Category Archives: Seasonal

“Start beekeeping” courses

It’s mid-January. If you are an experienced beekeeper in the UK you’re being battered by the remnants of Storm Brendan and wondering whether the roofs are still on your hives.

If my experience is anything to go by, they’re not ūüôĀ

But if you’re a trainee beekeeper you may well be attending a course on Starting Beekeeping, run by your local beekeeping association. Typically these run through the first 1- 3 months of the year, culminating in an apiary visit in April.

Trainee beekeepers

Trainee beekeepers

Sometimes a not-really-warm-enough-to-be doing-this apiary visit in April ūüôĀ

Beekeeping, just like driving a car

Many years ago I attended the Warwick and Leamington Beekeepers Introduction to Beekeeping course. It was a lot of fun and I met some very helpful beekeepers.

But I learnt my beekeeping in their training apiary over the following years; initially as a new beekeeper, and subsequently helping instruct the cohort of trainees attending the course and apiary sessions the following year(s).

Teaching someone else is the best way to learn.

The distinction between the theoretical and practical aspects of the subject are important. You can learn the theory in a classroom, refreshed with tea and digestive biscuits, with the wind howling around outside.

Plain chocolate are preferable

However, it is practical experience that makes you a beekeeper, and you can only acquire these skills by opening hives up – lots of them – and understanding what’s going on.

Some choose never to go this far 1, others try but never achieve it. Only a proportion are successful – this is evident from the large number who take winter courses compared to the relatively modest growth in beekeeper numbers (or association memberships).

Beekeeping is like driving a car. You can learn the theory from a book, but that doesn’t mean you are able to drive. Indeed, the practical skills you lack may mean you are a liability to yourself and others.

Fortunately, the consequences of insufficient experience in beekeeping are trivial in comparison to inexperienced drivers and road safety.

Theoretical beekeeping

What should an ‘introduction to beekeeping’ course contain?

Which bits are necessary? What is superfluous?

Should it attempt to be all encompassing (queen rearing methods, Taranov swarm control, Israeli Acute Paralysis Virus) or pared back to the bare minimum?

Who should deliver it?

I don’t necessarily know, but for a variety of reasons I’ve been giving it some thought(s) … and here they are.

The audience and the intended outcome

You have to assume that those attending the course know little or nothing about bees or beekeeping. If you don’t there’s a good chance some of the audience will be alienated before you start 2.

When I started I had never seen inside a beehive. I don’t think I even knew what a removable frame was. Others on the course had read half a dozen books already. Some had already purchased a hive.

Some even had bees (or ‘hoped they were still alive’ as it was their first winter) ūüėĮ

I felt ignorant when others on the course were asking¬†Wouldn’t brood and a half be better? or¬†I’ve read that wire framed queen excluders are preferable.

Framed wire QE ...

Preferable to what?

What’s a queen excluder?

By working from first principles you know what has been covered, you ensure what is covered is important and you keep everyone together.

Some on the course like the¬†idea of keeping bees, but will soon get put off by the practicalities of the discipline. That doesn’t mean they can’t still be catered for on the course. It can still be interesting without being exclusive 3.

But, of course, the primary audience are the people who want to learn how to keep bees successfully.

For that reason I think the intended outcome is to teach sufficient theory so that a new beekeeper, with suitable mentoring, can:

  • acquire and house a colony
  • inspect it properly
  • prevent it swarming, or know what to do if it does
  • manage disease in the colony
  • prepare the colony for winter and overwinter it successfully

The only thing I’d add to that list is an indication of how to collect honey … but don’t get their hopes up by discussing which 18 frame extractor to purchase or how to use the Apimelter ūüėČ

Course contents

I’m not going to give an in-depth breakdown of my views of what an introduction to beekeeping course should contain, but I will expand on a few areas that I think are important.

The beekeeping year and the principles of beekeeping

I’d start with an overview of a typical beekeeping year. This shouldn’t be hugely detailed, it simply sets out what happens and when.

It provides the temporal context to which the rest of the course can refer. It emphasises the seasonality of beekeeping. The long periods of inactivity and the manic days in May and early June. It can be quite ‘light touch’ and might even end with a honey tasting session.

Or mead … ūüėČ

‘Typical’ means you don’t need to qualify everything – if the spring is particularly warm or¬†unless there’s no oil seed rape near you – just focus on an idealised year with normal weather, the expected forage and the usual beekeeping challenges.

The normal beekeeping challenges

But this part of the course should also aim to clearly emphasise the principles and practice of beekeeping.

Success, whether measured by jars of honey or overwintered colonies, requires effort. It doesn’t just happen.

Hive inspections are not optional. They cannot be postponed because of family holidays 4, weekend breaks in Bruges, or going to the beach because the weather is great.

Great weather … good for swarming and swimming

Quite the opposite. From late April until sometime in July you have to inspect colonies at weekly intervals.

Whatever the weather (within reason).

Not every 9-12 days.

Not just before and when you return from a fortnight in Madeira ūüôĀ

Andalucian apiary

While you’re looking at these Andalusian hives your colony might be swarming.

And hive inspections involve heavy lifting (if you’re lucky), and inadvertently squidging a few bees when putting the hive back together, and possibly getting stung 5.

The discussion of the typical year must mention Varroa management. This is a reality for 99% of beekeepers and it is our responsibility to take appropriate action in a timely manner (though the details of how and when can be saved for a later discussion of disease).

Finally, this part of the course should emphasise the importance of preparing colonies properly for the winter. This again necessitates mentioning disease control.

By covering the principles and practice of a typical year in beekeeping the trainee beekeepers should be prepared from the outset for the workload involved, and have an appreciation for the importance of timing.

We have to keep up with the bees … and the pace they go (or grow) at may not be the same every year, or may not quite fit our diaries.

Bees and beekeeping

There is a long an interesting history of beekeeping and an almost limitless number of fascinating things about bees. Some things I’d argue are essential, others are really not needed and can be safely ignored.

Bee boles in Kellie Castle, Fife, Scotland … skep beekeeping probably isn’t an essential course component.

Of the essential historical details I’d consider the development of the removable frame hive is probably the most important. Inevitably this also involves a discussion of bee space – a gap that the bees do not fill with propolis or wax. Of course, bee space was known about long before Langstroth found a way to exploit it with the removable frame hive.

The other historical area often covered is the waggle dance, but I’d argue that this is of peripheral relevance to beekeeping¬†per se. However, it could be used to introduce the concept of communication in bees.

And once the topic turns to bees there’s almost no limit what could be included. Clearly an appreciation of the composition of the colony and how it changes during the season is important. This leads to division of labour and the caste system.

It also develops the idea of the colony as a superorganism, which has a bearing on swarm preparation, management and control.

Queen development

Queen development …

Probably most important is the development cycle of the queen, workers and drones. A proper understanding of this allows an appreciation of colony build-up, the timing of swarming and queen replacement, and is very important for the correct management of Varroa.

As with the beekeeping year, sticking to what is ‘typical’ avoids confusion. No need to mention laying workers, two-queen hives, or thelytokous parthenogenesis.

Keep on message!

Equipment

What a minefield?!

As long as the importance of compatibility is repeatedly stressed you should be OK.

An Abelo/cedar hybrid hive ...

An Abelo/cedar hybrid hive …

A little forethought is needed here. Are you (or the association) going to provide your beginners with bees?

I’d argue, and have before, that you really should.

Will the bees be on National frames? 14 x 12’s? One of several different Langstroth frames? Smiths?

Or packages?

I said it was a minefield.

Beginners want to be ready for the season ahead. They want to buy some of that lovely cedar and start building boxes. They need advice on what to buy.

What they buy must be influenced by how they’re going to start with bees. One of the easiest ways around this is to allocate them a mentor and let them lead on the specifics (assuming they’ll be getting bees from their mentor).

One thing that should be stressed is the importance of having sufficient compatible equipment to deal with swarming (which we’ll be coming to shortly).

Dummy board needed ...

5 frame poly nucleus hive needing a dummy board …

My recommendation would be to buy a full hive with three supers and a compatible polystyrene nucleus hive. In due course beginners will probably need a second hive, but (if you teach the simplest form of swarm control – see below) not in the first year. A nuc box will be sufficient.

Swarming and swarm control

Swarming is often considered to be confusing 6.

It doesn’t need to be.

The life cycle of the bee and the colony have been covered already. Swarming and queen cells is just honey bee reproduction … or it’s not swarming at all but an attempt to rescue the otherwise catastrophic loss of a queen ūüôĀ

Deciding which is important and should influence the action(s) taken.

The determinants that drive swarming are reasonably well understood Рspace, age of the queen etc. The timing of the events, and the importance of the timing of the events leading to swarming is very well understood.

Preventative measures are therefore easy to discuss. Ample space. Super early. Super often.

It’s swarm control that often causes the problem.

And I think one of the major issues here is the attempts to explain the classic Pagden artificial swarm. Inevitably this involves some sort of re-enactment, or an animated Powerpoint slide, or a Tommy Cooper-esque “Glass, bottle … bottle, glass” demonstration 7.

Often this is confounded by the presenters’ left and right being the audiences right and left.

Confused? You will be.

Far better to simply teach a nucleus hive-based swarm control method. Remove the old queen, a frame of emerging brood, a frame of stores and a few shakes of bees. Take it to a distant apiary (or block the entrance with grass etc. but this adds confusion) and leave a single open charged queen cell in the original hive.

This method uses less equipment, involves fewer apiary visits, but still emphasises the need for a thorough understanding of the queen development cycle.

And, to avoid confusion, I wouldn’t teach any other forms of swarm control.

Yes, there are loads that work, but beginners need to understand one that will always work for them. Hopefully they’ve got dozens of summers of beekeeping ahead of them to try alternatives.

I think swarm control is one area where the KISS principle should be rigorously applied.

Disease prevention and management

Colony disease is a reality but you need to achieve a balance between inducing paranoia and encouraging complacency.

This means knowing how to deal with the inevitable, how to identify the possible and largely ignoring the rest.

The inevitable is Varroa and the viruses it transmits. And, of at least half a dozen viruses it does transmit, only deformed wing virus needs to be discussed. The symptoms are readily identifiable and if you have symptomatic bees Рand there can be no other diagnosis Рyou have a Varroa problem and need to take action promptly.

Worker bee with DWV symptoms

Worker bee with DWV symptoms

In an introductory course for new beekeepers I think it is inexcusable to promote alternate methods of Varroa control other than VMD-approved treatments.

And, even then, I’d stick to just two.

Apivar in late summer and a trickle of Api-Bioxal solution in midwinter.

Used properly, at the right time and according to the manufacturer’s instructions, these provide excellent mite management.

Don’t promote icing sugar shaking, drone brood removal, small cell foundation, Old Ron’s snake oil or anything else that isn’t documented properly 8.

Almost always there will be questions about treatment-free beekeeping.

My view is that this has no place in a beginners course for beekeepers.

The goal is to get a colony successfully through the full season. An inexperienced beekeeper attempting to keep bees without treatment in their first year is a guaranteed way to lose both the colony and, probably, a disillusioned trainee beekeeper from the hobby.

To lose one may be regarded as a misfortune, to lose both looks like carelessness. 9

Once they know how to keep bees alive they can explore ways to keep them alive without treatment … and they will have the experience necessary to make up for the colony losses.

In terms of other diseases worth discussing then Chronic Bee Paralysis Virus (CBPV) is rapidly increasing in prevalence. Again the symptoms are pretty characteristic. Unlike DWV and Varroa it’s not yet clear what to do about it. Expect to see more of it in the next few years.

