determinants that drive swarming are reasonably well understood – space, age of the queen etc. The timing of the events, and the importance of the timing of the events leading to swarming is very well understood.

Preventative measures are therefore easy to discuss. Ample space. Super early. Super often.

It’s swarm control that often causes the problem.

And I think one of the major issues here is the attempts to explain the classic Pagden artificial swarm. Inevitably this involves some sort of re-enactment, or an animated Powerpoint slide, or a Tommy Cooper-esque “Glass, bottle … bottle, glass” demonstration 7.

Often this is confounded by the presenters’ left and right being the audiences right and left.

Confused? You will be.

Far better to simply teach a nucleus hive-based swarm control method. Remove the old queen, a frame of emerging brood, a frame of stores and a few shakes of bees. Take it to a distant apiary (or block the entrance with grass etc. but this adds confusion) and leave a single open charged queen cell in the original hive.

This method uses less equipment, involves fewer apiary visits, but still emphasises the need for a thorough understanding of the queen development cycle.

And, to avoid confusion, I wouldn’t teach any other forms of swarm control.

Yes, there are loads that work, but beginners need to understand one that will always work for them. Hopefully they’ve got dozens of summers of beekeeping ahead of them to try alternatives.

I think swarm control is one area where the KISS principle should be rigorously applied.

Disease prevention and management

Colony disease is a reality but you need to achieve a balance between inducing paranoia and encouraging complacency.

This means knowing how to deal with the inevitable, how to identify the possible and largely ignoring the rest.

The inevitable is Varroa and the viruses it transmits. And, of at least half a dozen viruses it does transmit, only deformed wing virus needs to be discussed. The symptoms are readily identifiable and if you have symptomatic bees – and there can be no other diagnosis – you have a Varroa problem and need to take action promptly.

Worker bee with DWV symptoms

Worker bee with DWV symptoms

In an introductory course for new beekeepers I think it is inexcusable to promote alternate methods of Varroa control other than VMD-approved treatments.

And, even then, I’d stick to just two.

Apivar in late summer and a trickle of Api-Bioxal solution in midwinter.

Used properly, at the right time and according to the manufacturer’s instructions, these provide excellent mite management.

Don’t promote icing sugar shaking, drone brood removal, small cell foundation, Old Ron’s snake oil or anything else that isn’t documented properly 8.

Almost always there will be questions about treatment-free beekeeping.

My view is that this has no place in a beginners course for beekeepers.

The goal is to get a colony successfully through the full season. An inexperienced beekeeper attempting to keep bees without treatment in their first year is a guaranteed way to lose both the colony and, probably, a disillusioned trainee beekeeper from the hobby.

To lose one may be regarded as a misfortune, to lose both looks like carelessness. 9

Once they know how to keep bees alive they can explore ways to keep them alive without treatment … and they will have the experience necessary to make up for the colony losses.

In terms of other diseases worth discussing then Chronic Bee Paralysis Virus (CBPV) is rapidly increasing in prevalence. Again the symptoms are pretty characteristic. Unlike DWV and Varroa it’s not yet clear what to do about it. Expect to see more of it in the next few years.

Nosema should probably be mentioned as should the foulbroods. The latter are sufficiently uncommon to be a minor concern, but sufficiently devastating to justify caution.

By focusing on the things that might kill the colony – or result in it being destroyed 🙁 – you’re obviously only scratching the surface of honey bee pests and pathogens. But it’s a start and it covers the most important things.

Most beginners have colonies that never get strong enough for CBPV to be a problem. Conversely, their weakness means that wasps might threaten them towards the end of the season, so should probably be discussed.

And, of course, the Asian hornet if you’re in an area ‘at risk’.

My beekeeping year

By this time the beginners have an overview of an idealised beekeeping year, an appreciation of the major events in the year – swarming, disease management, the honey harvest and preparation for winter.

Sounds easy, doesn’t it?

But an ideal wrap-up session to a starting beekeeping course would be the account of a real first year from a new beekeeper.

What were the problems? How did they attempt to solve them? What happened in the end?

