Category Archives: Feeding

Beekeeping economics

You are not going to make a million being a beekeeper. Or even a fraction of that.

I know a couple of beekeepers who have all the trappings of wealth … the big house, the big car with the personal number plate, the holiday place in France and the beesuit with no smoker-induced holes in the veil.

Neither of them made their money beekeeping.

Anyone aboard Murray?

I’ve met a few of the large commercial beekeepers here and abroad, operations with 500 to 1000 times the number of hives I’ve got.

None of them seemed to have yachts or Ferraris.

Or any free time to enjoy them if they had ūüėČ

If you want to have a lot of money when you finally lose your last hive tool you probably need to start with lots more 1.

But the vast majority of beekeepers aren’t commercial. Most are hobbyists.

A hobby that (sometimes) makes a profit

In the UK there are ~25,000 beekeepers. Of these, the Bee Farmers Association represent the interests of the ~400 commercial beekeeping businesses.

Over 98% of UK beekeepers therefore do not consider themselves as commercial. These amateur or hobby beekeepers have on average 3-5 hives each, according to relatively recent surveys. Most probably have just one or two, with a few having more 2.

It’s worth emphasising (again) that it is¬†always better to have more than one colony. The small increase in work involved – the apiary visits, the inspections, extracting all that honey ūüėČ – is more than justified by the experience and resilience it brings to your beekeeping.

Two are better than one …

For the remainder of the post I’m going to consider a (hypothetical) beekeeper with four colonies.

What are the costs involved in running four colonies and how much ‘profit’ might be expected?

Inevitably, this is going to be very, very approximate.

I’m going to make a load of assumptions, some loosely based on real data. I’ll discuss some of the more important assumptions where appropriate.

I’m also going to ignore a load of variables that would be little more than guesstimates anyway e.g.¬†petrol costs to get to your apiary 3, the purchase of additional hive hardware or rent for the apiary.

Why four hives?

I’ve chosen four hives for a number of reasons.

Firstly, it’s a small enough number you could house them in a small(ish) suburban garden and, wherever they’re sited, they will not exploit all the forage in range.

Abelo poly hives

Abelo poly hives on wooden pallets

Secondly, it’s a manageable number for one beekeeper with a full time job and lots of other commitments. However, it’s not so many you have to buy an electric extractor or build a honey-processing room 4.

Finally, some expenses are for items sold in multiples e.g. frames or miticides, and it saves me having to¬†slice’n’dice every outgoing cost too much.

This hypothetical four hive beekeeper also, very sensibly, belongs to her local association. She therefore has access to the shared equipment (e.g. a honey extractor) that the association owns.

The costs of starting beekeeping

I’ve covered this before and will just summarise it here.

I reckon the minimum outlay is a bit less than ¬£500. This covers the purchase of two hives (Thorne’s Bees on a Budget @ ¬£160 for a complete hive, two supers, frames, foundation¬†etc.), a good quality beesuit (perhaps another ¬£100) together with the peripheral, but nevertheless essential, smoker, hive tool and gloves. It does not cover the cost of bees.

Two hives really should be considered the minimum. Even if you only start with one colony, swarm control or colony splits in your second year will necessitate the purchase of a second hive.

So, for the purpose of these back of an envelope calculations I’ll assume our hypothetical beekeeper has already spent about ¬£1000 on starting up and then doubling up the numbers of hives.

Cedar or polystyrene hives should last more than 25 years. I’m not going to work out the depreciation on this initial outlay 5.

So, let’s get back on track.

In an average year, what is the expenditure and potential income from these four hives.

Expenditure

The outgoing costs are associated with maintaining a good environment for the bees, minimising disease and ensuring they have sufficient food for the winter (or during a nectar dearth).

Yet more frames ...

Yet more frames …

The first annual expense is the replacement of ~30% of the brood comb every season. This is necessary to reduce the pathogen load in the hive and to replace the old, black comb with fresh new comb.

Frames and the foundation to go in them are generally bought in 10’s or 50’s. With four hives (assuming Nationals) that means you need a fraction over 13 new frames a season. First quality frames bought in 10’s, together with premium quality foundation 6, work out at ¬£2.99 each i.e. ~¬£40 for the year.

To control mites you need to use miticides 7. For the purpose of this exercise we’ll assume our beekeeper chooses to use Apivar in the autumn. This costs ¬£31 for 5 hive treatments 8 and is required once per year. In midwinter our beekeeper wisely chooses to use an oxalic acid trickle as well, knowing that – while the colony is broodless – the mites are easier to slay. ¬£13 buys you a ten-hive (35 g) pack of Api-Bioxal 9 which has a shelf-life of more than a year, so for one year the expense is ¬£6.50 (which for convenience I’ve rounded up to ¬£7).

Food is essentially sugar in some form or another. A single colony needs 10-20 kg of stores for the winter (depending Рvery much Рupon the strain of bee, the harshness of the winter etc.). You therefore need to feed about 12.5 litres of heavy syrup (2:1 by weight, sugar to water) which weighs about 16kg (and finally generates ~14 kg of stores) and contains about 10 kg of sugar. Tesco sell granulated sugar for 64p per kilogram. So, for four colonies, our beekeeper needs to purchase ~£26 of granulated sugar.

Remember two of those figures in particular – 14 kg of stores and the 10 kg of sugar that needs to be purchased to make them 10.

Expenditure totals

In total, four hives are likely to cost about £104 to maintain per year.

Yes, I know I’ve omitted all sorts of things such as stimulative feeding in the spring, replacement super frames and hive tools. I’ve not costed in the honey buckets or any number of other¬†‘odds and sods’ like replacement Posca pens for queen marking. Let’s keep this simple ūüôā

The essentials work out at a little over £25 per hive.

But wait … there is something I’ve omitted.

Not expenditure per se, but losses that have to be made good to ensure that our beekeeper still has 4 colonies in subsequent seasons.

Isolation starvation ...

Isolation starvation …

These are the ‘losses’ due to colonies dying overwinter or during the season. I think these should be included because they are the reality for most beekeepers. On average ~20-25% of colonies are lost each season. Not by everyone (which I’ll cover in a follow-up article on¬†economies in¬†beekeeping) of course, but winter losses are so common for most beekeepers that they need to be factored in – either by making increase or by avoiding losing them in the first place.

Enough on these hidden costs, what about the the income?

Products of the hive

Bees, as well as providing critical ecosystem services (pollination) and being fascinating animals, also produce very valuable products.

The best known and most obvious product is of course honey. However, the products of the hive also includes wax, propolis and Royal Jelly.

Local honey

I’m going to ignore everything but the honey. Royal Jelly and propolis are too specialised for the sort of ‘average beekeeper’ we’re considering and four hives produce relatively small amounts of wax each year.

There’s an additional product of the hive … bees. Don’t forget these as they can be the most valuable product made in any quantity.

You can sell complete hives, small nucleus colonies (nucs) and mated queen bees 11. For convenience I’m going to assume the only ‘live’ product of the hive our beekeeper might sell is a five frame nuc if they have one spare. What’s more, I’m going to assume that our beekeeper either recoups the cost of the box or has it returned (but pays ¬£15 for the frames and foundation in the nuc).

So, how much honey and how many bees?

Income from honey

The average honey yield in 2018 in the UK was ~31 lb per hive.

2018 was a very good season.

The annual BBKA survey of 2017 showed the average that year was ~24 lb per hive.

Yields vary year by year and according to where you keep bees. The 2010 figure was ~31 lb, 2012 was a measly 8 lb per hive and 2014 was ~31 lb. I can’t find a record of the 2016 figure (but haven’t looked too hard).

Yields are higher in the south and lower in the north.

I’m going to err on the slightly generous side and assume that the honey yield per hive is 25 lb and that¬†our hypothetical beekeeper therefore generates 100 lb of honey per year.

More local honey

As we saw last week, honey prices vary considerably across the country.  For the purposes of these calculations we can use the BBKA survey which showed that ~56% of beekeepers sold honey at an average price of £5.49 per lb (cf. £5.67 in 2017).

And here’s the first dilemma … did the 44% of beekeepers who did not sell honey not have any honey to sell?

How does this affect the average per hive?

Or did they simply give everything away?

Or just eat it themselves ūüėČ

The annual BBKA surveys are not ideal datasets to base these calculations on. They are voluntary and self-selecting. Perhaps the 23,000 beekeepers who did not complete the survey 12 produced 150 lb per colony.

No, I don’t think so either.

I’m going to make the assumption that the average yield per hive was 25 lb and that our beekeeper chooses to sell her honey at an average price of ¬£5.50.

So the gross income from honey is £550 13.

However, selling this honey requires packaging Рjars, labels etc. Like everything else, costs vary, but 12 oz hexagonal honey jars plus lids from C Wynne Jones cost ~39p each, with a standard custom label and a plain anti-tamper label adding a further 10p per jar.  Therefore to sell that 100 lb of honey our beekeeper will have an outlay of £63, reducing the net income to £487.

Income from bees

A strong hive in a good year should be able to produce both bees and honey. With good beekeeping, good forage and good weather it is possible to generate a super or two of honey and a nuc colony for sale or to make increase.