Nosema should probably be mentioned as should the foulbroods. The latter are sufficiently uncommon to be a minor concern, but sufficiently devastating to justify caution.

By focusing on the things that might kill the colony – or result in it being destroyed ūüôĀ – you’re obviously only scratching the surface of honey bee pests and pathogens. But it’s a start and it covers the most important things.

Most beginners have colonies that never get strong enough for CBPV to be a problem. Conversely, their weakness means that wasps might threaten them towards the end of the season, so should probably be discussed.

And, of course, the Asian hornet if you’re in an area ‘at risk’.

My beekeeping year

By this time the beginners have an overview of an idealised beekeeping year, an appreciation of the major events in the year – swarming, disease management, the honey harvest and preparation for winter.

Sounds easy, doesn’t it?

But an ideal wrap-up session to a starting beekeeping course would be the account of a real first year from a new beekeeper.

What were the problems? How did they attempt to solve them? What happened in the end?

This asks a lot of a relatively inexperienced beekeeper. Not least of which is good record keeping (but of course, they learnt this on the course the previous year ūüėČ ).

However, the comparison between the ‘textbook’ account delivered during the course with the ‘sweating in a beesuit’ reality of someone standing by an open hive feeling totally clueless is very enlightening.

Sweating in a beesuit

With sufficient preparation you could even turn it into a quiz to test what the trainees have understood.

I’ve seen several ‘starting beekeeping’ courses. All have had some of the things described above. None have had all of them. Most have included superfluous information, or in some cases, dangerous misinformation.

Which brings neatly me to the question of who should teach the course?

If you can do, if you can’t teach

Ensuring that everything is covered at the right time, avoiding duplication and maintaining the correct emphasis takes skill for one person. For a group of individuals it requires a lot of preparation and strict instructions not to drift off topic.

You might have noticed that many experienced beekeepers like to talk.

A lot.

A course handbook becomes an essential – both to help the students and as a guide to keep “on message” for the tutors.

Often it is some of the most experienced beekeepers who teach these courses.

Some are outstanding. Others less so.

Their years of experience often means they take for granted the subtleties that are critical. The difference between play cups and a 1-2 day old queen cell. A reduced laying rate by the queen. How to tell when there is a nectar flow on, and when it stops.

All of this, to them, is obvious.

They forget just how much they have learned from the hundreds of hives they have opened and the thousands of frames they have examined. They’ve reached the stage when it looks like they have a sixth sense when it comes to finding the queen.

Queen rearing course

Listen up Grasshopper!

As Grasshopper says to the old, blind master 10¬†‚ÄúHe said you could teach me a great knowledge‚ÄĚ.

Possibly.

But sometimes they’ve retained some archaic approaches that should have been long-forgotten. They were wrong then, they still are. Paint your cedar hives with creosote. Use matchsticks to ventilate the hive in winter. Apistan is all you need for Varroa control.

 

Matchless matches

If any readers of this post have had these suggested on a course they are currently attending then question the other things that have been taught.

Get a good book that focuses on the essentials. I still think¬†Get started in beekeeping by Adrian and Claire Waring is the best book for beginners that I’ve read 11.

Get a good mentor … you’re going to need one.

And good luck!


 

Resolutions

It’s that time of the year again. The winter solstice is long passed. Christmas has been and gone. The New Year is here.

Happy New Year ūüôā

And New Year is a time to make resolutions (a firm decision to do or not to do something).

There is a long history of making resolutions at the turn of the year. The Babylonians promised to pay their debts and return borrowed objects at their New Year. Of course, their year was based on a lunar calendar and started with the first crescent moon in March/April, but the principle was the same.

Many New Year’s resolutions have religious origins … though the more recent trend to resolve to “drink less alcohol” or¬†“lose weight are somewhat more secular.

About 50% of people in the western world make New Year’s resolutions. This figure is up from ~25% in the 1930’s. Perhaps success increases uptake?

Popular resolutions include improvement to: health (stop smoking, get fit, lose weight), finance or career (reduce debt, get a better job, more education, save more), helpfulness (volunteer more, give more to charity) or self (be less grumpy, less stressed, more friendly) etc.

But since this is a beekeeping website it is perhaps logical to consider what resolutions would lead to improvements in our beekeeping.

Beekeeping resolutions

The short winter days and long, dark nights are an ideal time to develop all sorts of fanciful plans for the season ahead.

How often are these promptly forgotten in the stifling heat of a long June afternoon as your second colony swarms in front of you?

The beekeeping season starts slowly, but very quickly gathers pace.¬†It doesn’t take long before there’s not enough time for what must be done, let alone what you’d¬†like (or had planned) to do.

And then there are all those pesky ‘real life’ things like family holidays, mowing the lawn or visiting relatives etc.¬†that get in the way of essential beekeeping.

So, if you are going to make beekeeping resolutions, it might be best to choose some that allow you to be more proactive rather than¬†reactive. To anticipate what’s about to happen so you’re either ready for it, or can prevent it 1.

Keep better records

I’ve seen all sorts of very complex record keeping – spreadsheets, databases, “inspection to a page” notepads, audio and even video recordings.

Complex isn’t necessarily the same as ‘better’, though I’ve no doubt that proponents of each use them because they suit their particular type of beekeeping.

Objective and subjective notes

My notes are very straightforward. I want them to:

  • Be available. They are in the bee bag and so with me (back of the car, at home or in the apiary) all the time. If I need to refer to them I can 2. They are just printed sheets of A4 paper, stuffed into a plastic envelope. I usually write them up there and then unless I forget a pen, it’s raining and/or very windy or I’m doing detailed inspections of every colony in the apiary. In these cases I use a small dictation machine and transcribe them later that evening.
  • Keep track of colonies and queens. I record the key qualitative features that are important to me – health, temper, steadiness on the comb¬†etc. – using a simple numerical scoring system. Added supers are recorded (+1, +1, -2¬†etc) and there’s a freeform section for an additional line or two of notes. Colonies and queens are uniquely numbered, so I know what I’m referring to even if I move them between apiaries, unite them or switch from a nuc box to a full hive.
  • Allow season-long comparisons ‘at a glance’. With just a line or two per inspection I can view a complete season on one page. Colonies consistently underperforming towards the bottom of the page usually end up being united in late August/early September.
  • Include seasonal or environmental jottings.¬†May 4th – first swift of the year”, “June 7th – OSR finished”, “no rain for a fortnight”. These are the notes that, over time, will help relate the status of the colony to the local environment and climate. If the house martins, swallows and swifts are late and it’s rained for a month then swarming will likely be delayed. Gradually I’m learning what to expect and when, so I’m better prepared.

Monitor mites

Varroa remains the near-certain threat that beekeepers have to deal with every season. But you can only deal with them properly if you have an idea of the level of infestation.

Varroa levels in the colony depend upon a number of factors including the rate of brood rearing, the proportion of drone to worker brood and the acquisition of exogenous mites (those acquired through the processes of drifting and robbing).

Pupa (blue) and mite (red) numbers

In turn, these factors vary from colony to colony and from season to season. As I discussed recently, adjacent colonies in the same apiary can have very different levels of mite infestation.

Additional variation can be introduced depending upon the genetically-determined grooming or hygienic activity of the colony, both of which rid the hive of mites.

Since the combined influence of these factors cannot be (easily or accurately) predicted it makes sense to monitor mite levels. If they are too high you can then intervene in a timely and appropriate manner.

Quick and effective ways to monitor mite levels

Any monitoring is better than none.

Easy counting ...

Easy counting …

There are a variety of ways of doing this, some more accurate than others:

  1. Place a Correx tray under the open mesh floor (OMF) and count the natural mite drop over a week or so. Stick the counts into the National Bee Unit’s (appropriately named)¬†Varroa calculator and see what they advise. There are quite a few variables – drone brood amounts, length of season¬†etc – that need to be taken into account and their recommendation comes with some caveats 3. But it’s a lot better than doing nothing.
  2. Uncap drone brood and count the percentage of pupae parasitised by mites. The NBU’s Varroa calculator can use these figures to determine the overall infestation level. The same caveats apply.
  3. Determine phoretic mite levels by performing a sugar roll or alcohol wash. A known number of workers (often ~300) are placed in a jar and the phoretic mites displaced using icing sugar or alcohol (car screenwash is often used). After filtering the sugar or alcohol the mites can be counted. Sugar-treated bees can be returned to the colony 4. Infestation levels of 2-3% (depending upon the time of season) indicate that intervention is required 5.

Does what it says on the tin.

Overwinter nucs

If you keep livestock you can expect dead stock.

Unfortunately colony losses are an inevitability of beekeeping.

They occur through disease, queen failure and simple accidents.

Most losses are avoidable:

  • Monitor mites and intervene before virus levels threaten survival of the colony.
  • Check regularly for poorly mated or failing queens (drone layers) and unite the colony before it dwindles or is targeted by wasps or other robbers.
  • Make sure you close the apiary gate to prevent stock getting in and tipping over hives … or any number of other (D’oh!¬†Slaps forehead ūüôĄ ) beekeeper-mediated accidents).

But they will occur.

Corpses

Corpses …

And most will occur overwinter. This means that as the new season starts you might be missing one or two hives.

Which could be all of your colonies if you only have a two 6.

Replacing these in April/May is both expensive and too late to ensure a spring honey crop.

Winter colony losses are the gift that keeps on giving taking.

However, if you overwinter an additional 10-25% of your colonies as 5 frame nucs (with a minimum of one), you can easily avoid disaster.

Here's one I prepared earlier

Here’s one I prepared earlier

If you lose a colony you can quickly expand the nuc to a full hive (usually well before a commercially-purchased colony would be ready … or perhaps even available).

And if you don’t lose a colony you can sell the nuc or expand your colony numbers.

Sustainable beekeeping

If you’ve not watched Michael Palmer’s¬†The Sustainable Apiary at the National Honey Show I can recommend it as an entertaining and informative hour for a winter evening.

Michael keeps bees in Vermont … a different country and climate to those of us in the UK. However, his principles of sustainable beekeeping without reliance on bought-in colonies is equally valid.

Overwintering nucs requires a small investment of time and money. The former in providing a little more care and attention in preparation for winter, and the latter in good quality nucleus hives.

I reviewed a range of nuc boxes six years ago. Several of these models have been discontinued or revised, but the general design features to look for remain unchanged.

Here's three I prepared earlier ...

Everynuc poly nucs

Buy dense poly nucs for insulation, make sure the roof isn’t too thin and flimsy and choose one with an entrance that can be readily reduced to a “bee width” 7. Choice (and quality) has improved over the last 5-6 years but I still almost exclusively use Thorne’s Everynuc. I bought 20 a few seasons ago and remain pleased with them, despite a few design weaknesses.

Beekeeping benefits

I do all of the above.

Having learned (often the hard way) that my beekeeping benefits, these habits are now ingrained.

I had about 20 colonies going into the 2019/20 winter, including ~20% nucs. All continue to look good, but it won’t be until late April that I’ll know what my winter losses are.

In the meantime I can review the hive notes from last season and plan for 2020. Some colonies are overwintering with very substandard queens (generally poor temper) because they’re research colonies being monitored for changes in the virus population 8. They will all be requeened or united by mid/late May.

My notes mean I can plan my queen rearing and identify the colonies for requeening. I know which colonies can be used to source larvae from and which will likely be the cell raisers. The timing of all this will be influenced by the state of the colonies and the environmental ‘clues’ I’ve noted in previous years.

Capped queen cells

Capped queen cells

Of course, things might go awry before then, but at least I have a plan to revise rather than making it up on the spur of the moment.