This asks a lot of a relatively inexperienced beekeeper. Not least of which is good record keeping (but of course, they learnt this on the course the previous year 😉 ).

However, the comparison between the ‘textbook’ account delivered during the course with the ‘sweating in a beesuit’ reality of someone standing by an open hive feeling totally clueless is very enlightening.

Sweating in a beesuit

With sufficient preparation you could even turn it into a quiz to test what the trainees have understood.

I’ve seen several ‘starting beekeeping’ courses. All have had some of the things described above. None have had all of them. Most have included superfluous information, or in some cases, dangerous misinformation.

Which brings neatly me to the question of who should teach the course?

If you can do, if you can’t teach

Ensuring that everything is covered at the right time, avoiding duplication and maintaining the correct emphasis takes skill for one person. For a group of individuals it requires a lot of preparation and strict instructions not to drift off topic.

You might have noticed that many experienced beekeepers like to talk.

A lot.

A course handbook becomes an essential – both to help the students and as a guide to keep “on message” for the tutors.

Often it is some of the most experienced beekeepers who teach these courses.

Some are outstanding. Others less so.

Their years of experience often means they take for granted the subtleties that are critical. The difference between play cups and a 1-2 day old queen cell. A reduced laying rate by the queen. How to tell when there is a nectar flow on, and when it stops.

All of this, to them, is obvious.

They forget just how much they have learned from the hundreds of hives they have opened and the thousands of frames they have examined. They’ve reached the stage when it looks like they have a sixth sense when it comes to finding the queen.

Queen rearing course

Listen up Grasshopper!

As Grasshopper says to the old, blind master 10 “He said you could teach me a great knowledge”.

Possibly.

But sometimes they’ve retained some archaic approaches that should have been long-forgotten. They were wrong then, they still are. Paint your cedar hives with creosote. Use matchsticks to ventilate the hive in winter. Apistan is all you need for Varroa control.

 

Matchless matches

If any readers of this post have had these suggested on a course they are currently attending then question the other things that have been taught.

Get a good book that focuses on the essentials. I still think Get started in beekeeping by Adrian and Claire Waring is the best book for beginners that I’ve read 11.

Get a good mentor … you’re going to need one.

And good luck!


 

Resolutions

It’s that time of the year again. The winter solstice is long passed. Christmas has been and gone. The New Year is here.

Happy New Year 🙂

And New Year is a time to make resolutions (a firm decision to do or not to do something).

There is a long history of making resolutions at the turn of the year. The Babylonians promised to pay their debts and return borrowed objects at their New Year. Of course, their year was based on a lunar calendar and started with the first crescent moon in March/April, but the principle was the same.

Many New Year’s resolutions have religious origins … though the more recent trend to resolve to “drink less alcohol” or “lose weight are somewhat more secular.

About 50% of people in the western world make New Year’s resolutions. This figure is up from ~25% in the 1930’s. Perhaps success increases uptake?

Popular resolutions include improvement to: health (stop smoking, get fit, lose weight), finance or career (reduce debt, get a better job, more education, save more), helpfulness (volunteer more, give more to charity) or self (be less grumpy, less stressed, more friendly) etc.

But since this is a beekeeping website it is perhaps logical to consider what resolutions would lead to improvements in our beekeeping.

Beekeeping resolutions

The short winter days and long, dark nights are an ideal time to develop all sorts of fanciful plans for the season ahead.

How often are these promptly forgotten in the stifling heat of a long June afternoon as your second colony swarms in front of you?

The beekeeping season starts slowly, but very quickly gathers pace. It doesn’t take long before there’s not enough time for what must be done, let alone what you’d like (or had planned) to do.

And then there are all those pesky ‘real life’ things like family holidays, mowing the lawn or visiting relatives etc. that get in the way of essential beekeeping.

So, if you are going to make beekeeping resolutions, it might be best to choose some that allow you to be more proactive rather than reactive. To anticipate what’s about to happen so you’re either ready for it, or can prevent it 1.

Keep better records

I’ve seen all sorts of very complex record keeping – spreadsheets, databases, “inspection to a page” notepads, audio and even video recordings.