However, you can’t produce large amounts of both from a single hive … it’s an either or situation if you want to maximise your production of honey or nucs.

I’m not aware of any good statistics on nuc production by amateur beekeepers (or even poor statistics). My assumption – justified below – is that the majority of beekeepers produce few, if any, surplus nucs.

Everynuc

Everynuc …

Why do I think that?

Firstly, nuc and package imports from overseas are very high. Demand is enormous and is clearly not met by local supply 14. Secondly, winter losses (25%, discussed above) need to be made good. I presume that this is what many/most nucs are used for.

If they’re produced at all.

There are some major gaps in the available information meaning that the next bit is a guesstimate with a capital G.

For the purpose of this exercise I’m going to assume that our hypothetical beekeeper produces one nuc per year that it is used to compensate for overwintering losses, thereby keeping colony numbers stable.

In addition, she generates one surplus nuc every four years for sale.

I’ve chosen four years as it’s approximately every four years that there is a ‘good bee season’ giving high yields of honey and the opportunity for good queen mating and surplus nuc production.

This surplus nuc is sold locally for £175 which, after subtraction of £15 for the frames, leaves an annual profit from bees of £40 (£160 every 4 years).

Income totals and overall ‘profit’

That was all a bit turgid wasn’t it?

Here are the final figures. Remember, this is for a four hive apiary, per annum (4 year average).

Item Expenditure (£) Income (£)
Frames and foundation 40.00
Miticides 38.00
Food 26.00
Honey (jars/labelling) and gross 63.00 550.00
Nucleus colony 15.00 40.00
Sub totals 182.00 590.00
Profit 408.00

Experienced beekeepers reading this far 15 will appreciate some of the assumptions that have been made. There are many.

They’ll also probably disagree with half of the figures quoted, considering them too high.

And with the other half, considering them too low.

They’ll certainly consider the average ‘profit’ per hive per year is underestimated.

Mid-May ... 45,000 bees, 17 frames of brood, one queen ... now marked

Mid-May … 45,000 bees, 17 frames of brood, one queen … now marked and clipped

But remember, our hypothetical beekeeper is based upon the average productivity and number of hives reported in the BBKA annual surveys.

As you will probably realise, a limited amount of travel to and from the apiary, or to shops/markets to sell honey, very quickly eats into the rather measly ¬£102 “profit” per hive.

Observations

I think there are two key things worth noting immediately:

  1. Miticide treatments cost ~¬£7.50 per hive per annum. Even at the rather derisory ¬£5.50/lb honey price quoted, this is still less than one and a half jars of honey. It is false economy to not treat colonies for¬†Varroa infestation. If you compare the cost of the treatment¬†vs. the ‘value’ of a replacement nuc to make up losses (¬£175) it further emphasises how unwise it is to ignore the mites.
  2. Some beekeepers leave a super or two at the end of the season ‘for the bees’. This is also false economy if you want to have any profit. The ~14 kg of stores (honey) needed will be replaced with a heavy syrup feed containing 10 kg of granulated sugar. At ¬£5.50 per pound this honey could be sold for ~¬£170 16. The granulated sugar costs about ¬£6.40. Do the maths, as they say. There is no compelling (or even vaguely convincing) evidence that bees overwinter more successfully on honey rather than after a granulated sugar feed. None 17.

Summary

This article highlights some of the major expenses involved in beekeeping. Where possible I’ve based the figures on a hypothetical ‘average’ beekeeper with an average number of hives.

I’ve assumed that all outgoing costs were at list price from large suppliers (and excluded shipping costs).

I’ve left out the almost invaluable¬†pleasure you get from working with the bees to produce lovely delicious local honey (or wax, or propolis, or bees or queens).

Do not underestimate this ūüôā Many – and I’m one – would keep some bees simply for this pleasure and the odd jar of honey.

No one is going to get rich quickly on ¬£100 per hive per year 18. However, the¬†purpose of this post was to provide a framework to consider where potential¬†cost savings can be made. In addition, it will allow me to emphasise the benefits, to the bees and the beekeeper (and potentially her bank balance), of strong, healthy, highly productive colonies rather than the ‘average’ 25% colony losses per autumn with less than a full super per hive honey … which is then sold for less than it’s worth.

But that’s for another time …


Colophon

Beekeeping economics as in “The management of private or domestic finances; (also) financial position.” which is distinct from economy¬†in beekeeping (which I will cover in a later post) meaning¬†“The careful management of resources; sparingness”.

Crime doesn’t pay

At least, sometimes it doesn’t.

In particular, the crime of robbery can have unintended and catastrophic consequences.

The Varroa mite was introduced to England in 1992. Since then it has spread throughout most of the UK.

Inevitably some of this spread has been through the activities of beekeepers physically relocating colonies from one site to another.

However, it is also very clear that mites can move from colony to colony through one or more routes.

Last week I described the¬†indirect transmission of a mite ‘left’ by one bee on something in the environment – like a flower – and how it could climb onto the back of another passing bee from a different colony.

Mite transmission routes

As a consequence colony to colony transmission could occur. Remember that a single mite (assuming she is a mated female, which are the only type of phoretic mites) is sufficient to infest a mite-free hive.

However, this indirect route is unlikely to be very efficient. It depends upon a range of rather infrequent or inefficient events 1. In fact, I’m unaware of any¬†formal proof that this mechanism is of any real relevance in inter-hive transmission.

Just because it¬†could happened does not mean it¬†does happen … and just because it¬†does happen doesn’t mean it’s a significant route for mite transmission.

This week we’ll look at the¬†direct transmission routes of drifting and robbing. This is timely as:

  • The early autumn (i.e.¬†now) is the most important time of year for direct transmission.
  • Thomas Seeley has recently published a comparative study of the two processes 2. As usual it is a simple and rather elegant set of experiments based upon clear hypotheses.

Studying phoretic mite transmission routes

There have been several previous studies of mite transmission.

Usually these involve a ‘bait’ or ‘acceptor’ hive that is continuously treated with miticides. Once the initial mite infestation is cleared any¬†new dead mites appearing on the tray underneath the open mesh floor¬†must have been introduced from outside the hive.

All perfectly logical and a satisfactory way of studying mite acquisition.

However, this is not a practical way of distinguishing between mites acquired passively through drifting, with those acquired actively by robbing.

  • Drifting being the process by which bees originating from other (donor) hives arrive at and enter the acceptor hive.
  • Robbing being the process by which bees¬†from the acceptor hive force entry into a donor hive to steal stores.

To achieve this Peck and Seeley established a donor apiary containing three heavily mite-infested hives of yellow bees (headed by Italian queens). These are labelled MDC (mite donor ccolony) A, B and C in the figure below. This apiary was situated in a largely bee-free area.

They then introduced six mite-free receptor colonies (MRC) to the area. Three were located to the east of the donor hives, at 0.5m, 50m and 300m distance. Three more were located Рat the same distances Рto the west of the donor apiary. These hives contained dark-coloured bees headed by Carniolan queens.

Apiary setup containing mite donor colonies (MDR) and location of mite receptor colonies (MRC).

Peck and Seeley monitored mite acquisition by the acceptor hives over time, fighting and robbing dynamics, drifting workers (and drones) and colony survival.

Test a simple hypothesis

The underlying hypothesis on the relative importance of robbing or drifting for mite acquisition was this:

If drifting is the primary mechanism of mite transmission you would expect to see a gradual increase of mites in acceptor colonies. Since it is mainly bees on orientation flights that drift (and assuming the egg laying rate of the queen is constant) this gradual acquisition of motes would be expected to occur at a constant rate.

Conversely, if robbing is the primary mechanism of mite transmission from mite-infested to mite-free colonies you would expect to see a sudden increase in mite number in the acceptor hives. This would coincide with the onset of robbing.

Graphically this could (at enormous personal expense and sacrifice) be represented like this.

Mite acquisition by drifting (dashed line) or robbing (solid line) over time (t) – hypothesis.

X indicates the time at which the mite-free acceptor colonies are introduced to the environment containing the mite-riddled donor hives.

These studies were conducted in late summer/early autumn at Ithaca in New York State (latitude 42¬į N). The MDC’s were established with high mite loads (1-3 mites/300 bees in mid-May) and moved to the donor apiary in mid-August. At the same time the MRC’s were moved to their experimental locations. Colonies were then monitored throughout the autumn (fall) and into the winter.

So what happened?

Simplistically, the three mite donor colonies (MDC … remember?) all collapsed and died between early October and early November. In addition, by mid-February the following year four of the six MRC’s had also died.

In every case, colony death was attributed to mites and mite-transmitted viruses. For example, there was no evidence for starvation, queen failure or moisture damage.

But ‘counting the corpses‘ doesn’t tell us anything about¬†how the mites were acquired by the acceptor colonies, or whether worker drifting and/or robbing was implicated. For this we need to look in more detail at the results.

Mite counts

Mite counts in donor (A) and receptor (B, C) colonies.