I learned the importance of mite monitoring the hard way. Colonies unexpectedly crashing in early autumn, captured swarms riddled with mites that were then generously distributed to others in the same apiary. Monitoring involves little effort, 2-3 times a season.

So these three things don’t need to be on my New Year’s resolution list.

Be resolute

More people make New Year’s resolutions now than 90 years ago.

However, increasing participation unfortunately does not mean that they are a successful way to achieve your goals.

Richard Wiseman showed that only 12% of those surveyed achieved their goal(s) despite over 50% being confident of doing so at the beginning of the year.

Interestingly, success in males and females was influenced by different things. For men, incremental goal-setting increased the success rate 9 (I will write hive notes on every apiary visit, rather than Keep better notes). For women, the peer pressure resulting from telling friends and family increased success by 10%.

More generally, increased success in achieving the goals resulted from:

  • Making only one New Year’s resolution – so perhaps the three things above is overly ambitious?
  • Setting specific goals and avoiding resolutions you’re previously failed at.

My New Year’s (beekeeping) resolutions?

Since I’m a man, the chance of achieving my goals is not influenced by peer pressure so I’m not publishing them. We’ll have to see in 12 months whether I’m in the 12% that succeed … or the 88% that fail ūüėČ


 

Questions & Answers

One of the challenging things about beekeeping is that the season can be both confusing and entertaining in equal measure.

It’s entertaining because it’s always a little bit different from the seasons that have preceded it. The environment changes. There’s an early spring, or late frosts, a drought, a monsoon or the local farmer changes from one strain of OSR to another.

Sometimes you get all of those in a single season … or month.

Mainly dry ...

Mainly dry …

But not only does the environment change, so do your bees. Inevitably your queens will be replaced over the years. In turn, they influence the performance of the colony. Your virgins fly off to the drone congregation areas where they mate with the ‘bad boys’ from colonies run by a nearby beekeeper with much thicker gloves and a fleece under his beesuit ūüôĀ

Mayhem ensues. Inspections get a whole lot less fun. Quickly.

Or you collect a swarm headed by a fecund queen who busies herself producing calm, prolific, frugal and productive workers.

The colony gets bigger. And bigger. It shows no signs of swarming.

As you add the fourth super you feel like you’ve really cracked this beekeeping lark.

Sorted ūüôā

But these things also make beekeeping incredibly confusing to the newcomer.

If you take a calendar-centric view there is no right answer to¬†‘When will the colony swarm?’ or¬†‘Is this the right time to treat for mites?’ or¬†‘Should I remove the supers now?’.

And many beginners do have a calendar-based viewpoint. It’s so much easier to prepare if you’re told that swarming starts in the third week of May and the supers should be removed at the end of August.

Not only is that easier to understand, but the telltale signs that the bees produce aren’t – for a beginner – very good at telling tales.

The first half-hidden charged queen cell, a reduced laying rate, the reduction in loaded returning foragers etc.

Play cup or queen cell?

Play cup or are they planning their escape …?

But, for me, at least half of the enjoyment is deciphering these signs and working out what the colony is doing, or going to do.

And therefore, what I should be doing.

Questions and answers

Most of this is observation, interspersed with a bit of record keeping and sprinkled with some ‘best guesses’.

If you keep asking the (right) questions you will slowly but surely start finding the answers.

Are they running out of space, making more play cups, and slimming the queen down for the great escape?

But many of these things are too subtle for beginners overwhelmed by the difficulty in just finding the queen amongst 38,789 of her daughters.

Inevitably this means that beginners – quite rightly – ask other beekeepers lots of questions.

I did.

I still do.

And in this increasingly connected world, some of those questions take the form of internet searches.

And some of these questions pop up as search terms on this site.

Mites

Willie Wonka meme

Many of these queries are about mite management:

  • best time to treat for varroa in honey bees?
  • should bees be treated for mites in spring?
  • use apiguard in june?
  • oxalic acid to treat varroa can i do it this week?
  • when to treat bees with oxalic acid in arkansas?

Very specific questions, very calendar-centric. There are hundreds more queries like these 1.

A correct answer requires an understanding of the biology of the mite and an appreciation of the state of the hive.

Neither necessarily involves the calendar. Both can be acquired with a little homework and good observation. However, the very fact that ~25% of queries are about mite management emphasises that many struggle with this aspect of beekeeping.

I remain convinced that the biggest challenge new beekeepers face is how to effectively manage mites. Without proper mite management your colonies will perish.

If you lose your colonies every winter you soon get disheartened.

The easiest way to properly control mite numbers is with chemicals.

It’s what I do.

Returning a marked and clipped queen

However, it’s not the only way.

Excellent beekeeping, selective rearing of mite-tolerant colonies (or of attenuated viruses!) and yet more excellent beekeeping Рcoupled with a favourable environment Рmay mean you can keep colonies without chemical intervention, and without excessive losses 2.

All beginners lack the necessary experience to achieve this. Most lack the ability to learn the skills quickly enough to save their colonies and the majority probably live in areas that are unsuitable.

Most importantly, many beginners aren’t resilient enough to ‘learn the hard way’. They believe the (largely incorrect) statements about the evils of treatment, they want their bees to be ‘healthy and happy’ 3, they like the sound of the term biodynamic 4 … but they cannot cope with losing their stocks every single winter through disease and starvation.

So they give up.

Learn to keep bees … then learn (again, using the years of knowledge already accumulated) to keep them without chemical intervention if you want. Not the other way round.

Read all you can – here and elsewhere – but remember that nothing is as valuable as time spent observing your bees.

Technical queries

These are the sorts of questions that probably can be easily answered 5.

Remembering of course that there are usually at least two correct answers for every question, and any number of incorrect ones.

  1. honey warming cabinet plans
  2. how long does it take bees to chew through newspaper?
  3. what is the chance of a queen being left in my hive when i have just lost a huge swarm?
  4. alighting board angle
  5. where and how to set up bait hives?

My honey warming cabinet is one of the most useful things I’ve built for my beekeeping and the pages that first describe it, the plans and its use, remain some of the most popular on this site.

The answer to Q2 obviously depends upon how many sheets of newspaper are involved.

I think we all know the answer to Q3 and it’s not going to make the questioner happy ūüėČ

It’s very rare that you can provide an absolute definitive answer in beekeeping. However, after many years of exhaustive, well-controlled and independently verified trials I have unequivocally shown that the answer to Q4 is 47.7¬į.

47.7¬į precisely

Not more, not less.

Remembering of course that a landing (alighting) board isn’t actually needed at all ūüėČ

Tom Seeley has done the definitive studies on bait hives (Q5). He clearly describes the ‘where’. My recommendations are rather more pragmatic. It’s easier to monitor and move bait hives if they’re not 5 metres above the ground.

Miscellaneous or just weird

And then there are lots of queries that are simply amusing typos, nonsensical or just odd. My favourites this year are:

  1. maxant crank mechanism
  2. langtorthe eke
  3. how to wear rigger boots?

I’ve no idea how the first of these landed up on¬†the apiarist.org as it’s a term I’ve never used. The middle query (Q2) is a typical typo. It’s an obvious one, but it constantly amazes me how good fuzzy matching algorithms are these days.

Q3 is about beekeeping footwear. My last pair of rigger boots were abandoned years ago when the lining fell apart and they eventually turned my feet to a bloody pulp.

How to wear them?

I wore mine while hobbling. It’s not something I’d recommend.

I now wear Muck boots – specifically the now discontinued Edgewater II short boots – which are lightweight, very comfortable and fully waterproof. No steel toe cap, but I never drop full supers.

Oops ...

Oops …

Well, almost never.

Questions and comments

Not all questions originate in internet searches. Many come via the comments sections at the end of most posts. Most of these are both welcomed and useful; they allow me to clarify things that I’d presented confusingly, or they provide an opportunity to expand on parts of the post.

The numbers of comments have increased significantly this year.

More words and more comments

This increase probably reflects the increased readership (and page accesses) of the site.

Alternatively it might mean the writing is getting worse as the comment numbers correlate with the increased length of posts ūüôĀ

I try and answer as many comments/questions as I can. Many make very salient points and I’m very grateful for those who take the time to comment, either to correct me, to seek clarification or to provide their own insight on the topic.

I ignore those that are dogmatically stupid or just plain wrong. My prerogative. There’s enough bad advice on the internet without propagating more.

I apologise to those who comment via Facebook or Twitter. I almost exclusively use both for promoting posts made here 6. Both generate a lot of traffic to this site but I simply don’t have time (or interest) to use them interactively.

If you want to contact me do so via the comments section or the, aptly named, contact form.

More Readers’ Questions

Which, in a rather circuitous way, brings me to the¬†Readers’ Questions Answered¬†column in the BBKA News. I was asked to tackle these a few months ago and January and February are already written 7.

BBKA News Readers’ Questions Answered proofs

The BBKA News is the monthly newsletter of the British Beekeepers Association. It has a circulation of ~25,000. Each year a different victim expert¬†mug¬†contributor prepares the answers. I’m taking over from Bob Smith, NDB from Medway BKA who did an excellent job and will be a hard act to follow. Some of the previous contributors have been anonymous which might have been a sensible option, but it’s too late for me now.

My family joke that I’m now an agony aunt for beekeepers.

I discussed this with Calum, a regular contributor to the comments section of these pages, who provided (as usual) some very sage advice, including “Bees put up with a lot of sh1t from beekeepers”.¬†I don’t think the BBKA will want to use that as my strapline¬†but it certainly¬†sums things up pretty accurately.

Happy New Year … may your queens be well mated, your mite numbers low, your supers heavy and may your prime swarms be in my bait hives ¬†ūüôā


 

2019 in retrospect

The winter solstice,¬†the shortest day of the year,¬†is tomorrow. It will be a long time until there’s any active beekeeping, but at least the days are getting longer again ūüôā¬†

The queens in your colonies will soon – or may already – be laying again.

What better time to look back over the past season? How did the bees do? How did you do as a beekeeper? What could be done better next time?

Were there any catastrophic errors that really must not be repeated?

Overview of the season

Overall, in my part of Scotland, it was about average.

But that, of course, obscures all sorts of detail.

Spring was warm and swarming started early. I hived my first swarm before the end of April and my last in early July. This is about twice the length of the usual swarming season I’ve come to expect in Scotland. However, it wasn’t all frantic swarm management as there was a prolonged ‘June gap’ during which colonies were much more subdued.

The summer nectar, particularly the lime, was helped by some rain, but the season was effectively over by mid-August. I don’t take my colonies to the heather. Overall, the honey crop was 50-60% that of the (exceptional) 2018 season.

Looking at the yields from different apiaries for spring and summer it’s clear that – despite the warm spring – colonies did less well on the early season nectar (~40% that of 2018). I suspect this is due to their being less oil seed rape (OSR) grown within range of my apiaries. The colonies were strong, but the OSR just wasn’t close enough to be fully exploited..

Over recent years the area of OSR grown has reduced, a trend that is likely to continue.

Winter oil seed rape – the potential is not obvious

The winter rape is already sitting soggily in the fields; I’ve chatted to a couple of the local farmers and will move some hives onto these fields if colonies are strong enough and the weather looks promising.

Bait hives

Every year I’ve been back in Scotland I’ve put a bait hive in the garden.

Every year it has attracted a swarm.

This year – with the extended swarming season – it led to the capture of three swarms in about 10 days. As the June gap ended the weather got quite hot and sultry 1 and the first swarm arrived near the end of that month.

One week after the first swarm arrived there was lots more scout bee activity. There were also quite a few dead or dying bees littering the ground underneath the bait hive. It turned out that these were the walking wounded (or worse) scout bees from two different hives fighting.