Complex isn’t necessarily the same as ‘better’, though I’ve no doubt that proponents of each use them because they suit their particular type of beekeeping.

Objective and subjective notes

My notes are very straightforward. I want them to:

  • Be available. They are in the bee bag and so with me (back of the car, at home or in the apiary) all the time. If I need to refer to them I can 2. They are just printed sheets of A4 paper, stuffed into a plastic envelope. I usually write them up there and then unless I forget a pen, it’s raining and/or very windy or I’m doing detailed inspections of every colony in the apiary. In these cases I use a small dictation machine and transcribe them later that evening.
  • Keep track of colonies and queens. I record the key qualitative features that are important to me – health, temper, steadiness on the comb etc. – using a simple numerical scoring system. Added supers are recorded (+1, +1, -2 etc) and there’s a freeform section for an additional line or two of notes. Colonies and queens are uniquely numbered, so I know what I’m referring to even if I move them between apiaries, unite them or switch from a nuc box to a full hive.
  • Allow season-long comparisons ‘at a glance’. With just a line or two per inspection I can view a complete season on one page. Colonies consistently underperforming towards the bottom of the page usually end up being united in late August/early September.
  • Include seasonal or environmental jottingsMay 4th – first swift of the year”, “June 7th – OSR finished”, “no rain for a fortnight”. These are the notes that, over time, will help relate the status of the colony to the local environment and climate. If the house martins, swallows and swifts are late and it’s rained for a month then swarming will likely be delayed. Gradually I’m learning what to expect and when, so I’m better prepared.

Monitor mites

Varroa remains the near-certain threat that beekeepers have to deal with every season. But you can only deal with them properly if you have an idea of the level of infestation.

Varroa levels in the colony depend upon a number of factors including the rate of brood rearing, the proportion of drone to worker brood and the acquisition of exogenous mites (those acquired through the processes of drifting and robbing).

Pupa (blue) and mite (red) numbers

In turn, these factors vary from colony to colony and from season to season. As I discussed recently, adjacent colonies in the same apiary can have very different levels of mite infestation.

Additional variation can be introduced depending upon the genetically-determined grooming or hygienic activity of the colony, both of which rid the hive of mites.

Since the combined influence of these factors cannot be (easily or accurately) predicted it makes sense to monitor mite levels. If they are too high you can then intervene in a timely and appropriate manner.

Quick and effective ways to monitor mite levels

Any monitoring is better than none.

Easy counting ...

Easy counting …

There are a variety of ways of doing this, some more accurate than others:

  1. Place a Correx tray under the open mesh floor (OMF) and count the natural mite drop over a week or so. Stick the counts into the National Bee Unit’s (appropriately named) Varroa calculator and see what they advise. There are quite a few variables – drone brood amounts, length of season etc – that need to be taken into account and their recommendation comes with some caveats 3. But it’s a lot better than doing nothing.
  2. Uncap drone brood and count the percentage of pupae parasitised by mites. The NBU’s Varroa calculator can use these figures to determine the overall infestation level. The same caveats apply.
  3. Determine phoretic mite levels by performing a sugar roll or alcohol wash. A known number of workers (often ~300) are placed in a jar and the phoretic mites displaced using icing sugar or alcohol (car screenwash is often used). After filtering the sugar or alcohol the mites can be counted. Sugar-treated bees can be returned to the colony 4. Infestation levels of 2-3% (depending upon the time of season) indicate that intervention is required 5.

Does what it says on the tin.

Overwinter nucs

If you keep livestock you can expect dead stock.

Unfortunately colony losses are an inevitability of beekeeping.

They occur through disease, queen failure and simple accidents.

Most losses are avoidable:

  • Monitor mites and intervene before virus levels threaten survival of the colony.
  • Check regularly for poorly mated or failing queens (drone layers) and unite the colony before it dwindles or is targeted by wasps or other robbers.
  • Make sure you close the apiary gate to prevent stock getting in and tipping over hives … or any number of other (D’oh! Slaps forehead 🙄 ) beekeeper-mediated accidents).

But they will occur.