There’s a lot of detail in this figure. In donor colonies (A, top panel) phoretic mite counts increased through August and September, dropping precipitously from mid/late September.

This drop neatly coincided with the onset of fighting at colony entrances (black dotted and dashed vertical lines). The fact that yellow and black bees were fighting is clear evidence that these donor colonies were being robbed, with the robbing intensity peaking at the end of September (black dashed line). I’ll return to robbing below.

In the receptor colonies the significant increase in mite numbers (B and C) coincided with a) the onset of robbing and b) the drop in mite numbers in the donor colonies.

Phoretic mite numbers in receptor colonies then dropped to intermediate levels in October before rising again towards the end of the year.

The authors do loads of statistical analysis – one-way ANOVA’s, post-hoc Wilcoxon Signed-Rank tests and all the rest 3 and the data, despite involving relatively small numbers of colonies and observations, is pretty compelling.

Robbery

So this looks like robbing is the route by which mites are transmitted.

A policeman would still want to demonstrate the criminal was at the scene of the crime.

Just because the robbing bees were dark doesn’t ‘prove’ they were the Carniolans from the MRC’s 4. Peck and Seeley used a 400+ year old ‘trick’ to investigate this.

To identify the¬†source¬†of the robbers the authors dusted all the bees at the hive entrance with powdered sugar. They did this on a day of intense robbing and then monitored the hive entrances of the MRC’s. When tested, 1-2% of the returning bees had evidence of sugar dusting.

Returning robbers were identified at all the MRC’s. Numbers (percentages) were small, but there appeared to be no significant differences between nearby and distant MRC’s..

Drifting workers and drones

The evidence above suggests that robbing is a major cause of mite acquisition during the autumn.

However, it does not exclude drifting from also contributing to the process. Since the bees in the MDC and MRC were different colours this could also be monitored.

Yellow bees recorded at the entrances of the dark bee mite receptor colonies.

Before the onset of significant robbing (mid-September) relatively few yellow bees had drifted to the mite receptor colonies (~1-2% of bees at the entrances of the MRC’s). The intense robbing in late September coincided with with a significant increase in yellow bees drifting to the MRC’s.

Drifting over at least 50 metres was observed, with ~6% of workers entering the MRC’s being derived from the MDC’s.

If you refer back to the phoretic mite load in the donor colonies by late September (15-25%, see above) it suggests that perhaps 1% of all 5 the bees entering the mite receptor colonies may have been carrying mites.

And this is in addition to the returning robbers carrying an extra payload.

Since the drones were also distinctively coloured, their drifting could also be recorded.

Drones drifted bi-directionally. Between 12 and 22% of drones at hive entrances were of a different colour morph to the workers in the colony. Over 90% of this drone drifting was over short distances, with fewer than 1% of drones at the receptor colonies 50 or 300 m away from the donor apiary being yellow.

Discussion and conclusions

This was a simple and elegant experiment. It provides compelling evidence that robbing of weak, collapsing colonies is likely to be the primary source of mite acquisition in late summer/early autumn.

It also demonstrates that drifting, particularly over short distances, is likely to contribute significant levels of mite transmission before robbing in earnest starts. However, once collapsing colonies are subjected to intense robbing this become the predominant route of mite transmission.

There were a few surprises in the paper (in my view).

One of the characteristics of colonies being intensely robbed is the maelstrom of bees fighting at the hive entrance. This is not a few bees having a stramash 6 on the landing board. Instead it involves hundreds of bees fighting until the robbed colony is depleted of guards and the robbers move in mob handed.

As a beekeeper it’s a rather distressing sight (and must be much worse for the overwhelmed guards … ).

I was therefore surprised that only 1-2% of the bees returning to the mite receptor colonies carried evidence (dusted sugar) that they’d been involved in robbing. Of course, this could still be very many bees if the robbing colonies were very strong. Nevertheless, it still seemed like a small proportion to me.

It’s long been known that mites and viruses kill colonies. However, notice how¬†quickly they kill the mite receptor colonies in these studies.

The MRC’s were established in May with very low mite numbers. By the start of the experiment (mid-August) they had <1% phoretic mites. By the following spring two thirds of them were dead after they had acquired mites by robbing (and drifting) from nearby collapsing colonies 7.

It doesn’t take long

The science and practical beekeeping

This paper confirms and reinforces several previous studies, and provides additional evidence of the importance of robbing in mite transmission.

What does this mean for practical beekeeping?

It suggests that the late-season colonies bulging with hungry bees that are likely to initiate robbing are perhaps most at risk of acquiring mites from nearby collapsing colonies.

This is ironic as most beekeepers put emphasis on having strong colonies going into the winter for good overwintering success. Two-thirds of the colonies that did the robbing died overwinter.

The paper emphasises the impact of hive separation. Drifting of drones and workers was predominantly over short distances, at least until the robbing frenzy started.

This suggests that colonies closely situated within an apiary are ‘at risk’ should one of them have high mite levels (irrespective of the level of robbing).

If you treat with a miticide, treat all co-located colonies.

However, drifting over 300 m was also observed. This implies that apiaries need to be well separated. If your neighbour has bees in the next field they are at risk if you don’t minimise your mite levels … or¬†vice versa of course.

And this robbing occurred over at least 300 m and has been reported to occur over longer distances 8. This again emphasises both the need to separate apiaries and to treat all colonies in a geographic area coordinately.

Most beekeepers are aware of strategies to reduce robbing i.e. to stop colonies being robbed. This includes keeping strong colonies, reduced entrances or entrance screens.

But how do you stop a strong colony from robbing nearby weak colonies?

Does feeding early help?

I don’t know, but it’s perhaps worth considering. I don’t see how it could be harmful.

I feed within a few days of the summer honey supers coming off. I don’t bother waiting for the bees to exploit local late season forage. They might anyway, but I give them a huge lump of fondant to keep them occupied.

Do my colonies benefit, not only from the fondant, but also from a reduced need to rob nearby weak colonies?

Who knows?

But it’s an interesting thought …

Note¬†there’s an additional route of mite transmission not covered in this or the last post. If you transfer frames of brood from a mite-infested to a low mite colony – for example, to strengthen a colony in preparation for winter – you also transfer the mites. Be careful.


Colophon

The idiom¬†“Crime doesn’t pay” was, at one time, the motto of the FBI and was popularised by the cartoon character Dick Tracy.

Woody Allen in¬†Take the Money and Run used the quote “I think crime pays. The hours are¬†good, you travel a lot.”

Cabinet reshuffle

Don’t worry, this isn’t a post about the totally dysfunctional state of British politics at the moment 1.

Once the honey supers are removed there’s seemingly little to do in the apiary. There is a temptation to catch up on all those other jobs postponed because I was¬†“just off to the bees”.

Well, maybe temptation is a bit strong. After all, like all good procrastinators, I can usually find an excuse to postpone until next week something that could be left until at least tomorrow.

However, as I said last week, preparations for winter are very important and should not be delayed.

I covered feeding and the all-important late summer mite treatments in that post. Here I’m going to briefly discuss the various late season hive rearrangements that might be needed.

Clearing additional supers

I use very simple clearer boards to get the bees out of my supers. However, there are a couple of instances when not all the supers end up being removed:

  1. If some frames are empty or fail the ‘shake test’ I’ll rearrange these into the bottom super 2. I then clear the bees down into the bottom super and leave it for the bees.
  2. If the colony is really strong and is unlikely to fit into the brood box(es) I’ll often add a super above the queen excluder to clear the bees down into. Sometimes the bees will add a few dribbles of nectar to this … not enough to ever extract, and I’d prefer they put it in the brood box instead.

In both these situations I’ll want to remove the additional super before winter. I don’t want the bees to have a cold empty space above their heads.

Feed & clear together

I usually do this at the same time that I feed the bees.

I rearrange the boxes so that the ‘leftover’ super is above a crownboard on top of the super that is providing the headspace to accommodate the fondant blocks.

Since access to this top super is through a small hole the bees consider it is ‘outside’ the hive and so empty the remaining nectar and bring it down to the brood box 3.

If there are sealed stores in any of these super frames I bruise 4 the cappings with a hive tool and they’ll then move the stores down.

Substandard colonies

A very good piece of advice to all beekeepers is to¬†“take your winter losses in the autumn”. This means assess colonies in the late summer/early autumn and get rid of those that are weak or substandard 5.

Substandard might mean those with a poor temper.

This is the colony which you put up with all season (despite their yobbo tendencies) because you believe that aggressive bees are productive bees’.

Were they?

Was that one half-filled super of partially-capped honey really worth the grief they gave you all summer?

Unless substandard (not just aggression … running, following, insufficiently frugal in winter¬†etc.)¬†colonies are replaced the overall standard of your bees will never improve.

I’ll discuss how to ‘remove’ them in a few paragraphs.

It’s probably a reasonable estimate to suggest that the ‘best’ third of your colonies should be used to rear more queens and the ‘worst’ third should be re-queened with these 6.

Over time 7 the quality will improve.

Of course, a substandard colony might well make it through the winter perfectly successfully. The same cannot be said for weak colonies.

TLC or tough love?