Gone but not forgotten

Within 48 hours another swarm arrived and I was fortunate enough to watch it descend.

Incoming!

I moved the hive that evening, placing another bait hive on the same spot. By the following morning there were yet more scout bees checking the entrance and a third swarm – by far the biggest of the three – arrived later that day.

Each was a prime swarm and none were from my own hives which are in the only apiary 2 within a mile of the bait hive.

Watching the scout bees check out a bait hive is always interesting. There’s a fuller account of the observations and lessons learnt – of which there were several – written in the post titled BOGOF (buy one get one free ūüėČ ).

Swarm prevention

My swarm prevention this year either used the nucleus method or vertical splits (with an occasional Demaree for good measure) for most hives. All prevented the loss of swarms and queen mating went about as well – or badly – as it usually does¬†i.e. never as fast as I’d like, but (eventually) all were successful.

Split board

Split board …

I did miss a couple of swarms. One relocated underneath the OMF of the hive it originated from because the queen was clipped and, having fallen ignominiously to the ground, she just clambered up the hive stand again.

The second swarm was also not lost as I inadvertently trapped the queen on the wrong side of the queen excluder. D’oh! In my defence, I’ve had a rather busy year at work 3 and it’s little short of a miracle that I got any beekeeping – let alone swarm control – done at all.

Mites

Considering the extended June gap, which resulted in a brood break for some colonies, mite levels were appreciably higher this year than last. I think this can largely be attributed to the warm Spring which allowed colonies to build up fast. Several colonies were strong enough to swarm in late April.

I do a limited amount of mite counting during the season but also monitor virus loads in emerging bees in our research colonies. In most colonies these stayed resolutely low and no production colonies needed any mid-season interventions for mite control.

Poly Varroa tray from Thorne's Everynuc with visible mites.

Gotcha! …

Newly-arrived swarms were treated as were some broodless splits. The former because many swarms carry a larger than expected mite population 4¬†and the latter because it’s an ideal opportunity to target mites as – in the absence of brood – all will be phoretic.

All colonies were treated with Apivar immediately after the summer honey came off. At the same time they were fed copious amount of fondant in preparation for the winter ahead.

In late November most colonies were broodless and were treated with a vaporised OA-containing miticide.

What worked well

In what was a pretty tough year for non-beekeeping reasons even small beekeeping successes have assumed a significance out of all proportion to the effort expended on them.

In my first year or two of beekeeping honey extraction was an unbridled pleasure. As hive numbers increased it because more of a chore. An electric extractor marginally improved things.

However, there was still the never-ending juggling of frames trying to balance the extractor and jiggling of the unbalanced machine as it sashayed across the floor.

Rubber-wheeled castor with brake

Two years ago I purchased some rubber braked wheels to add to the extractor legs.

This year I finally got round to fitting them.

The jiggle-free revolutions were a revelation ūüôā

I know some beekeepers who stand their extractors on foam pads. Others who have them bolted to a triangular wooden platform. I can’t imagine either solution works better than these castors, which also make moving the extractor to and from storage much easier.

I changed my hive numbering system this season. I’d previously referred to hives by position or with a number written on the box. This caused some issues with the (sometimes shambolic) way I do my beekeeping.

If the hive moves and it’s numbered by position then its number should change. Manageable, but a bit of a pain.

If the position does not change but they’re expanded from a nuc to a full brood box do they get a new number or retain the old one? A problem if it’s written on the box.

And what happens when you move queens about in the apiary (which we sometimes need to do for work)?

Numbers for hives and queens

Numbers for hives and queens

All hives and queens were assigned a number – small red discs for the queen and big, bold numbers for the box. They stay with the colony or the queen … and the records ūüėČ

This has worked very well. As colonies expand the numbers move, if queens are moved I know from and to where (and keep a separate record of queen performance). When colonies are united the queenless component loses both the queen number and the colony number.

The numbering has been a great success. The numbers themselves less so. Most of the red discs have faded very badly and a few of the hive numbers have cracked and/or blown away.

Numbered nuc and production colonies.

Never mind … the system works as intended and it has significantly improved my record keeping. I now know which hive and queen I’m referring to ūüėČ

The Apiarist in 2019

I might squeeze in a more thorough overview of funny search terms and page accesses before the New Year. Briefly … there are significantly more subscribers and an increase of ~20% in overall page reads.

This year marks the sixth full season of¬†The Apiarist which still surprises me. There still seem to be things to write about. Post length continues to increase, though the overall number of posts remain almost exactly one a week. Amazingly I’ve written nearly 95,000 words this year.

Words, words, words …

We had some server issues but most of these appear to have been resolved. Spam remains a problem and the machine auto-filters several hundred messages a day to keep my inbox only unmanageably overflowing. It has meant I’ve had to add some “I am not a robot” CAPTCHA trickery to the contact and/or comment forms. I’m aware that this has caused some problems making contact but can’t find an alternative solution that doesn’t swamp me in adverts for fake sunglasses, Bitcoins or Russian brides.

I live in Scotland and have no use for any of these things ūüėČ 5

The year ahead

There are three main items on the ‘to do’ list for 2020¬†6.

The first is to start queen rearing again. Pressure of work has prevented this from happening over the last couple of seasons and I’m missing both the huge satisfaction it brings and the improved control over stock improvement. I’ve done lots of queen rearing in the past, but work has muscled its way in to too many weekends and evenings recently 7.

3 day old QCs ...

3 day old QCs …

I now have some perfectly adequate bees.

Actually, although they’re far from ‘perfect’ they are also far better than ‘adequate’.

I’ve got a couple of lines that have too much chalkbrood and almost all of them are less stable on the comb than I’d like. They don’t fall in wriggling gloops off the corner of the frame as some do, but they’re more active than I’d prefer. It’s a trait that has crept into some stocks over the last couple of years and I need to try and get rid of it.

The second is to provide better information on the provenance of my honey to potential and actual purchasers. There’s increasing interest in sourcing high quality local food and, as I’ve discussed recently on honey pricing, we should be aiming to provide a premium product (at a premium price ūüėČ ). The public are also increasingly aware that some of the major supermarkets have been reported to be selling adulterated honey. Providing details of the batch, the apiary and the area in which it was produced should help define it as a quality local product.

And generate repeat business.

Local honey

Finally, I’m planting up a new apiary on the west coast with dozens of pollen-bearing trees before I start beekeeping there. This has been a long and protracted process as it has involved clearing large areas of invasive rhododendron. The first 125+ native trees go in this winter – a mix of alder, loads of willow, hazel, blackthorn and wild cherry. More will follow if I manage to stop the deer eating them all.

Only another few acres of rhododendron to clear ūüôĀ

The new apiary is in a Varroa-free region so I will not be moving my current bees there, but instead sourcing them from other areas fortunate enough to be mite-free. This is a long-term project.

Bee shed #3 … bigger and better.

The trees will need a few years to mature but the bee shed (bigger than all that have gone before ūüôā ) foundations are finished and the shed will be assembled sometime in March.

Holibobs

The holiday period is almost here. Many beekeepers will be thinking about fondant top-ups and oxalic acid mite treatment. I’ve done the latter already and – if your colonies are also broodless – hope you’ve done the same. All my hives remain reassuringly heavy but as the weather warms and brood rearing gears up I’ll have some fondant ready ‘just in case’.

I’ve covered last-minute beekeeping gifts in previous years. I think the (digital edition)¬†American Bee Journal remains good value and provides a different perspective for UK beekeepers of what happens in the US.

And with that I’ll pour another glass of mead¬†red wine 8 and wish you all¬†Happy Christmas/Holidays (delete as appropriate).

David


 

Rinse and repeat

Midwinter mite treatment is no substitute for a properly applied late summer treatment that protects your all important winter bees. However, you also need to control mites in the winter or there is a good chance their numbers will reach damaging levels the following season 1.

Mid September

Late summer treatment and no winter treatment – mite levels in red.

OA (oxalic acid-containing) treatments are the ones to use in midwinter (e.g. Api-Bioxal). These can be trickled in syrup onto each seam of bees or they can be vaporised (sublimated), effectively coating everything in the hive with a very fine dusting of crystals.

Trickling damages open brood whereas sublimation is exceedingly well-tolerated by the colony.

If you¬†are¬†certain¬†the colony is broodless then trickling is faster 2 and – because you don’t need power or any more PPE 3 than a pair of gloves – much easier.

If the ambient temperature is consistently below ~6¬įC and I know the colony is broodless I usually trickle. If the temperature is higher and/or I’m uncertain about whether there is brood present I usually vaporise.

I watch the weather and treat after the first prolonged cold spell of the winter.

Experience over the last few years suggests this is when colonies are most likely to be broodless.

Most likely is not the same as¬†certain ūüôĀ

Count the corpses

After treating I closely monitor the mite drop over several days. I use white Correx Varroa trays that slide underneath the open mesh of my kewl floors.

Easy counting ...

Easy counting …

I don’t count the mites every day, but I do try and count the day after treatment and 2-4 days later. I record the mite drop per hive and, over time, look for two things:

  1. The cumulative mite drop. This indicates the original infestation level of the hive. Usually it’s in the range 10-75 mites (total) for my colonies in midwinter, but – as you’ll see – it can be much higher.
  2. The speed with which the daily mite drop falls to a low single-digit average. OA treatment is very effective at killing phoretic mites. If there’s a continuing high level of mite drop it suggests that more are getting exposed over time.

In my experience, vaporised OA often results in a greater mite drop 24-48 hours post-treatment rather than in the first 24 hours 4. After that I expect (hope) the daily mite drop tails off very quickly.

Vaporised OA remains effective in the hive for several days. Randy Oliver reports studies by Radetzki who claims it remains effective for up to three weeks. I think this is an overestimate but I’m sure it continues working well for four to five days.

OA, whether vaporised or trickled, on broodless colonies is 90-95% effective i.e. if there were 100 mites in the colony you should expect as few as 5 remain after treatment.

Four to five days after the initial treatment I eyeball the numbers across all the hives in an apiary and look at the profile of the mite drop.

Mite drop profiles

I couldn’t think of a better term for this. Essentially, it’s the shape of a graph of mites dropped per day after treatment.

I don’t usually draw the graph – I have a life – but I do look carefully at the numbers.

Here are a couple of sketched graphs showing what I mean. Days are on the horizontal (X) axis, dead mites per day are on the vertical (Y) axis. Treatment applied on day 0. No count (yet) on day 6.

Mite drop profile – this is what you want

In the graph above there are high(er) levels of dropped mites on the first day or two after treatment, but levels thereafter drop to a basal level of perhaps 1-4 mites per day.

Each time I count the mites I clean the Varroa tray (the rinse in the title of the post).

Assuming the day 5 mite drop is very low, the profile above is what I’m looking for. It shows that treatment has worked and no repeat is necessary.

The profile below is much less promising 5.

Mite drop profile – this suggests additional treatment is needed

In this graph (above) the mite drop remains high every day after treatment. Sometimes they even increase over time.

If you assume treatment is equally effective Рsay 90%+ Рon the five days after treatment 6 this must mean that there are mites being killed on days 4 and 5 that were not exposed to treatment on the earlier days.

How can this be?

The most likely explanation is that the colony had some sealed brood that has emerged in the days following treatment, exposing previously ‘hidden’ mites to the miticide.

It’s good that they’ve perished, but are there more hiding? How do you tell?

Enough of my hand drawn idealised graphs with no real numbers … what about some actual data?