Corpses

Corpses …

And most will occur overwinter. This means that as the new season starts you might be missing one or two hives.

Which could be all of your colonies if you only have a two 6.

Replacing these in April/May is both expensive and too late to ensure a spring honey crop.

Winter colony losses are the gift that keeps on giving taking.

However, if you overwinter an additional 10-25% of your colonies as 5 frame nucs (with a minimum of one), you can easily avoid disaster.

Here's one I prepared earlier

Here’s one I prepared earlier

If you lose a colony you can quickly expand the nuc to a full hive (usually well before a commercially-purchased colony would be ready … or perhaps even available).

And if you don’t lose a colony you can sell the nuc or expand your colony numbers.

Sustainable beekeeping

If you’ve not watched Michael Palmer’s The Sustainable Apiary at the National Honey Show I can recommend it as an entertaining and informative hour for a winter evening.

Michael keeps bees in Vermont … a different country and climate to those of us in the UK. However, his principles of sustainable beekeeping without reliance on bought-in colonies is equally valid.

Overwintering nucs requires a small investment of time and money. The former in providing a little more care and attention in preparation for winter, and the latter in good quality nucleus hives.

I reviewed a range of nuc boxes six years ago. Several of these models have been discontinued or revised, but the general design features to look for remain unchanged.

Here's three I prepared earlier ...

Everynuc poly nucs

Buy dense poly nucs for insulation, make sure the roof isn’t too thin and flimsy and choose one with an entrance that can be readily reduced to a “bee width” 7. Choice (and quality) has improved over the last 5-6 years but I still almost exclusively use Thorne’s Everynuc. I bought 20 a few seasons ago and remain pleased with them, despite a few design weaknesses.

Beekeeping benefits

I do all of the above.

Having learned (often the hard way) that my beekeeping benefits, these habits are now ingrained.

I had about 20 colonies going into the 2019/20 winter, including ~20% nucs. All continue to look good, but it won’t be until late April that I’ll know what my winter losses are.

In the meantime I can review the hive notes from last season and plan for 2020. Some colonies are overwintering with very substandard queens (generally poor temper) because they’re research colonies being monitored for changes in the virus population 8. They will all be requeened or united by mid/late May.

My notes mean I can plan my queen rearing and identify the colonies for requeening. I know which colonies can be used to source larvae from and which will likely be the cell raisers. The timing of all this will be influenced by the state of the colonies and the environmental ‘clues’ I’ve noted in previous years.

Capped queen cells

Capped queen cells

Of course, things might go awry before then, but at least I have a plan to revise rather than making it up on the spur of the moment.

I learned the importance of mite monitoring the hard way. Colonies unexpectedly crashing in early autumn, captured swarms riddled with mites that were then generously distributed to others in the same apiary. Monitoring involves little effort, 2-3 times a season.

So these three things don’t need to be on my New Year’s resolution list.

Be resolute

More people make New Year’s resolutions now than 90 years ago.

However, increasing participation unfortunately does not mean that they are a successful way to achieve your goals.

Richard Wiseman showed that only 12% of those surveyed achieved their goal(s) despite over 50% being confident of doing so at the beginning of the year.

Interestingly, success in males and females was influenced by different things. For men, incremental goal-setting increased the success rate 9 (I will write hive notes on every apiary visit, rather than Keep better notes). For women, the peer pressure resulting from telling friends and family increased success by 10%.

More generally, increased success in achieving the goals resulted from:

  • Making only one New Year’s resolution – so perhaps the three things above is overly ambitious?
  • Setting specific goals and avoiding resolutions you’re previously failed at.

My New Year’s (beekeeping) resolutions?

Since I’m a man, the chance of achieving my goals is not influenced by peer pressure so I’m not publishing them. We’ll have to see in 12 months whether I’m in the 12% that succeed … or the 88% that fail 😉


 

Questions & Answers

One of the challenging things about beekeeping is that the season can be both confusing and entertaining in equal measure.

It’s entertaining because it’s always a little bit different from the seasons that have preceded it. The environment changes. There’s an early spring, or late frosts, a drought, a monsoon or the local farmer changes from one strain of OSR to another.