At the end of the summer colonies should be strong. If they are not then there is probably something wrong. A poorly mated queen, an old and failing queen, disease?

The exception might be a recently requeened colony or a new 5 frame nuc.

Everynuc

Everynuc …

Colonies that are weak at this stage of the season for no obvious reason need attention. Without it they are likely to succumb during the winter. And they’ll do this after you’ve gone to the trouble and expense of feeding and treating them … 8

There are essentially two choices:

  1. Mollycoddle them and hope they pick up. Boosting them with a frame or two of emerging brood may help (but make sure you don’t weaken the donor colony significantly). Moving them from a full hive to a nuc – preferably poly to provide better insulation – may also be beneficial. In a nuc they have less dead space to heat. An analogous strategy is to fill the space in the brood box with ‘fat dummies‘ or – low-tech but just as effective – a big wodge of bubble wrap with a standard dummy board to hold it in place.
  2. Sacrifice the queen from the weak hive and unite them with a strong colony.

Sentimentalism

Of the two I’d almost always recommend uniting colonies.

It’s less work. There’s no potentially wasted outlay on food and miticides. Most importantly, it’s¬†much more likely to result in a strong colony the following spring.

However, we all get attached to our bees. It’s not unusual to give a fading favourite old queen¬†‘one more chance’ in the hope that next year will be her last hurrah.

Uniting notes

I’ve covered uniting before and so will only add some additional notes here …

Uniting a nuc with a full colony

Uniting a nuc with a full colony …

  • You cannot generate a strong colony by uniting two weak colonies. They’re weak for a reason. Whether they’re weak for the¬†same or different reasons uniting them is unlikely to help.
  • Never unite a colony with signs of disease. All you do is jeopardise the healthy colony.
  • Find the queen and permanently remove her from the weak or poor quality (substandard) colony.
  • If you can’t find the queen unite them with a queen excluder between the colonies. In my limited experience (I usually manage to find the unwanted queen) the bees usually do away with a failing queen when offered a better one, but best to check in a week or so.
  • I generally move the de-queened colony and put it on top of the strong queenright colony.
  • Unite over newspaper and don’t interfere with the hive for at least another week.
  • You can unite one strong colony and two weak colonies simultaneously.
  • Uniting and feeding at the same time is possible.
  • You can unite and treat with a miticide like Amitraz simultaneously. You will have to make a judgement call on whether both boxes need miticide treatment, depending on the strength of the weak colony.
  • If you’re uniting a strong substandard colony and a strong good colony you¬†will need to use an amount of miticide appropriate for a double brood colony (four strips in the case of Amitraz).
Successful uniting ...

Successful uniting …

Season of mists and mellow fruitfulness

The goal of all of the above is to go into autumn with strong, healthy, well-fed colonies that will survive the winter and build up strongly again in the spring.

A very small or weak colony 9 in autumn may survive, but it’s unlikely to flourish the following spring.

“It takes bees to make bees.”

And a weak colony in spring lacks bees, so cannot build up fast.

In contrast, an overwintered strong colony can often yield a nuc in May the following year. You’ve regained your colony numbers, but have a new, young queen in one hive with most of the season ahead for her to prove her worth.

I’ve merged three topics here – clearing supers, stock improvement and getting rid of weak colonies before winter – because all involve some sort of hive manipulation in the early autumn. I usually complete this in late September or early October, with the intention of overwintering strong colonies in single brood boxes packed with bees and stores.


Colophon

The heading of the final paragraph is the opening line of To Autumn by John Keats (1795-1821). Keats wrote To Autumn exactly two hundred years ago (September 1819, his last poem) while gradually succumbing to tuberculosis. Despite this, and his doomed relationship with Fanny Brawne, the poem is not about sadness at the end of summer but instead revels in the ripeness and bounteousness of the season.

Of course, all beekeepers know that the first stanza of To Autumn closes with a reference to bees.

Season of mists and mellow fruitfulness,
  Close bosom-friend of the maturing sun;
Conspiring with him how to load and bless
  With fruit the vines that round the thatch-eves run;
To bend with apples the moss’d cottage-trees,
  And fill all fruit with ripeness to the core;
    To swell the gourd, and plump the hazel shells
  With a sweet kernel; to set budding more,
And still more, later flowers for the bees,
Until they think warm days will never cease,
¬†¬†¬†¬†For summer has o’er-brimm’d their clammy cells.

 

The flow must go on

Except it doesn’t ūüôĀ

And once the summer nectar flow is over, the honey ripened and the supers safely removed it is time to prepare the colonies for the winter ahead.

It might seem that mid/late August is very early to be thinking about this when the first frosts are probably still 10-12 weeks away. There may even be the possibility of some Himalayan balsam or, further south than here in Fife, late season ivy.

However, the winter preparations are arguably the¬†most important time in the beekeeping year. If you leave it too late there’s a good chance that colonies will struggle with disease, starvation or a toxic combination of the two.

Long-lived bees

The egg laying rate of the queen drops significantly in late summer. I used this graph recently when discussing drones, but look carefully at the upper line with open symbols (worker brood). This data is for Aberdeen, so if you’re beekeeping in Totnes, or Toulouse, it’ll be later in the calendar. But it will be a broadly similar shape.

Seasonal production of sealed brood in Aberdeen, Scotland.

Worker brood production is down by ~75% when early July and early September are compared.

Not only are the numbers of bees dropping, but their fate is very different as well.

The worker bees reared in early July probably expired while foraging in late August. Those being reared in early September might still be alive and well in February or March.

These are the ‘winter bees‘ that maintain the colony through the cold, dark months so ensuring it is able to develop strongly the following spring.

The purpose of winter preparations is threefold:

    1. Encourage the colony to produce good numbers of winter bees
    2. Make sure they have sufficient stores to get through the winter
    3. Minimise Varroa levels to ensure winter bee longevity

I’ll deal with these in reverse order.

Varroa and viruses

The greatest threat to honey bees is the toxic stew of viruses transmitted by the Varroa mite. Chief amongst these is deformed wing virus (DWV) that results in developmental abnormalities in heavily infected brood.

DWV is well-tolerated by honey bees in the absence of Varroa. The virus is probably predominantly transmitted between bees during feeding, replicating in the gut but not spreading systemically.

However, Varroa transmits the virus when it feeds on haemolymph (or is it the fat body?), so bypassing any protective immune responses that occur in the gut. Consequently the virus can reach all sorts of other sensitive tissues resulting in the symptoms most beekeepers are all too familiar with.

Worker bee with DWV symptoms

Worker bee with DWV symptoms

However, some bees have very high levels of virus but no overt symptoms 1.

But they’re not necessarily healthy …

Several studies have clearly demonstrated that colonies with high levels of Varroa and DWV are much more likely to succumb during the winter 2.

This is because deformed wing virus reduces the longevity of winter bees. Knowing this, the increased winter losses make sense; colonies die because they ‘run out’ of bees to protect the queen and/or early developing brood.

I’ve suggested previously that isolation starvation may actually be the result of large numbers of winter bees dying because of high DWV levels.¬†If the cluster hadn’t shrunk so much they’d still be in contact with the stores.

Even if they stagger on until the spring, colony build up will be slow and faltering and the hive is unlikely to be productive.

Protecting winter bees

The most read article on this site is When to treat? This provides all the gory details and is worth reading to get a better appreciation of the subject.

However, the two most important points have already been made in this post. Winter bees are being reared from late August/early September and their longevity depends upon protecting them from Varroa and DWV.

To minimise exposure to Varroa and DWV you must therefore ensure that mite levels are reduced significantly in late summer.

Since most miticides are incompatible with honey production this means treating very soon after the supers are removed 3.

Time of treatment and mite numbers

Time of treatment and mite numbers

Once the supers are off there’s nothing to be gained by delaying treatment … other than more mite-exposed bees ūüôĀ

In the graph above the period during which winter bees are being reared is the green arrow between days 240 and 300 (essentially September and October). Mite levels are indicated with solid lines, coloured according to the month of treatment. You kill more mites by treating in mid-October (cyan) but the developing winter bees are exposed to higher mite levels.

In absolute numbers more mites are present and killed because they’ve had longer to replicate … on your developing winter bee pupae ūüôĀ

Full details and a complete explanation is provided in When to treat?

So, once the supers are off, treat as early as is practical. Don’t delay until late September or early October 4.

Treat with what?

As long as it’s effective and used properly I don’t think it matters too much.

Amitraz strip placed in the hive.

Apiguard if it’s warm enough. Apistan if there’s no resistance to pyrethroids in the local mite population (there probably will be ūüôĀ ). Amitraz or even multiple doses of vaporised oxalic acid-containing miticide such as Api-Bioxal¬†5.

This year I’ve exclusively used Amitraz (Apivar). It’s readily available, very straightforward to use and extremely effective. There’s little well-documented resistance and it does not leave residues in the comb.

The same comments could be made for Apiguard though the weather cannot be relied upon to remain warm enough for its use here in Scotland.

Another reason to not use Apiguard is that it is often poorly tolerated by the queen who promptly stops laying … just when you want her to lay lots of eggs to hatch and develop into winter bees 6.