Real world data

The graph below shows data for seven colonies in a single apiary. All were treated with Apivar in late summer. All were treated with a vaporised oxalic acid-containing treatment on the 28th of November. 

Mite drop profiles – real world data

I counted the mite drops on the 29th (T+1), the 2nd (T+4) and 3rd (T+5). The figures for 30th to the 2nd were averaged, which is why the bars are all the same height.

  • Colonies 3 and 6 had very low mite levels. Though not the lowest in the apiary ūüôā
  • Colonies 2 and 7 had pretty good mite drop profiles, with low single-digit numbers on day T+5. None of these four colonies (2, 3, 6, 7) need treating again.
  • Colonies 1 and 5 have high mite levels 7 and – despite the pretty good levels on T+5 in colony 1 – were both re-treated.
  • Colony 4 was also treated again as the profile was flat and I suspected they had low levels of mites but were rearing brood..

And repeat

Note: The instructions for Api-Bioxal specifically state that the maximal dose of 2.3g/hive should be made in a single administrations with only one treatment per year. Prior to the VMD licensing and approval of Api-Bioxal there was effectively tacit approval for beekeepers to use unadulterated oxalic acid by trickling or vaporisation, without any particular limitations on frequency of usage.

It’s worth stressing that you¬†should not repeat oxalic acid trickling 8.

Here is some real data for repeat treatments of another colony in the same apiary.

Repeat treatment for brood-rearing colony

The average mite drop per day over the first 5 days was ~60. This justified an additional treatment. Over the next 6 days 9 the average drop was ~20. I considered a third application was needed after which the mite drop per day was in the low single digits.

And again

Repeated treatment is needed if there is sealed brood in the colony.

The likelihood is that two additional treatments will be required.

Why two?

Here’s a reminder of the development cycle of the¬†Varroa mite in developing worker or drone brood.

Repeated oxalic acid vaporisation treatment regime.

Worker brood occupies capped cells for 12 days (days 10 – 21 of development, shown above). Vaporised oxalic acid-containing treatments show a drop in efficacy after 4-5 days 10.

Therefore, to cover a complete cycle of capped brood, you need 3 x 5 day treatments to be sure no mites emerge without them being greeted with a lethal dose of something really, really unpleasant ūüėČ

There should be no drone brood in your winter hives 11 but, if there was, 3 x 5 day treatments should just be enough to cover the complete cycle of capped drone brood as well. However, a fourth treatment might be needed.

Note (again): The instructions for Api-Bioxal specifically state that the maximal dose of 2.3g/hive should be made in a single administrations with only one treatment per year. 

Not all hives are equal

There are 15 hives in the apiary containing the bee shed. Colony 1 had just about the highest mite levels. However, as shown in one of the graphs above, adjacent colonies can have markedly different mite levels.

There is no clear correlation between mite drop after treatment and colony size. Colony 1 is a double brood monster, but the others in the bee shed are all single brood 10 and 11 frame Nationals 12.

Some colonies need repeated treatment, others did not.

To maximise efficient treatment and minimise unnecessary miticide usage it is necessary to monitor all the colonies.

It’s also worth noting that monitoring only a single hive in an apiary may be misleading; compare colonies 1 and 6 above in the graph of real data from the bee shed.

This monitoring takes just a few minutes. I usually do it after work. In the bee shed this is easy as I now have LED lighting and it’s nice and dry.

Easy conditions to count mites

In my out apiaries I have to do it by headtorch … under an umbrella if it’s raining ūüôĀ

Checking mite drop by torchlight

That’s the last job of the winter completed … time now to review the season just gone and plan for next year.


Colophon

Rinse and repeat

Rinse and repeat is a truncation of instructions often found on the side of shampoo bottles –¬†Lather, rinse and repeat. Other than potentially resulting in an endless loop of hair washing, it also means that a process is (or needs to be) repeated.

In The Plagiarist by Benjamin Cheever, a marketing executive becomes an industry legend by adding one word РREPEAT Рto shampoo bottles. He doubles sales overnight.

For¬†Varroa treatment the instructions should be amended to¬†Repeat if necessary … and note again the instructions on Api-Bioxal which, at the time of writing, is the only oxalic-acid containing VMD approved miticide that can be administered by vaporisation.

 

Midwinter, no; mites, yes

There’s a certain irony that the more conscientious you are in protecting your winter bees from the ravages of¬†Varroa in late summer, the more necessary it is to apply a miticide in the winter.

Winter bees are the ones that are in your hives now 1.

They have a very different physiology to the midsummer foragers that fill your supers with nectar. Winter bees have low levels of juvenile hormone and high levels of vitellogenin. They are long-lived – up to 8 months – and they form an efficient thermoregulating cluster when the external temperature plummets.

Winter bees production

In the temperate northern hemisphere, winter bees are reared from late summer/early autumn onwards. The combination of reductions in the photoperiod (day length), temperature and forage availability triggers changes in brood and forager pheromones.

Factors that influence winter bee production

Together these induce the production of winter bees.

For more details see Overwintering honey bees: biology and management by Döke et al., (2010).

Day length reduces predictably as summer changes to autumn. In contrast, temperature and forage availability (which itself is influenced by temperature and rainfall … and day length) are much more variable (so less predictable).

All of which means that you cannot be sure when the winter bees are produced.

If there’s an “Indian summer“, with warm temperatures stretching into late October, the bees will be out working the ivy and¬†rearing¬†good amounts of brood late into the year. The busy foragers and high(er) levels of brood¬†pheromone¬†will then delay the production of winter bees.

Conversely, low temperatures and early frosts reduce foraging and brood production, so bringing forward winter bee production.

It’s an inexact science.

You cannot be sure when the winter bees will be produced, but you can be sure that they will be reared.

Protect your winter bees

And if they are being reared, you must protect them from Varroa and the viral payload it delivers to developing pupae. Most important of these viruses is deformed wing virus (DWV).

Worker bee with DWV symptoms

Worker bee with DWV symptoms

Aside from “doing what it says on the tin”¬†i.e. causing wing deformities and other developmental defects in some brood, DWV also reduces the longevity of winter bees.

And that’s a problem.

If they die sooner than they should they cannot help in thermoregulating the winter cluster.

And¬†that results in the cluster having to work harder to keep warm as it gets smaller … and smaller … and smaller …

Until it’s so small it cannot reach its food reserves (isolation starvation) or freezes to death 2.

So, to protect your winter bees, you need to treat with an appropriate miticide in late summer. This reduces the mite load in the hive by up to 95% and so gives the winter bees a very good chance of leading a long and happy life ūüėČ

Time of treatment and mite numbers

Time of treatment and mite numbers

I discussed this in excruciating detail in 2016 in a post titled When to treat?.

The figure above was taken from that post and is described more fully there. The arrow indicates when winter bees are produced and the variously coloured solid lines indicate mite numbers when treated in mid-July to mid-November.

The earlier you treat (indicated by the sudden drop in the mite count) the lower the peak mite numbers when the winter bees are being reared.

Note that the mite numbers indicated on the right hand vertical axis¬†are not ‘real’ figures. They depend¬†on the number present at the start of the year.¬†In the figure above I “primed” the¬†in silico modelled colony with¬†just 20 mites. This will become very important in a few paragraphs.

Late season brood rearing

Compare the blue line (mid-August treatment) with the cyan line 3 (mid-October treatment) in the figure above.

The mid-October treatment really hammers the mite number down and they remain low until the end of the year 4.

The reason the mite numbers remain low after a mid-October treatment is that there is little or no brood being reared in the colony during this period.

Mites need brood, and specifically sealed brood, to reproduce on.

In the absence of brood the mites ‘colony surf‘, riding around as phoretic mites on nurse bees (or any bees if there aren’t the nurse bees they prefer).

And that late season brood rearing is the reason the end-of-year mite number for the colony treated in mid-August (the blue line) remains significantly higher.

Mites that survive the miticide in August simply carry on with their sordid little destructive lives, infesting the ample brood available (which could even include some highly mite-attractive and productive drone brood) and reproducing busily.

So, the earlier you treat, the more mites remain in the hive at the end of the year.

Weird, but true.

Early season brood rearing

The winter bees don’t ‘just’ get the colony through the winter.

As the day length increases and the temperature rises the colony starts rearing brood again. Depending upon your latitude it might never stop, but the rate at which it rears brood certainly increases in early spring.

Or, more correctly, in mid- to late-winter.

And it’s the winter bees that do this brood rearing. As Grozinger and colleagues state¬†Once brood rearing re-initiates in late winter/early spring, the division of labor resumes among overwintered worker bees.”

Some winter bees revert to nurse bee activity, to rear the next generation of bees.

And this is another reason why strong colonies overwinter better … not because they (also) survive the cold better 5, but because there are more bees available to take on these brood rearing activities.

Strong, healthy colonies build up better in early spring.

Colonies that are weak in spring and stagger through the first few months of the year, never getting close to swarming, are of little use for honey production, more likely to get robbed out and may not build up enough for the following winter.

Midwinter mite treatments

Which brings us back to the need for miticide treatment in midwinter.

The BEEHAVE modelled colony shown in the graph above was ‘primed’ at the beginning of the season with 20 mites. These reproduced and generated almost 800 mites over the next 10-11 months.

What do you think would happen if you start the year with 200 mites, rather than 20?

Like the 200 remaining at the year end when you treat in mid-August?

Lots of mites … probably approaching 8000 … that’s almost as many mites as bees by the end of the season.

So, one reason to treat in the middle of winter is to reduce mite levels later in the season. The smaller the number you start with, the less you have later.

Vapour leaks out ...

Vaporisation … oxalic acid vapour leaks out …

But at the beginning of the season these elevated levels of mites could cause problems. High levels of mites and low levels of brood is not a good mix.

There’s the potential for those tiny patches of brood to become mite-infested very early in the season … this helps the mites but hinders the bees.

Logically, the more mites present at the start of brood rearing, the more likely it is that colony build up will be retarded.

So that’s two reasons to treat with miticides – usually an oxalic-acid containing treatment – in midwinter.

Midwinter? Or earlier?

When does the colony start brood rearing again in earnest?

This is important as the ‘midwinter’ treatment should be timed for a period before this¬†when the colony is broodless. This is to ensure that all the mites are phoretic and ‘easy to reach’ with a well-timed dribble of Api-Bioxal.

In studies over 30 years ago Seeley and Visscher demonstrated that colonies have to start brood rearing in midwinter to build up enough to have the opportunity to swarm in late spring. These were colonies in cold climates, but the conditions – and season length – aren’t dramatically different to much of the UK.

Low temperatures regularly extend into January or February. The temperature is also variable year on year. It therefore seems (to me) that the most likely trigger for new brood rearing is increasing day length 6.

The apiary in winter ...

The apiary in winter …

I therefore assume that colonies may well be rearing brood very soon after the winter solstice.

I’m also aware that my colonies are almost always broodless earlier in the winter … or even what is still technically late autumn.

This is from experience of both direct (opening hives) or indirect (fresh brood mappings on the Varroa tray) observation.

Hence the “Midwinter, no” title of this post.

Don’t delay

I therefore treat with a dribbled or vaporised oxalic acid-containing miticide in late November or early December. In 2016 and 2017 it was the first week in December. Last year it was a week  later because we had heavy snow.

This year it was today … the 28th of November. With another apiary destined for treatment this weekend.

If colonies are broodless there is nothing to be gained by delaying treatment until later in the winter.

Most beekeepers treat between Christmas and New Year. It’s convenient. They’re probably on holiday and it is a good excuse to escape the family/mince pies/rubbish on the TV (delete as appropriate).