Sometimes you get all of those in a single season … or month.

Mainly dry ...

Mainly dry …

But not only does the environment change, so do your bees. Inevitably your queens will be replaced over the years. In turn, they influence the performance of the colony. Your virgins fly off to the drone congregation areas where they mate with the ‘bad boys’ from colonies run by a nearby beekeeper with much thicker gloves and a fleece under his beesuit 🙁

Mayhem ensues. Inspections get a whole lot less fun. Quickly.

Or you collect a swarm headed by a fecund queen who busies herself producing calm, prolific, frugal and productive workers.

The colony gets bigger. And bigger. It shows no signs of swarming.

As you add the fourth super you feel like you’ve really cracked this beekeeping lark.

Sorted 🙂

But these things also make beekeeping incredibly confusing to the newcomer.

If you take a calendar-centric view there is no right answer to ‘When will the colony swarm?’ or ‘Is this the right time to treat for mites?’ or ‘Should I remove the supers now?’.

And many beginners do have a calendar-based viewpoint. It’s so much easier to prepare if you’re told that swarming starts in the third week of May and the supers should be removed at the end of August.

Not only is that easier to understand, but the telltale signs that the bees produce aren’t – for a beginner – very good at telling tales.

The first half-hidden charged queen cell, a reduced laying rate, the reduction in loaded returning foragers etc.

Play cup or queen cell?

Play cup or are they planning their escape …?

But, for me, at least half of the enjoyment is deciphering these signs and working out what the colony is doing, or going to do.

And therefore, what I should be doing.

Questions and answers

Most of this is observation, interspersed with a bit of record keeping and sprinkled with some ‘best guesses’.

If you keep asking the (right) questions you will slowly but surely start finding the answers.

Are they running out of space, making more play cups, and slimming the queen down for the great escape?

But many of these things are too subtle for beginners overwhelmed by the difficulty in just finding the queen amongst 38,789 of her daughters.

Inevitably this means that beginners – quite rightly – ask other beekeepers lots of questions.

I did.

I still do.

And in this increasingly connected world, some of those questions take the form of internet searches.

And some of these questions pop up as search terms on this site.

Mites

Willie Wonka meme

Many of these queries are about mite management:

  • best time to treat for varroa in honey bees?
  • should bees be treated for mites in spring?
  • use apiguard in june?
  • oxalic acid to treat varroa can i do it this week?
  • when to treat bees with oxalic acid in arkansas?

Very specific questions, very calendar-centric. There are hundreds more queries like these 1.

A correct answer requires an understanding of the biology of the mite and an appreciation of the state of the hive.

Neither necessarily involves the calendar. Both can be acquired with a little homework and good observation. However, the very fact that ~25% of queries are about mite management emphasises that many struggle with this aspect of beekeeping.

I remain convinced that the biggest challenge new beekeepers face is how to effectively manage mites. Without proper mite management your colonies will perish.

If you lose your colonies every winter you soon get disheartened.

The easiest way to properly control mite numbers is with chemicals.

It’s what I do.

Returning a marked and clipped queen

However, it’s not the only way.

Excellent beekeeping, selective rearing of mite-tolerant colonies (or of attenuated viruses!) and yet more excellent beekeeping – coupled with a favourable environment – may mean you can keep colonies without chemical intervention, and without excessive losses 2.

All beginners lack the necessary experience to achieve this. Most lack the ability to learn the skills quickly enough to save their colonies and the majority probably live in areas that are unsuitable.

Most importantly, many beginners aren’t resilient enough to ‘learn the hard way’. They believe the (largely incorrect) statements about the evils of treatment, they want their bees to be ‘healthy and happy’ 3, they like the sound of the term biodynamic 4 … but they cannot cope with losing their stocks every single winter through disease and starvation.

So they give up.

Learn to keep bees … then learn (again, using the years of knowledge already accumulated) to keep them without chemical intervention if you want. Not the other way round.

Read all you can – here and elsewhere – but remember that nothing is as valuable as time spent observing your bees.