Feed ’em up

The summer nectar has dried up. You’ve also removed the supers for extraction.

Colonies are likely to be packed with bees and to be low on stores.

Should the weather prevent foraging there’s a real chance colonies might starve 7 so it makes sense to feed them promptly.

The colony will need ~20 kg (or more) of stores to get through the winter. The amount needed will be influenced by the bees 8, the climate and how well insulated the hive is.

I only feed my bees fondant. Some consider this unusual 9, but it suits me, my beekeeping … and my bees.

Bought in bulk, fondant (this year) costs £10.55 for a 12.5 kg block. Assuming there are some stores already in the hive this means I need one to one and a half blocks per colony (i.e. about £16).

These three photographs show a few of the reasons why I only use fondant.

  • It’s prepackaged and ready to use. Nothing to make up. Just remove the cardboard box.
  • Preparation is simplicity itself … just slice it in half with a long sharp knife. Or use a spade.
  • Open the block like a book and invert over a queen excluder. Use an empty super to provide headroom and then replace the crownboard and roof.
  • That’s it. You’re done. Have a holiday ūüėČ
  • The timings shown above are real … and there were a couple of additional photos not used. From opening the cardboard box to adding back the roof took¬†less than 90 seconds. And that includes me taking the photos¬†and cutting the block in half ūüôā
  • But equally important is what is¬†not shown in the photographs.
    • No standing over a stove making up gallons of syrup for days in advance.
    • There is no specialist or additional equipment needed. For example, there are no bulky syrup feeders to store for 48 weeks of the year.
    • No spilt syrup to attract wasps.
    • Boxed, fondant keeps for ages. Some of the boxes I used this year were purchased in 2017.
    • The empty boxes are ideal for customers to carry away the honey they have purchased from you ūüėČ
  • The final thing not shown relates to how quickly it is taken down by the bees and is discussed below.

I’m surprised more beekeepers don’t purchase fondant in bulk through their associations and take advantage of the convenience it offers. By the pallet-load delivery is usually free.

Fancy fondant

Capped honey is about 82% sugar by weight. Fondant is pretty close to this at about 78%. Thick syrup (2:1 by weight) is 66% sugar.

Therefore to feed equivalent amounts of sugar for winter you need a greater weight of syrup. Which – assuming you’re not buying it pre-made – means you have to prepare and carry large volumes (and weights) of syrup.

Meaning containers to clean and store.

But consider what the bees have to do with the sugar you provide. They have to take it down into the brood box and store it in a form that does not ferment.

Fermenting stores can cause dysentry. This is ‘a bad thing’ if you are trapped by adverse weather in a hive with 10,000 close relatives … who also have dysentry. Ewww ūüėĮ

To reduce the water content the bees use space and energy. Space to store the syrup and energy to evaporate off the excess water.

Bees usually take syrup down very fast, rapidly filling the brood box.

In contrast, fondant is taken down more slowly. This means there is no risk that the queen will run out of space for egg laying. Whilst I’ve not done any side-by-side properly controlled studies – or even improperly controlled ones – the impression I have is that feeding fondant helps the colony rear brood into the autumn 10.

Whatever you might read elsewhere, bees do store fondant. The blocks I added this week will just be crinkly blue plastic husks by late September, and the hives will be correspondingly heavier.

You can purchase fancy fondant prepared for bees with pollen and other additives.

Don’t bother.

Regular ‘Bakers Fondant’ sold to ice Chelsea buns is the stuff to use. All the colonies I inspect at this time of the season have ample pollen stores.

I cannot comment on the statements made about the anti-caking agents in bakers fondant being “very bad for bees” … suffice to say I’ve used fondant for almost a decade with no apparent ill-effects 11.

It’s worth noting that these statements are usually made by beekeeping suppliers justifying selling “beekeeping” fondant for ¬£21 to ¬£36 for 12.5 kg.

Project Fear?


Colophon

The title of this post is a mangling of the well-known phrase The show must go on. This probably originated with circuses in the 19th Century and was subsequently used in the hotel trade and in show business.

The show must go on is also the title of (different) songs by Leo Sayer (in 1973, his first hit record, not one in my collection), Pink Floyd (1979, from The Wall) and Queen (1991).

Spring starvation

A very brief post this week to highlight the dangers of unseasonably warm weather early in the season. February 2019 has entered the record books as the first ‘winter’ month in which the temperature exceeded 20¬įC (on at least the 25th and 26th¬†in the UK). It’s also been a record with the daily temperature (highs … we’ve had some hard frosts as well) exceeding the historic average daily temperature on almost every day of the month.

Fife temperatures, February 2019

Fife temperatures, February 2019

Even here in Fife on the East coast of Scotland, the weather has been very warm and sometimes even sunny. The graph above shows the daily maximum temperature compared to the monthly average (dashed line).

The contrast with this time last year is very striking. The big winter storm called Anticyclone Hartmut (aka the Beast from the East) arrived in the last week of February.

The Beast from the East ...

The Beast from the East …

We had six foot deep snow drifts blocking the road to the village and there wasn’t a bee to be seen.

Crocus and snowdrop

Fast forward exactly 12 months and the bees are piling in the pollen and flying well for an extended period. Around here this early pollen probably comes from crocus, snowdrop, hazel and alder, perhaps with a bit of gorse as well which flowers throughout the season.

Brood rearing will have started in earnest. The large amounts of pollen being collected is a pretty good indicator that all is well in the hive, that the queen is starting to ramp up her egg laying rate and the numbers of hungry larvae are increasing.

There’s no need to open the hive to check for brood. Indeed, hive inspections (here at least) are probably at least 6 weeks away.

However, don’t ignore the colonies. The increase in brood rearing is a time when stores levels can quickly get critically low. There’s not a huge range of nectar sources about at the moment and the combination of a warm spell, increasing amounts of brood and a subsequent deterioration in the weather can rapidly result in colonies starving.

Hefting or a sneak peak

If you’ve been regularly hefting the hive to check its weight you should have a reasonable ‘feel’ for what it should be, and whether it’s significantly lighter. More accurately, but also more trouble, you can use luggage scales to record the week-by-week reduction over the winter.

It’s possible to determine whether there are sufficient – or at least some – stores by looking through a perspex crownboard at the tops of the frames.

Emptied bag of fondant

Emptied bag of fondant

Many of my hives went into the winter with the remnants of the autumn-fed fondant still present on the top bars. With a perspex crownboard it’s a trivial task to check if these stores have been used and – if they have – to heft the hive to see if they need more.

Fondant topups

Several hives have already had a fondant topup of about a kilogram placed directly onto the top of the frames. Alternatively, the hives with the Gruyere-like Abelo crownboards 1 get a fondant block slapped directly over the hole above the most concentrated seams of bees.

Fondant absorbs moisture from the atmosphere so you need to protect the faces of the fondant block not accessed by the bees. There are all sorts of ways to do this. A strong plastic bag with a slot or flap cut in the bottom is more than adequate.

Better still is to dole out the fondant into plastic food containers you’ve diligently saved all year. These are reusable, come in a variety of sizes and – ideally – are transparent. You can then easily see when and if the bees need a further topup.

Time for another?

Time for another?

I usually slice up a block of fondant and fill these food containers in midwinter, wrap them in clingfilm and carry them around in the back of the car for my occasional apiary visits. If a hive needs more stores I remove the clingfilm and simply invert the container over the bees.

Do remove the clingfilm! Bees tend to chew it up and drag it down into the brood nest, often embedding it into brace comb. It can be a bit disruptive during cool weather early-season inspections to remove it … hence the suggestion to use a strong plastic bag earlier.

Continued vigilance

Most of my hives will have had at least a kilogram of fondant by the end of February this year. One or two are likely to have had significantly more. I’ll keep a note of these in my records as – all other things being equal – I’d prefer to have frugal bees that don’t need fussing with over the winter.

As the days get longer and the season continues to warm the queen will further increase her laying rate. Until there are both dependable foraging days and good levels of forage there remains the chance of starvation.

Colonies are much more likely to starve in early spring than in the middle of a hard winter. If the latter happens it’s either due to poor winter preparation or possibly disease. However, if they starve in early spring it is probably due to unseasonably warm weather, a lack of available forage, increasing levels of brood and a lack of vigilance by the beekeeper.

Don’t delay!

If a colony is worryingly light don’t wait for a warm sunny day to feed them. Adding a block of fondant as described above takes seconds.

Everynuc fondant topup

Everynuc fondant topup

If a colony needs stores add it as soon as possible.

If it’s cold the bees will be reasonably lethargic and you may not even need to smoke them. I’ve only fired up the smoker once … to topup a colony of psychotic monsters ‘on loan’ from a research collaborator who shall remain nameless.

I managed to add the fondant without using the smoker but they then chased me across the field to thank me ūüôĀ


 

Winter chores

After two weeks of mites, their diets and pedantry we’ll take a break this week for some practical beekeeping.

Or at least as close as you can get to practical beekeeping when it’s been as cold as -8¬įC.