But it might be too late … don’t delay.

If colonies are broodless treat them now.

If you don’t and they start rearing brood the mites will hide away and be unreachable … but their daughters and granddaughters will cause you and your bees problems later in the season.

Finally, it’s worth noting that there’s no need to coordinate winter treatments. The bees aren’t flying and the possibility of mites being transferred – through robbing or drifting – from treated to untreated colonies is minimal.


 

Strong hives = live hives

Science and beekeeping make for interesting contrasts and can be awkward bedfellows 1.

Science is based upon observation of tested single variables. multiple repeats and statistical analysis. It builds on what has gone before but has accepted processes to challenge well-established theories. Some of the greatest advances are made by young researchers willing to test – and subsequently overturn – established dogma.

Over the last three generations science – both how we do it and what we understand – has changed almost beyond recognition.

In contrast, beekeeping is steeped in history, has multiple variables – climate, forage, ability – and very small sample sizes. It tends to be taught by the most experienced, passing down established – though often not rigorously tested ūüôĀ – methods 2.

As a consequence our beekeeping has barely changed over the last three decades. Established dogma tends to stay established.

Local bees are better adapted to local conditions

So let’s look in a little more detail at one of these established ‘facts’ … that locally reared bees are better adapted to local conditions.

The suggestion here is that locally reared bees, because they’re ‘better adapted’ (whatever that means) are more likely to flourish when the going is good, and more likely to survive when the going gets tough.

Furthermore, the implication is that they’re more likely to do better in that environment than bees reared elsewhere (and that are therefore adapted to a different environment).

This sounds like common sense.

Locally bred queen ...

Locally bred queen …

As Brexit looms and the never-ending supply of early-season Greek or Slovenian queens disappears perhaps it’s also fortunate, rather than just being common sense.

But, as a scientist, I’ve spent a career questioning things.

Every time I read the “locally adapted bees¬†survive better (or perform better, or¬†whatever better)” 3 two questions pop into my head …

  1. What’s local?
  2. How did they prove – or how would I test – this?

Spoiler alert

There is evidence that local bees show adaptive changes to their local environment. There is also evidence that local bees do better in their local environment.

Formally, I don’t think scientists have demonstrated that the former explains the latter. This might seem trivial, but it does mean that our¬†understanding is still incomplete.

However, I’m not going to discuss any of these things today – but I will in the future.

Instead I’m going to deal with those two questions that pop into my head.

If we tackle those I think we’ll be better placed to address that dogmatic statement that local bees are better adapted to local conditions in due course.

But perhaps we’ll first discover that other things are more important?

What’s local?

I live most of the time in central Fife. It’s a reasonably dry, relatively cool, largely arable part of the UK with a beekeeping season that lasts about 5 months (from first to last inspections).

Are my (fabulous ūüėČ ) locally bred queens adapted for central Fife, or the east of Scotland, or perhaps north-west maritime Europe, or Europe?

Where have all my young girls gone?

What a beauty

Would these locally adapted bees do better here (in Fife) than bees raised in the foothills of the Cairngorms, or the Midlands, or Devon or East Anglia … or Portugal?

If you measure the environment you’ll find there’s significant overlap in terms of the climate, the temperature, the forage, the day length (or a hundred other determinants) with other regions of the UK.

The temperature or rainfall extremes we experience in central Fife aren’t significantly different to those in the Midlands. The season duration is different (because of latitude), but I had lots of short seasons in the Midlands due to cool springs and early autumns.

Local is an ill-defined and subjective term.

But there are differences of course. Are Ardnamurchan bees better able to cope with the rain (and the fantastic scenery) than Fife bees? Are Fife bees better able to exploit arable crops than those foraging on the heather and Atlantic rainforests that cloak the hills in the far west of Scotland?

I don’t know ūüôĀ

And there’s something else I don’t know

I also don’t know¬†how I would meaningfully test this.

Just thinking about these types of experiments makes me nervous. Think of the year to year variation Рin weather, forage etc. Рcompounded by the hive to hive variation.

Then multiply that by the variation between beekeepers.

This last one is a biggy. Two beekeepers of differing abilities will experience very different levels of success – quantified in terms of honey yield or hives that survive for example – in the same season and environment.

Doing a study large enough to be statistically relevant without having such enormous variation that the results are essentially meaningless is tricky.

What a nightmare.

Which, in a roundabout way, brings me to a paper earlier this year by Maryann Frazier and Christina Grozinger from Penn State University.

Ask the question in a different way

The title of the paper tells you most of what you need to know about the study.

Colony size, rather than geographic origin of stocks, predicts overwintering success in honey bees (Hymenoptera: Apidae) in the northeastern United States. 4

But don’t stop reading … let’s look in a bit more detail at what they did.

They approached the question (that local bees are better adapted) from a slightly different angle.

Essentially the question they asked was “Does the geographic origin of the bees influence the overwintering survival of bees in a temperate region?”

This question is easier to answer.

They defined the parameters of the experiment a bit more clearly. For example:

  • Rather than looking at several regions they just studied bees in one area ¬†– Pennsylvania (the temperate region in the title of the paper).
  • The bees came from four sources; two were from a hot geographic region of the USA and two from a cold region.
  • They scored ‘doing better’ only in terms of overwintering survival.

By simplifying the question they could reduce some of the variables. They could therefore increase the quantification of the parameters (colony weight, strength/size¬†etc.) that might influence the ‘doing better’.

And in doing so, they came up with an answer.

The study

Sixty colonies were established in three apiaries in Pennsylvania. Two of the apiaries (A & B) were within 1 mile of each other, with the third (C) about 15 miles away. Colonies were generally established from packages 5, to which a queen was introduced from one of four different queen breeders.

Two of the queen breeders were from southern USA (Texas or Florida) and two from northern USA (Vermont and West Virginia 6.

The authors used microsatellite analysis to confirm that the queens – after introduction – headed genetically distinct colonies by midsummer 7.

So far, so good …

They then used standard beekeeping methods to manage the colonies Рregular inspections, Varroa treatments as appropriate, feeding them up for winter etc.

They scored colonies for a variety of ‘parameters’; net weight, frames of brood, adult bees and stores.

Four queens failed before winter.

And then they overwintered the remaining 56 colonies …

The results

… of which only 39 survived until April ūüôĀ

39/56 sounds a pretty catastrophic loss to me but it’s actually about the same (~30%) as the average winter losses reported each year in the USA.

So, did the ‘cold-adapted’ 8 Vermont queens survive and prosper? Did the ‘Southern Belles’ 9 from Texas all perish in the cold Pennsylvanian winter?

No.

That’s no to both questions.

There was no significant difference in survival of colonies headed by queens from the north or the south.

The geographic ‘origin’ of the bees did not determine colony survival.

They may have been ‘locally adapted’ (to Vermont, or Texas or wherever) and they were certainly genetically distinct, but it made no difference to whether the colony perished or not in Pennsylvania.

So if the source of the queen didn’t influence things, what did?

Weighty matters

This is the key figure from the paper.

Overwintering success is significantly associated with colony weight.

The heavier a colony was in October, the more likely that the colony survived until April.

The left hand panel shows the probability of a colony surviving (vertical axis, solid line) plotted against the net weight of the colony.

Below about 30 kg colony survival dropped significantly.

The right hand panel shows that net weight alone was not the only determinant. This plots colonies ranked by weight (vertical axis) and indicates whether they survived or not. An underweight (i.e. under 30 kg) colony in apiary C was much more likely to survive than a similar weight colony from the other two apiaries.

Allee, Allee 10

The heavier the colony, the greater the chance it survived. Furthermore, it wasn’t simply the amount of stores available.

Heavier colonies were also larger colonies.

This indicates a so-called Allee effect 11 which is a positive correlation between population density and individual fitness.

This has been shown before for honey bees (and other social insects). For bees we know that the larger the winter cluster the better they are able to maintain the correct overwintering temperature. These large clusters show lower per capita honey consumption to maintain the same temperature when compared to small clusters.

However, in addition to not running out of stores (due to more frugal usage) 12, large colonies will also be better able to rear brood in early spring …¬†‘it takes bees to make bees’.

Taken together these results demonstrate that colony size and weight, rather than geographic adaptation, is probably the most important determinant of overwintering colony survival.

Disease interlude

These studies were conducted in 2013 (and published in 2019 … a feature of some of my science ūüôĀ ). In the previous year the authors set up a similar study¬†but did not manage¬†Varroa levels.

Under these conditions only 12% of the colonies survived.

There’s a lesson there I think ūüėČ

This disastrous 2012 study used the same queen breeders to source their queens (from Texas, Florida, West Virgina and Vermont). Some of these queens were described and sold as ‘Varroa-resistant’.

There was no difference in survival (or, more accurately, death) rates between colonies headed by queens described as ‘Varroa-resistant’ or not.

Another lesson perhaps?

Is there a geographic component to Varroa-resistance? Are Varroa-resistant Vermont colonies only actually resistant to mites from Vermont?

Or their viruses? 13

OK, we’re getting distracted … let’s return to apiary C.

Forage diversity and abundance is also important

Colonies in apiary C survived better at lower overall net weights than colonies from other apiaries. In addition, average colony weights were higher in apiary C than in the other two apiaries.

Apiary location significantly affected colony weight and survival.

And the abundance and range of nectar sources was significantly different between the three apiaries used in this study, with colonies from apiary C – located in a less forested and more agricultural area – surviving better.

The proportion of land cover/land use types surrounding apiaries.

The authors suggest that the forage diversity and abundance around apiary C increased the size of the colonies (by boosting brood rearing, adult longevity and colony growth) and that it was this larger adult population, rather than colony weight per se, that was important.

Are we getting the message?

This is the second time in a month that I’ve discussed the importance of strong colonies.

A few weeks ago I discussed how strong colonies are more profitable because they generate a surplus of honey or bees, both of which are valuable.

In this post I show that the primary determinant of overwintering success is the strength and weight of the colony. The source of the queen – whether from the balmy south or the frosty north – had no significant influence on colony survival.

This doesn’t mean local bees aren’t better adapted to local conditions. That wasn’t what was being tested.

However, it does suggest that other things that may be as important, or perhaps more important.

The take home message from this study is keep strong colonies in a forage-rich environment.

In a future post I’ll discuss the evidence that local bees are better adapted … and I’ll make the suggestion that some of these adaptations might be explained because the local genotype actually produces stronger colonies ūüėČ


Note

This was originally published with the title Correlates of winter survival on 8/11/2019 but a hamster running amok in the server meant that the email to those registered to receive announcements of new posts was never sent. Rather than let the post disappear into digital oblivion – as the take home message is an important one – I’m re-posting it again.

With apologies to those who read the original …

Matchstick miscellany

White propolis

What is propolis for?

Why, when you go to open a hive that you’ve not visited for some time, is the crownboard invariably stuck down with propolis?

Are the bees trying to stop you looking in? Do they think a thin bead of propolis is defence against a well-aimed hive tool?

Of course not.

What they are doing is sealing up every tiny nook and cranny, every gap and interstice.

You might think the crownboard is a snug fit.

The bees don’t.

Even the brand new, smooth, flat plastic interface between an Abelo crownboard and brood box get glued together within days.

Every fissure through which wasps 1 could gain access or heat could escape or water enter or whatever is gummed shut with a liberal helping of propolis.

Propolis is of course also antibacterial and has a host of other great properties, but for the purpose of this post I’m restricting myself to its use as a sort of “No Nonsense Decorators Caulk” of the bee world 2.

Mind the gap

Additional evidence that bees really do¬†‘mind the gap’¬†is easy to find if you use crownboards with holes in them.