Technical queries

These are the sorts of questions that probably can be easily answered 5.

Remembering of course that there are usually at least two correct answers for every question, and any number of incorrect ones.

  1. honey warming cabinet plans
  2. how long does it take bees to chew through newspaper?
  3. what is the chance of a queen being left in my hive when i have just lost a huge swarm?
  4. alighting board angle
  5. where and how to set up bait hives?

My honey warming cabinet is one of the most useful things I’ve built for my beekeeping and the pages that first describe it, the plans and its use, remain some of the most popular on this site.

The answer to Q2 obviously depends upon how many sheets of newspaper are involved.

I think we all know the answer to Q3 and it’s not going to make the questioner happy 😉

It’s very rare that you can provide an absolute definitive answer in beekeeping. However, after many years of exhaustive, well-controlled and independently verified trials I have unequivocally shown that the answer to Q4 is 47.7°.

47.7° precisely

Not more, not less.

Remembering of course that a landing (alighting) board isn’t actually needed at all 😉

Tom Seeley has done the definitive studies on bait hives (Q5). He clearly describes the ‘where’. My recommendations are rather more pragmatic. It’s easier to monitor and move bait hives if they’re not 5 metres above the ground.

Miscellaneous or just weird

And then there are lots of queries that are simply amusing typos, nonsensical or just odd. My favourites this year are:

  1. maxant crank mechanism
  2. langtorthe eke
  3. how to wear rigger boots?

I’ve no idea how the first of these landed up on the apiarist.org as it’s a term I’ve never used. The middle query (Q2) is a typical typo. It’s an obvious one, but it constantly amazes me how good fuzzy matching algorithms are these days.

Q3 is about beekeeping footwear. My last pair of rigger boots were abandoned years ago when the lining fell apart and they eventually turned my feet to a bloody pulp.

How to wear them?

I wore mine while hobbling. It’s not something I’d recommend.

I now wear Muck boots – specifically the now discontinued Edgewater II short boots – which are lightweight, very comfortable and fully waterproof. No steel toe cap, but I never drop full supers.

Oops ...

Oops …

Well, almost never.

Questions and comments

Not all questions originate in internet searches. Many come via the comments sections at the end of most posts. Most of these are both welcomed and useful; they allow me to clarify things that I’d presented confusingly, or they provide an opportunity to expand on parts of the post.

The numbers of comments have increased significantly this year.

More words and more comments

This increase probably reflects the increased readership (and page accesses) of the site.

Alternatively it might mean the writing is getting worse as the comment numbers correlate with the increased length of posts 🙁

I try and answer as many comments/questions as I can. Many make very salient points and I’m very grateful for those who take the time to comment, either to correct me, to seek clarification or to provide their own insight on the topic.

I ignore those that are dogmatically stupid or just plain wrong. My prerogative. There’s enough bad advice on the internet without propagating more.

I apologise to those who comment via Facebook or Twitter. I almost exclusively use both for promoting posts made here 6. Both generate a lot of traffic to this site but I simply don’t have time (or interest) to use them interactively.

If you want to contact me do so via the comments section or the, aptly named, contact form.

More Readers’ Questions

Which, in a rather circuitous way, brings me to the Readers’ Questions Answered column in the BBKA News. I was asked to tackle these a few months ago and January and February are already written 7.

BBKA News Readers’ Questions Answered proofs

The BBKA News is the monthly newsletter of the British Beekeepers Association. It has a circulation of ~25,000. Each year a different victim expert mug contributor prepares the answers. I’m taking over from Bob Smith, NDB from Medway BKA who did an excellent job and will be a hard act to follow. Some of the previous contributors have been anonymous which might have been a sensible option, but it’s too late for me now.

My family joke that I’m now an agony aunt for beekeepers.

I discussed this with Calum, a regular contributor to the comments section of these pages, who provided (as usual) some very sage advice, including “Bees put up with a lot of sh1t from beekeepers”. I don’t think the BBKA will want to use that as my strapline but it certainly sums things up pretty accurately.