Midwinter is a time to prepare for the season ahead, to stock up on new equipment during the winter sales, build more frames, plan the strategy for swarm control and think about stock improvement.

And – if you’re anything like as disorganised as me – it’s also the time to tidy up after the season just finished.

Which is what we’ll deal with today.

Tidy the shed

The original research apiary and bee shed is now under an access road for a new school. Fortunately, we managed to rescue the shed which has now been re-assembled in the new apiary.

In the longer term these sheds could together accommodate at least a dozen full colonies. However, in the shorter term it has allowed me to rationalise the storage, giving much more space to work with the colonies in the larger shed.

Supers and brood in the storage shed have all been tidied (see below) and are in labelled stacks ready to use. The other side of the store contains stacks of floors, split boards, clearers and roofs.

It’ll get messier as the season progresses, but it’s a good start.

I also spent a couple of weekends making some minor improvements to the bee shed following the experience last season.

The lighting has been increased and repositioned so it is ‘over the shoulder’ when doing inspections. On a dull winter day it is dazzlingly bright 1 but I fear it will still not be enough. I’m looking at creating some reflectors to direct the light better.

I’ve also used a few tubes of exterior sealant to block up all the holes and cracks around the edge of the shed roof. Last season was a bad one for wasps and we were plagued with the little stripy blighters.

Tidy the frames

Two of the most valuable resources a beekeeper has are drawn super frames and capped stores in brood frames.

Look after them!

I often end up uniting colonies late in the season, but then overwinter the bees in a single brood box. This means I can end up with spare frames of sealed stores. These should be protected from wax moth and mice (or anything else) as they are really useful the following year for boosting colonies that are light on stores or making up nucs.

Drawn supers can be used time and time again, year after year. They also need to be protected but – if your extraction is as chaotic as mine – they also usually need to be tidied up so they are ready for the following season.

I load my extractor to balance it properly, rather than just super by super. Inevitably this means the extracted frames are all mixed up. Since frames are also often drawn out unevenly this leaves me with a 250 piece jigsaw with billions of possible permutations, but only a few correct solutions.

Little and large - untidy frames and a breadknife

Little and large – untidy frames and a breadknife

And that’s ignoring all the frames with brace comb that accumulate during a good flow.

So, in midwinter I tidy up all the cleared super frames, levelling off the worst of the waviness with a sharp breadknife, removing the brace comb, scraping down the top bar and arranging them – 9 to 11 at a time 2 – in supers stored neatly in covered stacks.

And, if you’ve got a lot, label them so you know what’s where.

An hour or two of work on a dingy midwinter day can help avoid those irritating moments when – in the middle of a strong flow – you grab a super to find it contains just five ill-fitting frames, one of which has a broken lug.

The wax removed during this tidying up is usually lovely and white. Save it for making soaps, cosmetics or top-quality candles.

Wax extraction

Brood comb has a finite life. After about three years of repeated¬†brood rearing¬†cycles it should be replaced. Old comb contains relatively little wax but what’s there can be recovered using a solar or steam wax extractor. This also allows the cleaned frames to be re-used.

Processing a few dozen brood frames with a solar wax extractor during a Scottish winter is an exercise in futility. For years I’ve used a DIY steam wax extractor which worked pretty well but was starting to fall apart. I therefore recently took advantage of the winter sales and purchased a Thorne’s Easi-steam 3.

The Easi-steam works well and with a little further processing generates a few kilograms of wax for making firelighters or¬†trading in¬†… and a large stack of frames for re-use.

Remember to keep a few old dark brood frames aside for using in bait hives. 

Keep an eye on your bees

In between all these winter chores don’t forget to check on your bees.

There’s not a lot to do, but these checks are important.

Make sure the entrances are clear, that the mouse guards 4 are in place and that the roofs are secure.

Storm Eric brought us 50-60 mph winds and a couple of my¬†hives lost their roofs. These had survived a couple of previous storms, but the wind was from a different direction and lifted the roofs and the bricks stacked on top. I got to them the following day but we’ll have to wait until the season warms up to determine if there’s any harm done.

Fondant top up

Fondant top up

Finally, as the days lengthen and it gets marginally warmer colonies should have started rearing brood again. Make sure they have sufficient stores by regularly ‘hefting‘ the hive. If stores are low, top them up with a block or two of fondant. This should be placed directly over the cluster, either over a hole in the crownboard or on the top bars of the frames.


 

Responsibilities

In draughty church halls the length and breadth of the country potential apiarists are just starting their “Beginning beekeeping” courses run by local associations. The content of these courses varies a bit but usually contains (in no particular order):

  • The Beekeeping Year
  • The hive and/or beekeeping equipment
  • The life cycle of the honey bee
  • Colony inspections
  • Pests and diseases
  • Swarm prevention and control
  • Products of the hive

I’ve seen these courses from both sides. I took one before I started beekeeping and I’ve subsequently taught on them.

Although I’m not convinced the seven topics above are the optimal way to cover the basics of beekeeping (perhaps that’s something for a future post?), I¬†am a strong supporter of the¬†need to educate new beekeepers.

Theory and practice

You can learn some of the theoretical aspects of beekeeping on dark winter evenings. In my experience a liberal supply of tea and digestives hugely helps this learning process ūüėČ

However, beekeeping is essentially a practical subject and any responsible association will offer apiary-based training sessions once the season starts. A good association will run these throughout the season, enabling beginners to experience all aspects of the beekeeping year.

Trainee beekeepers

Trainee beekeepers

If they don’t, they should (both run them and run them through the season).

The reason is simple … ‘hands on’ with the bees is a¬†much better way of appreciating some of the most important characteristics of the colony. It’s strength and temperament, the rate at which it’s developing, the levels of stores¬†etc.

But all this takes time. A couple of early-season apiary sessions might be held on cool evenings in failing light, or dodging Spring weekend showers. This means that ‘hive time’ is often restricted and beginners only get a small snapshot of the beekeeping season.

Curb your enthusiasm

Inevitably, many new beekeepers are desperate to get their own bees as soon as possible. After all, the season has started and there are kilograms of nectar out there waiting to be collected and converted into delicious honey for friends and family.

Demand for overwintered nucs is very high (usually significantly outstripping supply, meaning a considerable price premium) and a purchased colony, which should be strong and building up fast, becomes the property of someone who potentially has yet to see an open hive.

The seasonal nature of the hobby and the way we train beginners creates a very steep learning curve for new¬†beekeepers 1. Almost as soon as they’re out of the classroom (or draughty church hall) they’re faced with the start of their first swarm season.

Queen cells ...

Queen cells …

Their inevitable – and completely understandable – enthusiasm to start practical beekeeping reaches a crescendo at a time when they are singularly poorly equipped to manage the colony 2.

What’s missing?

The emphasis on the theory and practical aspects of beekeeping is understandable. There’s a lot to learn in a relatively short time.

However, this focus on the practicalities often overlooks emphasising the responsibilities of beekeepers.

In the¬†frenetic early-season enthusiasm to ‘become a beekeeper’ these might seem unimportant, superfluous or entirely obvious.

But they’re not.

Oil seed rape (OSR) ...

Oil seed rape (OSR) …

Later in the season the colony can become bad tempered, unmanageably large or ignored. Some or all of these happen with new (and not-so-new) beekeepers. The OSR goes over and colonies get stroppy, April’s 5-frame nuc “explodes” to occupy a towering double brood monstrosity or a new-found enthusiasm for dahlias or crown green bowls becomes all-consuming.

Bees? What bees? Have you seen my dahlias?

Bees? What bees? Have you seen my dahlias?

This is when the responsibilities of beekeepers become really important.

What are the responsibilities of beekeepers?

As I see it, as beekeepers we have responsibilities to:

  • The general public
  • Other beekeepers
  • The bees¬†3

As I stated above, these might seem entirely obvious. However, every year new beekeepers start with the best of intentions but some have a near-total lack of awareness of what these responsibilities are (or mean).

The general public

The combination of calm bees, careful handling and appropriate protective clothing means that bees essentially pose no risk to the beekeeper.

However, strange as it may seem to a beekeeper, some people are terrified of bees (mellisophobics). Others, due to adverse allergic reactions (anaphylactic shock), may have their lives endangered by bee stings. Finally – and thankfully by far the largest group – are the remainder of the public who should never feel bothered or threatened by our bees, whether we consider this a rational response or not.

What does this mean in terms of practical beekeeping? I think it can be distilled to just three points:

  1. Keep calm bees
  2. Keep bees and the public well-separated
  3. Restrict beekeeping activities to times when the public are not inconvenienced

The first point is sensible, whether or not there’s anyone else around. It makes beekeeping a much more relaxing and rewarding experience.

The second point involves either keeping bees in unfrequented locations (infinitely preferable) or ensuring that bees are forced to fly up and away from the hives (by suitable screening) and well-away from passers-by.

The final point is the most inconvenient, but also the most important. If there¬†are members of the public around who might be bothered by your bees – walkers strolling across the field towards your apiary, kids playing in the garden next door – don’t open the hives.