Not the great gaping opening(s) designed to accommodate a porter bee escape (I’ll return to these shortly), but instead something like the ventilated disks in the grossly over-engineered Abelo poly crownboards.

Abelo poly National crownboard ...

Abelo poly National crownboard …

Here’s a brand new one, just out of the packing, with all the little fiddly ventilated plastic disks and poly plugs to cover them.

And this is what one of those ventilated holes looks like after a few weeks use …

Exhibit A … ventilated hole in an Abelo crownboard

And the same thing applies to wire mesh screens when I use split boards as crownboards (because I’ve run out … even of the 25p polythene ones).

Split board

Split board …

Which end up looking like this …

Exhibit B … are you getting the message?

Matchsticks … don’t try this at home

I’m an increasingly irregular visitor and even less frequent contributor to the online beekeeping discussion forums. On one 3 there’s a perennial discussion thread around this time of year concerning matchsticks.

Matchless matches

Essentially the discussion starts with a question or comment on the need for matchsticks as spacers to separate the crownboard from the brood box during the winter.

You’ll find this advice in many beekeeping books going back more than half a century and you’ll hear it in many ‘Start beekeeping’ winter courses … often taught by beekeepers who learned their beekeeping half a century ago.

In many cases the online forum discussion is started by a recommendation in the monthly BBKA 4 newsletter, or another online forum or Facebook group (again often BBKA-based).

The subsequent ‘discussion’ is generally nothing of the sort. The advice is (in my view rightly) criticised but as much or more effort goes into bashing the BBKA as evidencing why the advice is wrong.

I’m not here to bash the BBKA and I’ve already provided the unequivocal evidence why it’s wrong.

Much better use …

If you provide a narrow space or gap over the top of the colony they will try and seal the gap closed with propolis.

So don’t.

If you want to use matchsticks in the winter … build a model of Notre Dame instead. The bees will appreciate it more.

What are the bees telling you?

The speed with which bees seal up gaps and crevices tells you that that they ‘prefer’ not to have have these types of spaces overhead.

I’m using the word ‘prefer’ here in place of some convoluted justification around evolutionary selection of traits that benefit the long-term survival of the colony and maintenance/transmission of the genes in the environment.

They seal the gaps because to not do so, over eons, is detrimental to Apis mellifera. Not necessarily to that colony per se, but to the species.

Whether they do it to reduce robbing, to stop draughts or rain entering or to prevent the loss of warm air is, in many ways, irrelevant.

Do beekeepers really know better than millions of years of evolution?

No.

The “I always used matchsticks and my bees do well” justification

Is so deeply flawed it barely deserves contradicting.

But since I’m here, I will.

Bees have a fantastic ability to survive and even flourish despite the most cackhanded fumbling by beekeepers 5.

Just because your bees overwintered successfully with a gaping void in the crownboard does not mean they need that gaping void to survive 6.

Observe what the bees do and apply it to your beekeeping.

But what about crownboards with a big hole in for a porter bee escape? The bees don’t block those with propolis.

No, they don’t. But that’s still not justification to leave a void above the cluster. Bees seal gaps¬†smaller than ‘bee space’ (say 8-9 mm) with propolis.

Perhaps they don’t seal up these large holes in the crownboard because the ‘triggers’ that make them seal smaller gaps aren’t present.

As an aside, I wonder if they deploy guard bees to defend these large holes above the cluster? 7

But back to the matchsticks; these create a gap significantly less than 8mm and the bees clearly demonstrate Рeach and every time you crack open the crownboard Рthat this is far from optimal.

I’m not going to get into the chimney effect, lost heat, holes in trees, water ingress, draughts etc.

Whether it’s a good idea to ventilate the winter cluster, to get rid of excess humidity or anything else, the evidence is compelling 8the bees would rather you didn’t.

Winter preparation miscellany

The two propolis-adorned crownboard pictures above were taken¬†during an apiary visit in mid-October. I was opening hives for the final time this year. It was 12-13¬įC and bees were flying, bringing back pollen I presumed was largely from the ivy flowering nearby.

They fancied that fondant

Most had finished their final half block of fondant. The empty wrapper, eke and QE 9 were removed.

Others still had fondant left. In this case I bodily lifted off the QE, fondant and eke/super to give me access to the brood box.

Unfinished fondant

If you feed fondant above a QE you can balance it on an eke or empty super, so avoiding crushing the hundreds of bees clustered underneath the fondant 10

And the reason I needed access to the brood box was to recover the Apivar strips.

If the strip is fixed near the top of the frame this takes just seconds and a small amount of dexterity with a suitable hive tool.

The strips also have a small hole top and centre allowing them to be hung between frames on a matchstick.

But I don’t have matchsticks in the apiary ūüėČ so instead use the spike to fix them in the comb.

Apivar strips should not be left in for longer than the approved treatment period (6 – 10 weeks; these went in on the 28th of August, so are being removed after 7 weeks). This is important to avoid the reduced levels of amitraz in the ageing strips selecting for Apivar-resistant mites.

The few colonies I checked more thoroughly had little or no brood. All boxes were reassuringly heavy.

I saw a single drone amongst the dozen or so colonies I opened. Not long for this world I fear.

Since there was still pollen coming in I delayed fitting mouseguards to the colonies that need them.

I’ll deal with that once the frosts start 11.

Not long now ūüôĀ


 

Crime doesn’t pay

At least, sometimes it doesn’t.

In particular, the crime of robbery can have unintended and catastrophic consequences.

The Varroa mite was introduced to England in 1992. Since then it has spread throughout most of the UK.

Inevitably some of this spread has been through the activities of beekeepers physically relocating colonies from one site to another.

However, it is also very clear that mites can move from colony to colony through one or more routes.

Last week I described the¬†indirect transmission of a mite ‘left’ by one bee on something in the environment – like a flower – and how it could climb onto the back of another passing bee from a different colony.

Mite transmission routes

As a consequence colony to colony transmission could occur. Remember that a single mite (assuming she is a mated female, which are the only type of phoretic mites) is sufficient to infest a mite-free hive.

However, this indirect route is unlikely to be very efficient. It depends upon a range of rather infrequent or inefficient events 1. In fact, I’m unaware of any¬†formal proof that this mechanism is of any real relevance in inter-hive transmission.

Just because it¬†could happened does not mean it¬†does happen … and just because it¬†does happen doesn’t mean it’s a significant route for mite transmission.

This week we’ll look at the¬†direct transmission routes of drifting and robbing. This is timely as:

  • The early autumn (i.e.¬†now) is the most important time of year for direct transmission.
  • Thomas Seeley has recently published a comparative study of the two processes 2. As usual it is a simple and rather elegant set of experiments based upon clear hypotheses.

Studying phoretic mite transmission routes

There have been several previous studies of mite transmission.

Usually these involve a ‘bait’ or ‘acceptor’ hive that is continuously treated with miticides. Once the initial mite infestation is cleared any¬†new dead mites appearing on the tray underneath the open mesh floor¬†must have been introduced from outside the hive.

All perfectly logical and a satisfactory way of studying mite acquisition.

However, this is not a practical way of distinguishing between mites acquired passively through drifting, with those acquired actively by robbing.

  • Drifting being the process by which bees originating from other (donor) hives arrive at and enter the acceptor hive.
  • Robbing being the process by which bees¬†from the acceptor hive force entry into a donor hive to steal stores.

To achieve this Peck and Seeley established a donor apiary containing three heavily mite-infested hives of yellow bees (headed by Italian queens). These are labelled MDC (mite donor ccolony) A, B and C in the figure below. This apiary was situated in a largely bee-free area.

They then introduced six mite-free receptor colonies (MRC) to the area. Three were located to the east of the donor hives, at 0.5m, 50m and 300m distance. Three more were located Рat the same distances Рto the west of the donor apiary. These hives contained dark-coloured bees headed by Carniolan queens.

Apiary setup containing mite donor colonies (MDR) and location of mite receptor colonies (MRC).

Peck and Seeley monitored mite acquisition by the acceptor hives over time, fighting and robbing dynamics, drifting workers (and drones) and colony survival.

Test a simple hypothesis

The underlying hypothesis on the relative importance of robbing or drifting for mite acquisition was this:

If drifting is the primary mechanism of mite transmission you would expect to see a gradual increase of mites in acceptor colonies. Since it is mainly bees on orientation flights that drift (and assuming the egg laying rate of the queen is constant) this gradual acquisition of motes would be expected to occur at a constant rate.

Conversely, if robbing is the primary mechanism of mite transmission from mite-infested to mite-free colonies you would expect to see a sudden increase in mite number in the acceptor hives. This would coincide with the onset of robbing.

Graphically this could (at enormous personal expense and sacrifice) be represented like this.

Mite acquisition by drifting (dashed line) or robbing (solid line) over time (t) – hypothesis.

X indicates the time at which the mite-free acceptor colonies are introduced to the environment containing the mite-riddled donor hives.

These studies were conducted in late summer/early autumn at Ithaca in New York State (latitude 42¬į N). The MDC’s were established with high mite loads (1-3 mites/300 bees in mid-May) and moved to the donor apiary in mid-August. At the same time the MRC’s were moved to their experimental locations. Colonies were then monitored throughout the autumn (fall) and into the winter.

So what happened?

Simplistically, the three mite donor colonies (MDC … remember?) all collapsed and died between early October and early November. In addition, by mid-February the following year four of the six MRC’s had also died.

In every case, colony death was attributed to mites and mite-transmitted viruses. For example, there was no evidence for starvation, queen failure or moisture damage.

But ‘counting the corpses‘ doesn’t tell us anything about¬†how the mites were acquired by the acceptor colonies, or whether worker drifting and/or robbing was implicated. For this we need to look in more detail at the results.

Mite counts

Mite counts in donor (A) and receptor (B, C) colonies.

There’s a lot of detail in this figure. In donor colonies (A, top panel) phoretic mite counts increased through August and September, dropping precipitously from mid/late September.

This drop neatly coincided with the onset of fighting at colony entrances (black dotted and dashed vertical lines). The fact that yellow and black bees were fighting is clear evidence that these donor colonies were being robbed, with the robbing intensity peaking at the end of September (black dashed line). I’ll return to robbing below.

In the receptor colonies the significant increase in mite numbers (B and C) coincided with a) the onset of robbing and b) the drop in mite numbers in the donor colonies.

Phoretic mite numbers in receptor colonies then dropped to intermediate levels in October before rising again towards the end of the year.

The authors do loads of statistical analysis – one-way ANOVA’s, post-hoc Wilcoxon Signed-Rank tests and all the rest 3 and the data, despite involving relatively small numbers of colonies and observations, is pretty compelling.

Robbery

So this looks like robbing is the route by which mites are transmitted.

A policeman would still want to demonstrate the criminal was at the scene of the crime.

Just because the robbing bees were dark doesn’t ‘prove’ they were the Carniolans from the MRC’s 4. Peck and Seeley used a 400+ year old ‘trick’ to investigate this.

To identify the¬†source¬†of the robbers the authors dusted all the bees at the hive entrance with powdered sugar. They did this on a day of intense robbing and then monitored the hive entrances of the MRC’s. When tested, 1-2% of the returning bees had evidence of sugar dusting.

Returning robbers were identified at all the MRC’s. Numbers (percentages) were small, but there appeared to be no significant differences between nearby and distant MRC’s..

Drifting workers and drones

The evidence above suggests that robbing is a major cause of mite acquisition during the autumn.

However, it does not exclude drifting from also contributing to the process. Since the bees in the MDC and MRC were different colours this could also be monitored.