Happy New Year … may your queens be well mated, your mite numbers low, your supers heavy and may your prime swarms be in my bait hives  🙂


 

Rinse and repeat

Midwinter mite treatment is no substitute for a properly applied late summer treatment that protects your all important winter bees. However, you also need to control mites in the winter or there is a good chance their numbers will reach damaging levels the following season 1.

Mid September

Late summer treatment and no winter treatment – mite levels in red.

OA (oxalic acid-containing) treatments are the ones to use in midwinter (e.g. Api-Bioxal). These can be trickled in syrup onto each seam of bees or they can be vaporised (sublimated), effectively coating everything in the hive with a very fine dusting of crystals.

Trickling damages open brood whereas sublimation is exceedingly well-tolerated by the colony.

If you are certain the colony is broodless then trickling is faster 2 and – because you don’t need power or any more PPE 3 than a pair of gloves – much easier.

If the ambient temperature is consistently below ~6°C and I know the colony is broodless I usually trickle. If the temperature is higher and/or I’m uncertain about whether there is brood present I usually vaporise.

I watch the weather and treat after the first prolonged cold spell of the winter.

Experience over the last few years suggests this is when colonies are most likely to be broodless.

Most likely is not the same as certain 🙁

Count the corpses

After treating I closely monitor the mite drop over several days. I use white Correx Varroa trays that slide underneath the open mesh of my kewl floors.

Easy counting ...

Easy counting …

I don’t count the mites every day, but I do try and count the day after treatment and 2-4 days later. I record the mite drop per hive and, over time, look for two things:

  1. The cumulative mite drop. This indicates the original infestation level of the hive. Usually it’s in the range 10-75 mites (total) for my colonies in midwinter, but – as you’ll see – it can be much higher.
  2. The speed with which the daily mite drop falls to a low single-digit average. OA treatment is very effective at killing phoretic mites. If there’s a continuing high level of mite drop it suggests that more are getting exposed over time.

In my experience, vaporised OA often results in a greater mite drop 24-48 hours post-treatment rather than in the first 24 hours 4. After that I expect (hope) the daily mite drop tails off very quickly.

Vaporised OA remains effective in the hive for several days. Randy Oliver reports studies by Radetzki who claims it remains effective for up to three weeks. I think this is an overestimate but I’m sure it continues working well for four to five days.

OA, whether vaporised or trickled, on broodless colonies is 90-95% effective i.e. if there were 100 mites in the colony you should expect as few as 5 remain after treatment.

Four to five days after the initial treatment I eyeball the numbers across all the hives in an apiary and look at the profile of the mite drop.

Mite drop profiles

I couldn’t think of a better term for this. Essentially, it’s the shape of a graph of mites dropped per day after treatment.

I don’t usually draw the graph – I have a life – but I do look carefully at the numbers.

Here are a couple of sketched graphs showing what I mean. Days are on the horizontal (X) axis, dead mites per day are on the vertical (Y) axis. Treatment applied on day 0. No count (yet) on day 6.

Mite drop profile – this is what you want

In the graph above there are high(er) levels of dropped mites on the first day or two after treatment, but levels thereafter drop to a basal level of perhaps 1-4 mites per day.

Each time I count the mites I clean the Varroa tray (the rinse in the title of the post).

Assuming the day 5 mite drop is very low, the profile above is what I’m looking for. It shows that treatment has worked and no repeat is necessary.

The profile below is much less promising 5.

Mite drop profile – this suggests additional treatment is needed

In this graph (above) the mite drop remains high every day after treatment. Sometimes they even increase over time.

If you assume treatment is equally effective – say 90%+ – on the five days after treatment 6 this must mean that there are mites being killed on days 4 and 5 that were not exposed to treatment on the earlier days.

How can this be?

The most likely explanation is that the colony had some sealed brood that has emerged in the days following treatment, exposing previously ‘hidden’ mites to the miticide.

It’s good that they’ve perished, but are there more hiding? How do you tell?

Enough of my hand drawn idealised graphs with no real numbers … what about some actual data?

Real world data

The graph below shows data for seven colonies in a single apiary. All were treated with Apivar in late summer. All were treated with a vaporised oxalic acid-containing treatment on the 28th of November. 