My apiaries have generally been in large rural gardens, private farmland and very well screened. I’ve also kept bees in urban environments, with no problems from the neighbours. However, I have¬†always maintained out apiaries to move my bees to should they exhibit poor temper. Additionally, I’d only conduct inspections when the adjacent gardens were empty … meaning inspections were often carried out in sub-optimal weather or late in the evening.

Finally, while many beekeepers consider the sight of a swarm is one of the truly great sights of beekeeping, this isn’t a sentiment shared by most non-beekeepers.

Swarm on a swing ... not ideal if it's in the next door garden

Swarm on a swing … not ideal if it’s in the next door garden

Keep non-swarmy bees, clip the queen and keep a bait hive prepared to lure any swarms that do emerge.

Other beekeepers

The responsibilities beekeepers have to other beekeepers are probably restricted to:

  1. Courtesy
  2. Disease

The first is straightforward. Don’t do things that negatively impact other beekeepers 4. For example, don’t plonk two dozen hives over the fence from an established apiary, unless you’ve first discussed it with the beekeeper and you’re both happy that the local forage is sufficient.

And, of course, don’t steal hives or colonies 5.

Disease is perhaps less obvious and more insidious. The health of your bees influences the health of other colonies in the area. Over short distances bees drift from one hive to another. Over much longer distances strong colonies can rob weaker colonies.

All these bee exchanges also move the parasites and diseases they carry between hives. This includes Varroa, Nosema, a panoply of pathogenic viruses and European and American foulbrood.

Of these, the foulbroods are¬†statutory¬†notifiable diseases and beekeepers are legally required to report suspected diseased colonies under the¬†Bee Diseases and Pests Control Order 2006 (and amendments). Responsible beekeepers will register their apiaries on the National Bee Unit’s Beebase so they are notified of local outbreaks, and so the bee inspectors can check their colonies if there is a nearby outbreak.

National Bee Unit Beebase

National Bee Unit Beebase

Whilst not notifiable, the remaining parasites and pathogens are also best avoided … and certainly should not be foisted upon other local beekeepers.

If your colony is weak, disease-riddled and poorly managed it may get robbed-out by other local strong colonies. In doing so, your bees will transfer (some of) the pathogen load to the stronger colony.

That is irresponsible beekeeping.

US beekeepers use the term ‘mite bomb’¬†to refer to an unmanaged,¬†Varroa-riddled, collapsing colony that introduces significantly higher mite levels to local strong colonies as it’s robbed. This is more extreme, but not dissimilar, to beekeepers that treat with miticides far too late in the season. Their colonies retain high mite levels and can spread them to nearby hives. One way to avoid this is to coordinately treat mites in the same geographic area.

The bees

Bees may or may not be classified as¬†livestock. The standard definition 6 of¬†“domestic animals kept on a farm for use or profit; esp. cattle, sheep, and pigs” is perhaps a little restrictive 7 so lets accept for the moment that they are livestock.

If you keep livestock you usually need to register them and vaccinate them, and you always need to look after their health, feed and transport them properly and generally take responsibility for them.

If you don’t look after their welfare you may be prosecuted.

Of course, bees are invertebrates, not mammals or animals with backbones. Legally invertebrates are not usually considered as animals in the Animal Welfare Act 2006 8 which defines the law on animal welfare.

But all these definitions are a distraction.

In my view, if you keep bees you have a responsibility to look after them properly.

Even if this isn’t a legal requirement, its a moral responsibility.

This responsibility to your bees includes Рbut is not restricted to Рpreventing and treating them for disease when appropriate and ensuring they have sufficient stores going into winter (and during periods with no nectar).

If you can’t do this perhaps take up crown green bowls instead.

Blimey, this is all getting a bit heavy isn’t it?

Bees are not ‘fit and forget’.

Actually, they’re quite the opposite.

Proper management means that there are certain things that must be done at a particular time. This includes treating for mites at the end of the summer honey season, feeding the colony up for winter and swarm prevention and control.

If you work abroad for April and May or if you holiday on the Maldives for six weeks every autumn you’re unlikely to become a successful beekeeper.

Powder blue surgeonfish, Maldives

Bees? What bees? They’ll be OK …

And you’re certainly unlikely to be a responsible beekeeper.

You might start with bees, but you’re unlikely to keep them …

What prompted this post? A combination of things … cabin fever and online discussion forum posts from beekeepers puzzling why their colonies all died (no mite treatment, ever) or starved (no feeding before winter) or hadn’t been inspected in the last 15 months (“I’ve been busy”).

It’s going to be a long winter … 9


 

Fondant fancies

My colonies are all busy piling in the calories in preparation for winter.

Late season supers hiding fondant blocks

Late season supers hiding fondant blocks

As always, at this time of the year I only feed my colonies using bakers fondant. This is exactly the same stuff you get on the top of iced buns. It’s available plastic-wrapped and boxed in 12.5kg blocks from a variety of sources ranging from your friendly local baker to wholesale food suppliers.

I purchase it on a pallet with friends in my local beekeeping association. If you buy enough delivery is free and this year we’ve been paying about ¬£10.50 per block (12.5kg) when purchasing about half a metric tonne.

It’s worth buying in bulk as it keeps well. Store it somewhere dry and cool. Don’t stack it more than 3-4 blocks high if it’s likely to get warm … we kept some in the bee shed for a year and the boxes at the bottom of the pile were horribly misshapen after a warm summer. Next year sugar prices might be significantly more and it will always come in.

300kg of fondant

300kg of fondant

Convenience foods

I’ve discussed the benefits of feeding fondant in 2014 and 2016. Many of the benefits can be grouped under the heading of convenience.

  1. It’s easy to transport, easy to store, keeps well and is ready to use.
  2. Takes minutes (or less) to add to a hive.
  3. Needs no specialised feeders (so there’s also nothing to be stored for the other 11 months of the year).

However, as important, I think there are significant beekeeping benefits from feeding fondant.

  1. Compatible with most/all autumn Varroa treatments Рsublimation, Amitraz, Apiguard etc.
  2. No spillages … so less risk of encouraging¬†robbing by wasps or bees.
  3. Taken down more slowly than syrup, so leaving space in the brood box for the all-important rearing of late-season brood for overwintering.

Feeding fondant

Full-sized colonies get an entire block of fondant in late summer. As described previously, simply slice the block in half using a breadknife (or spade), open it up like a book and place it face down on top of the frames.

Do not remove the plastic. Leave it in place to stop the fondant drying out. The bees access it from below and – in due course – leave an empty ‘husk’ of blue plastic that can be removed late in the year 1.

Adding the fondant block takes seconds and, with a very small amount of smoke, barely disturbs the colony.

Sticky stuff

The fondant block is heavy and sticky. If, for whatever reason, you want to access the hive whilst you’re feeding the colony do not place the fondant directly on top of the frames 2.

Abelo poly National crownboard ...

Abelo poly National crownboard …

You probably don’t need to conduct inspections this late in the season, but there may be reasons you need to go into the brood box. If this is the case make your life easier by putting the fondant face down on top of a framed wire queen excluder 3. You can then simply lift the entire block off, do what you need to do, and replace it very easily.

I use a lot of Abelo hives and they have a rather fussy crownboard. It turns out these are ideal for feeding fondant. Simply pop out a few of the ventilated disks and add the fondant on top. The crownboard is rigid and so can easily be lifted off if needed and the bees have no problems accessing the fondant.

Headspace

A fondant block is about 17x17x31 cm. Cut in half it’s therefore a little over 8cm thick. You need to provide space to accommodate this under the crownboard and roof.

The simplest solution is to use an empty super. Alternatively, the insulated crownboards I use are reversible and provide 5cm of headspace. I either use these with a simple eke, or – by judicious use of a wellington boot and my weight (!) – squash the fondant block until it’s 5cm thick.

Either way I try and keep the top of the hive insulated and warm (for example, using polystyrene supers and/or insulation over the crownboard) so that the bees continue to take the fondant down even if the temperature outside is dropping.

Feeding nucs

Although I own a few Miller-type feeders for nucs I generally feed fondant directly in the nuc brood box, taking advantage of the inbuilt feeder in the Everynucs I favour.

Fondant blocks for nucs

Fondant blocks for nucs

These have a limited capacity so I prepare blocks of fondant wrapped in clingfilm and add them as the bees finish the last block off.

Everynuc fondant topup

Everynuc fondant topup

As long as the feeding compartment is largely vacant you can easily prise up the plastic crownboard and slide a couple of blocks of unwrapped fondant into the feeder.

Relax

That’s it.

It’s all over.

With colonies treated for Varroa 4 and fed for winter, now is the time to take a holiday.

Serra de Tramuntana, Mallorca

Serra de Tramuntana, Mallorca

Which is what I’m now doing ūüėČ


Colophon

If you came here looking for a recipe for fondant fancies and have had to wade through paragraphs of irrelevant beekeeping information then I recommend you try these by Mary Berry.

Mary Berry's fondant fancies

Mary Berry’s fondant fancies

They think it’s all over!

We’re gently but inexorably segueing¬†into early autumn after an excellent beekeeping season. The rosebay willow herb is almost over, the farmers are busy taking in the harvest and colonies are – or should be – crowded with under-occupied workers.