Yellow bees recorded at the entrances of the dark bee mite receptor colonies.

Before the onset of significant robbing (mid-September) relatively few yellow bees had drifted to the mite receptor colonies (~1-2% of bees at the entrances of the MRC’s). The intense robbing in late September coincided with with a significant increase in yellow bees drifting to the MRC’s.

Drifting over at least 50 metres was observed, with ~6% of workers entering the MRC’s being derived from the MDC’s.

If you refer back to the phoretic mite load in the donor colonies by late September (15-25%, see above) it suggests that perhaps 1% of all 5 the bees entering the mite receptor colonies may have been carrying mites.

And this is in addition to the returning robbers carrying an extra payload.

Since the drones were also distinctively coloured, their drifting could also be recorded.

Drones drifted bi-directionally. Between 12 and 22% of drones at hive entrances were of a different colour morph to the workers in the colony. Over 90% of this drone drifting was over short distances, with fewer than 1% of drones at the receptor colonies 50 or 300 m away from the donor apiary being yellow.

Discussion and conclusions

This was a simple and elegant experiment. It provides compelling evidence that robbing of weak, collapsing colonies is likely to be the primary source of mite acquisition in late summer/early autumn.

It also demonstrates that drifting, particularly over short distances, is likely to contribute significant levels of mite transmission before robbing in earnest starts. However, once collapsing colonies are subjected to intense robbing this become the predominant route of mite transmission.

There were a few surprises in the paper (in my view).

One of the characteristics of colonies being intensely robbed is the maelstrom of bees fighting at the hive entrance. This is not a few bees having a stramash 6 on the landing board. Instead it involves hundreds of bees fighting until the robbed colony is depleted of guards and the robbers move in mob handed.

As a beekeeper it’s a rather distressing sight (and must be much worse for the overwhelmed guards … ).

I was therefore surprised that only 1-2% of the bees returning to the mite receptor colonies carried evidence (dusted sugar) that they’d been involved in robbing. Of course, this could still be very many bees if the robbing colonies were very strong. Nevertheless, it still seemed like a small proportion to me.

It’s long been known that mites and viruses kill colonies. However, notice how¬†quickly they kill the mite receptor colonies in these studies.

The MRC’s were established in May with very low mite numbers. By the start of the experiment (mid-August) they had <1% phoretic mites. By the following spring two thirds of them were dead after they had acquired mites by robbing (and drifting) from nearby collapsing colonies 7.

It doesn’t take long

The science and practical beekeeping

This paper confirms and reinforces several previous studies, and provides additional evidence of the importance of robbing in mite transmission.

What does this mean for practical beekeeping?

It suggests that the late-season colonies bulging with hungry bees that are likely to initiate robbing are perhaps most at risk of acquiring mites from nearby collapsing colonies.

This is ironic as most beekeepers put emphasis on having strong colonies going into the winter for good overwintering success. Two-thirds of the colonies that did the robbing died overwinter.

The paper emphasises the impact of hive separation. Drifting of drones and workers was predominantly over short distances, at least until the robbing frenzy started.

This suggests that colonies closely situated within an apiary are ‘at risk’ should one of them have high mite levels (irrespective of the level of robbing).

If you treat with a miticide, treat all co-located colonies.

However, drifting over 300 m was also observed. This implies that apiaries need to be well separated. If your neighbour has bees in the next field they are at risk if you don’t minimise your mite levels … or¬†vice versa of course.

And this robbing occurred over at least 300 m and has been reported to occur over longer distances 8. This again emphasises both the need to separate apiaries and to treat all colonies in a geographic area coordinately.

Most beekeepers are aware of strategies to reduce robbing i.e. to stop colonies being robbed. This includes keeping strong colonies, reduced entrances or entrance screens.

But how do you stop a strong colony from robbing nearby weak colonies?

Does feeding early help?

I don’t know, but it’s perhaps worth considering. I don’t see how it could be harmful.

I feed within a few days of the summer honey supers coming off. I don’t bother waiting for the bees to exploit local late season forage. They might anyway, but I give them a huge lump of fondant to keep them occupied.

Do my colonies benefit, not only from the fondant, but also from a reduced need to rob nearby weak colonies?

Who knows?

But it’s an interesting thought …

Note¬†there’s an additional route of mite transmission not covered in this or the last post. If you transfer frames of brood from a mite-infested to a low mite colony – for example, to strengthen a colony in preparation for winter – you also transfer the mites. Be careful.


Colophon

The idiom¬†“Crime doesn’t pay” was, at one time, the motto of the FBI and was popularised by the cartoon character Dick Tracy.

Woody Allen in¬†Take the Money and Run used the quote “I think crime pays. The hours are¬†good, you travel a lot.”

Cabinet reshuffle

Don’t worry, this isn’t a post about the totally dysfunctional state of British politics at the moment 1.

Once the honey supers are removed there’s seemingly little to do in the apiary. There is a temptation to catch up on all those other jobs postponed because I was¬†“just off to the bees”.

Well, maybe temptation is a bit strong. After all, like all good procrastinators, I can usually find an excuse to postpone until next week something that could be left until at least tomorrow.

However, as I said last week, preparations for winter are very important and should not be delayed.

I covered feeding and the all-important late summer mite treatments in that post. Here I’m going to briefly discuss the various late season hive rearrangements that might be needed.

Clearing additional supers

I use very simple clearer boards to get the bees out of my supers. However, there are a couple of instances when not all the supers end up being removed:

  1. If some frames are empty or fail the ‘shake test’ I’ll rearrange these into the bottom super 2. I then clear the bees down into the bottom super and leave it for the bees.
  2. If the colony is really strong and is unlikely to fit into the brood box(es) I’ll often add a super above the queen excluder to clear the bees down into. Sometimes the bees will add a few dribbles of nectar to this … not enough to ever extract, and I’d prefer they put it in the brood box instead.

In both these situations I’ll want to remove the additional super before winter. I don’t want the bees to have a cold empty space above their heads.

Feed & clear together

I usually do this at the same time that I feed the bees.

I rearrange the boxes so that the ‘leftover’ super is above a crownboard on top of the super that is providing the headspace to accommodate the fondant blocks.

Since access to this top super is through a small hole the bees consider it is ‘outside’ the hive and so empty the remaining nectar and bring it down to the brood box 3.

If there are sealed stores in any of these super frames I bruise 4 the cappings with a hive tool and they’ll then move the stores down.

Substandard colonies

A very good piece of advice to all beekeepers is to¬†“take your winter losses in the autumn”. This means assess colonies in the late summer/early autumn and get rid of those that are weak or substandard 5.

Substandard might mean those with a poor temper.

This is the colony which you put up with all season (despite their yobbo tendencies) because you believe that aggressive bees are productive bees’.

Were they?

Was that one half-filled super of partially-capped honey really worth the grief they gave you all summer?

Unless substandard (not just aggression … running, following, insufficiently frugal in winter¬†etc.)¬†colonies are replaced the overall standard of your bees will never improve.

I’ll discuss how to ‘remove’ them in a few paragraphs.

It’s probably a reasonable estimate to suggest that the ‘best’ third of your colonies should be used to rear more queens and the ‘worst’ third should be re-queened with these 6.

Over time 7 the quality will improve.

Of course, a substandard colony might well make it through the winter perfectly successfully. The same cannot be said for weak colonies.

TLC or tough love?

At the end of the summer colonies should be strong. If they are not then there is probably something wrong. A poorly mated queen, an old and failing queen, disease?

The exception might be a recently requeened colony or a new 5 frame nuc.

Everynuc

Everynuc …

Colonies that are weak at this stage of the season for no obvious reason need attention. Without it they are likely to succumb during the winter. And they’ll do this after you’ve gone to the trouble and expense of feeding and treating them … 8

There are essentially two choices:

  1. Mollycoddle them and hope they pick up. Boosting them with a frame or two of emerging brood may help (but make sure you don’t weaken the donor colony significantly). Moving them from a full hive to a nuc – preferably poly to provide better insulation – may also be beneficial. In a nuc they have less dead space to heat. An analogous strategy is to fill the space in the brood box with ‘fat dummies‘ or – low-tech but just as effective – a big wodge of bubble wrap with a standard dummy board to hold it in place.
  2. Sacrifice the queen from the weak hive and unite them with a strong colony.

Sentimentalism

Of the two I’d almost always recommend uniting colonies.

It’s less work. There’s no potentially wasted outlay on food and miticides. Most importantly, it’s¬†much more likely to result in a strong colony the following spring.

However, we all get attached to our bees. It’s not unusual to give a fading favourite old queen¬†‘one more chance’ in the hope that next year will be her last hurrah.

Uniting notes

I’ve covered uniting before and so will only add some additional notes here …

Uniting a nuc with a full colony

Uniting a nuc with a full colony …

  • You cannot generate a strong colony by uniting two weak colonies. They’re weak for a reason. Whether they’re weak for the¬†same or different reasons uniting them is unlikely to help.
  • Never unite a colony with signs of disease. All you do is jeopardise the healthy colony.
  • Find the queen and permanently remove her from the weak or poor quality (substandard) colony.
  • If you can’t find the queen unite them with a queen excluder between the colonies. In my limited experience (I usually manage to find the unwanted queen) the bees usually do away with a failing queen when offered a better one, but best to check in a week or so.
  • I generally move the de-queened colony and put it on top of the strong queenright colony.
  • Unite over newspaper and don’t interfere with the hive for at least another week.
  • You can unite one strong colony and two weak colonies simultaneously.
  • Uniting and feeding at the same time is possible.
  • You can unite and treat with a miticide like Amitraz simultaneously. You will have to make a judgement call on whether both boxes need miticide treatment, depending on the strength of the weak colony.
  • If you’re uniting a strong substandard colony and a strong good colony you¬†will need to use an amount of miticide appropriate for a double brood colony (four strips in the case of Amitraz).
Successful uniting ...

Successful uniting …

Season of mists and mellow fruitfulness

The goal of all of the above is to go into autumn with strong, healthy, well-fed colonies that will survive the winter and build up strongly again in the spring.

A very small or weak colony 9 in autumn may survive, but it’s unlikely to flourish the following spring.

“It takes bees to make bees.”

And a weak colony in spring lacks bees, so cannot build up fast.

In contrast, an overwintered strong colony can often yield a nuc in May the following year. You’ve regained your colony numbers, but have a new, young queen in one hive with most of the season ahead for her to prove her worth.

I’ve merged three topics here – clearing supers, stock improvement and getting rid of weak colonies before winter – because all involve some sort of hive manipulation in the early autumn. I usually complete this in late September or early October, with the intention of overwintering strong colonies in single brood boxes packed with bees and stores.


Colophon

The heading of the final paragraph is the opening line of To Autumn by John Keats (1795-1821). Keats wrote To Autumn exactly two hundred years ago (September 1819, his last poem) while gradually succumbing to tuberculosis. Despite this, and his doomed relationship with Fanny Brawne, the poem is not about sadness at the end of summer but instead revels in the ripeness and bounteousness of the season.

Of course, all beekeepers know that the first stanza of To Autumn closes with a reference to bees.

Season of mists and mellow fruitfulness,
  Close bosom-friend of the maturing sun;
Conspiring with him how to load and bless
  With fruit the vines that round the thatch-eves run;
To bend with apples the moss’d cottage-trees,
  And fill all fruit with ripeness to the core;
    To swell the gourd, and plump the hazel shells
  With a sweet kernel; to set budding more,
And still more, later flowers for the bees,
Until they think warm days will never cease,
¬†¬†¬†¬†For summer has o’er-brimm’d their clammy cells.