Mite drop profiles – real world data

I counted the mite drops on the 29th (T+1), the 2nd (T+4) and 3rd (T+5). The figures for 30th to the 2nd were averaged, which is why the bars are all the same height.

  • Colonies 3 and 6 had very low mite levels. Though not the lowest in the apiary 🙂
  • Colonies 2 and 7 had pretty good mite drop profiles, with low single-digit numbers on day T+5. None of these four colonies (2, 3, 6, 7) need treating again.
  • Colonies 1 and 5 have high mite levels 7 and – despite the pretty good levels on T+5 in colony 1 – were both re-treated.
  • Colony 4 was also treated again as the profile was flat and I suspected they had low levels of mites but were rearing brood..

And repeat

Note: The instructions for Api-Bioxal specifically state that the maximal dose of 2.3g/hive should be made in a single administrations with only one treatment per yearPrior to the VMD licensing and approval of Api-Bioxal there was effectively tacit approval for beekeepers to use unadulterated oxalic acid by trickling or vaporisation, without any particular limitations on frequency of usage.

It’s worth stressing that you should not repeat oxalic acid trickling 8.

Here is some real data for repeat treatments of another colony in the same apiary.

Repeat treatment for brood-rearing colony

The average mite drop per day over the first 5 days was ~60. This justified an additional treatment. Over the next 6 days 9 the average drop was ~20. I considered a third application was needed after which the mite drop per day was in the low single digits.

And again

Repeated treatment is needed if there is sealed brood in the colony.

The likelihood is that two additional treatments will be required.

Why two?

Here’s a reminder of the development cycle of the Varroa mite in developing worker or drone brood.

Repeated oxalic acid vaporisation treatment regime.

Worker brood occupies capped cells for 12 days (days 10 – 21 of development, shown above). Vaporised oxalic acid-containing treatments show a drop in efficacy after 4-5 days 10.

Therefore, to cover a complete cycle of capped brood, you need 3 x 5 day treatments to be sure no mites emerge without them being greeted with a lethal dose of something really, really unpleasant 😉

There should be no drone brood in your winter hives 11 but, if there was, 3 x 5 day treatments should just be enough to cover the complete cycle of capped drone brood as well. However, a fourth treatment might be needed.

Note (again): The instructions for Api-Bioxal specifically state that the maximal dose of 2.3g/hive should be made in a single administrations with only one treatment per year

Not all hives are equal

There are 15 hives in the apiary containing the bee shed. Colony 1 had just about the highest mite levels. However, as shown in one of the graphs above, adjacent colonies can have markedly different mite levels.

There is no clear correlation between mite drop after treatment and colony size. Colony 1 is a double brood monster, but the others in the bee shed are all single brood 10 and 11 frame Nationals 12.

Some colonies need repeated treatment, others did not.

To maximise efficient treatment and minimise unnecessary miticide usage it is necessary to monitor all the colonies.

It’s also worth noting that monitoring only a single hive in an apiary may be misleading; compare colonies 1 and 6 above in the graph of real data from the bee shed.

This monitoring takes just a few minutes. I usually do it after work. In the bee shed this is easy as I now have LED lighting and it’s nice and dry.

Easy conditions to count mites

In my out apiaries I have to do it by headtorch … under an umbrella if it’s raining 🙁

Checking mite drop by torchlight

That’s the last job of the winter completed … time now to review the season just gone and plan for next year.


Colophon

Rinse and repeat

Rinse and repeat is a truncation of instructions often found on the side of shampoo bottles – Lather, rinse and repeat. Other than potentially resulting in an endless loop of hair washing, it also means that a process is (or needs to be) repeated.

In The Plagiarist by Benjamin Cheever, a marketing executive becomes an industry legend by adding one word – REPEAT – to shampoo bottles. He doubles sales overnight.

For Varroa treatment the instructions should be amended to Repeat if necessary … and note again the instructions on Api-Bioxal which, at the time of writing, is the only oxalic-acid containing VMD approved miticide that can be administered by vaporisation.