Rosebay willow herb

Rosebay willow herb

Drones are being ejected, wasps are persistently looking for access and there’s a long winter – or at least non-beekeeping period – ahead.

There’s a poignancy now in being in the apiary conducting the last few inspections of the season. Only a few short weeks ago, during late May and early June, the apiary was a scene of frenetic productivity … or complete turmoil, depending upon your level of organisation or competence.

Now there’s little activity as there’s not much forage available.

Colonies are busy doing nothing.

The most important time of the season

But that doesn’t mean that there’s nothing to do.

Rather, I’d argue that late August and early September is probably the¬†most important¬†period during the beekeeping year.

However well or badly the season progressed, this is the time that colonies have to be prepared for the coming winter. With good preparation, colonies will come through the winter well. They’ll build up strongly in spring and be ready to exploit the early season nectar flows.

In Fife, this is about 8 months away ūüôĀ

This explains the poignancy.

There are some colonies inspected last weekend that probably won’t get properly opened again until mid/late April 2019. Queens I saw for the first time in August won’t get marked or clipped until next spring 1.

Au revoir!

Spot the queen ...

Spot the queen …

To survive the winter and build up well in the spring the colony has few requirements. But they are important. A lack of attention now can result in the loss of the colony later.

To appreciate their needs it’s important to understand what the colony does during the winter.

Suspended animation

Honey bees don’t hibernate in winter. In cold weather (under ~7¬įC) they cluster tightly to conserve energy and protect the queen and any brood in the colony.

At higher temperatures the cluster breaks but they largely remain within the hive. After all, there’s little or no forage available, so they use their honey and pollen stores.

The fat-bodied overwintering bees that are reared in autumn have a very different physiology to the ephemeral summer workers. The latter have a life-expectancy of 5-6 weeks whereas overwintering bees can live for many months 2.

But they’re not immortal.

Throughout the winter there’s a slow and steady attrition of these workers. As they die off the clustered colony gradually reduces in volume, shrinking from the size of a medicine ball, to a football, to a grapefruit … you get the picture.

Some brood rearing does occur. The queen often stops laying after the summer nectar flows stop 3 and laying might be sporadic through the autumn, dependent upon weather and forage availability.

Late summer brood frame from a nuc ...

Late summer brood frame from a nuc …

However, by the turn of the year she starts laying again. At a much reduced level to her maximum rate, but laying nevertheless and, with sufficient workers in the colony and as forage become available, this rate will increase.

The amount of brood reared during the winter period (late autumn to early spring) isn’t enough to make up for the losses that occur through attrition. This explains why colonies are much smaller in the spring than the early autumn.

Strong, healthy, well-provisioned and weathertight

Knowing what’s happening in the colony during the winter makes the requirements that must be met understandable.

  • Strong colonies start the winter with ample bees. Assuming the same attrition rate, a larger colony will get through the winter stronger than a smaller one. There will be more workers available to ‘reach’ stores (I’ll deal with this in the next week or two) and keep the queen and brood warm. Hence there will be more foragers to exploit the early crocus, snowdrop and willow.
  • Healthy colonies will have a lower attrition rate. The overwintering workers will live longer. High levels of deformed wing virus (DWV) are known to shorten the life of winter bees. To minimise the levels of DWV you¬†must reduce the levels of¬†Varroa in the colony. Critically, you must protect the overwintering bees from¬†Varroa exposure. Treat too late in the season and they will already be heavily infected …
  • Well-provisioned colonies have more than enough stores to survive the winter. The clustered colony will have to move relatively short distances to access the stores. As a beekeeper, you won’t have to constantly meddle with the colony, lifting the lid and crownboard to add additional stores in midwinter.
  • Weathertight¬†colonies will be protected from draughts and damp 4.The hive must be weathertight and, preferably, not situated in a frost pocket or damp location 5.

Winter preparation

Once the honey supers are off all activities in the apiary are focused on ensuring that these four requirements for successful overwintering are achieved in a timely manner.

Clearing bees from wet supers ...

Clearing bees from wet supers …

Weak colonies are united with strong colonies. At this stage in the season – other than disease – the main reason a colony is likely to be weak is because the queen isn’t up to the job. If she’s not now, what chance has the colony got over the winter or early spring? 6

Varroa treatment is started as early as reasonably possible with the intention of protecting the overwintering bees from the ravages of DWV. This means¬†now, not early October. Use an appropriate treatment and use it correctly. Apiguard, oxalic acid (Api-Bioxal), Apivar¬†etc. … all have been discussed extensively here previously. All are equivalently effective if used correctly.

All colonies get at least one block (12.5kg) of bakers fondant, opened like a book and slapped (gently!) on the tops of the frames. An eke or an empty super provides the ‘headspace’ for the fondant block.¬†All of the¬†Varroa treatments listed above are compatible with this type of feeding simultaneously 7.

Hopefully, hives are already weathertight and secure. Other than strapping them to the hive stands to survive winter gales there’s little to do.

They think it’s all over!?

It is … almost ūüôā


Colophon

They think it’s all over! is a quote by Kenneth Wolstenholme made in the closing stages of the 1966 World Cup final. Some fans had spilled onto the pitch just before Geoff Hurst scored the the last goal of the match (England beat West Germany 4-2 after extra time), which Wolstenholme announced with “It is now, it’s four!”. This was the only World Cup final England have reached, whereas Germany have won four.

As Gary Lineker says “Football is a simple game; 22 men chase a ball for 90 minutes and at the end, the Germans win.”

Fondant topups

Perhaps surprisingly if the weather is still very wintery, inside your hives brood rearing has probably started¬†1. It’s about half way through the winter, there’s no forage available and the colonies are surviving on the stores they laid down in the autumn last year.

But now they have a few more mouths to feed … as a consequence, they’re likely to start using the stores at a higher rate.

I’ve recently written about the importance of¬†hefting hives in the winter to judge (very approximately) how much stores they have remaining. It’s an imprecise science at the best of times, but it is important to ensure they don’t run out.

If they do, the colony will starve to death.

Fondant topups

If the colony is feeling a bit light you need to give it sugar as soon as practical and as close to the clustered bees as possible. The most convenient type of sugar to give is bakers fondant. This is the same stuff you get on Chelsea buns. You can buy fondant in 12.5 kg blocks for about a tenner (in bulk … one-off purchases are likely to be more expensive) from wholesale suppliers.

Fondant keeps well for several years and so it’s worth stockpiling some for emergencies. Since I use fondant for all my autumn feeding as well I buy in bulk¬†(200+ kg) every year or two and stack it somewhere safe, dry and protected from vermin (and other beekeepers ūüėČ ).

Feeding fondant can be as simple as cutting a¬†thick slice of fondant off the block and laying it across the top bars of the hive. You’ll need an eke or a reversible crownboard to provide the ‘headspace’ over the colony. Replace the roof and any insulation and the colony should be OK … but don’t stop checking for the rest of the winter.

Fondant block ...

Fondant block …

Don’t be stingy and don’t delay

It’s not worth adding a measly few ounces of fondant. If it’s midwinter and the colony is¬†already light, a couple of hundred grams is going to only last a few days.

Don’t be stingy. Add at least a couple of kilograms.

Don’t wait for a balmy midwinter day to add the fondant. Add it as soon as you realise they’re light. It won’t harm the colony to open it up for the few seconds it takes to add the block.

Wear a veil … some colonies can be semi-torpid, others can be quite feisty. How would you feel about having the roof ripped off on a grey midwinter afternoon? You might be trying to save them from starvation, but their reaction might be something a little less than appreciative ūüėČ

Add the fondant as close to the clustered bees as possible. A small cluster cannot move far in very cold weather. Even inches is too much. There are few sights more tragic than a cluster of starved bees just a few centimetres from lashings of sealed stores or a large lump of fondant.

Finally, don’t spend ages clearing bees off the top bars with little puffs of smoke. The colony will be getting chilled and the disturbance will be worse than the loss of the few bees you might inadvertently squash under the fondant block.

Think of the greater good … speaking of which.

Takeaways

When I feed colonies in the autumn I simply slice a complete block of fondant in half with a spade, open it like a book and lay it on top of the colony. With smaller amounts you can use a breadknife to (carefully … mind your fingers!) cut the block up. It’s a lot easier if the block is at room temperature.

For real convenience¬†you can pack plastic food trays with fondant, wrap them in clingfilm and take a couple with you when you visit the apiary. If needed, simply unwrap them and invert them over the top bars of the hive. Large takeaway food containers or one of the many semi-solid types of plastic packaging used by supermarkets are ideal. Tortellini packets are good and just about fit the ekes I’ve built.

Preparing fondant

Preparing fondant …

Wash them thoroughly before use rather than subjecting your bees to last nights Chef’s Special Chow Mein ūüėČ

Finally, remove the clingfilm completely before use. Bees tend to chew through clingfilm and drag it down into the broodnest, even incorporating it into the bits of brace comb they build. Getting rid of the traces of clingfilm during the first spring inspection is a pain, and best avoided.