Category Archives: Miscellaneous

First impressions

There’s always a slight feeling of trepidation when I lift a roof for the first hive inspection of the season.

What’s in the box?

Is the colony going to be thriving or just hanging on?

I know they’ve got sufficient stores and that the bees have been flying on good days, but that’s not the same as the reassurance that comes from finding 3-4 frames of brood in all stages, well-tempered bees, and a marked queen with a good laying pattern.

Iffy weather

It takes bees to make bees, the saying goes. The colony cannot rear large slabs of brood without large numbers of nurse bees to feed them and clean them and cap the cells.

After a midwinter brood break (which we get, but you may not if you live further south than my 56°N) the queen lays a small patch of eggs which eventually develop and emerge. Over the next few weeks the amount of brood slowly but inexorably increases. The numbers of new bees in the hive increases.

But remember that the total number of bees in the hive is actually still decreasing as the winter bees continue to die off.

And, although brood rearing can (and does) continue like this for weeks – through January and February at least – it needs the better weather, warmer temperatures and early forage to really start ramping up.

So the further north your bees are, the later in the season that things get going.

Unlike last year, the weather this spring has been decidedly ‘mixed’. I barely saw a bee until the penultimate day of February and, with average temperatures of ~6.5°C March wasn’t a whole lot better.

And since then it’s got colder …

I’m writing this after four days of ‘sunny periods’. These sunny periods were interspersed with snow, hail and bitingly cold northerly winds.

Sunny periods … but 4°C with squally snow showers being driven down the Sound of Mull

Although the average temperature is under 5°C the bees are busy foraging when the sun is out. I spent some time yesterday trying to (unsuccessfully) photograph pollen-laden foragers returning to the hive in a snow shower.

Shirtsleeve weather

The usual advice is to not rush the first hive inspection. Wait until it’s a warm spring day. Often it’s recommended to choose a day with ‘shirtsleeve weather’.

Which here might mean July … 🙁

Actually, that’s a bit harsh. We often have excellent weather in late April through until early June.

However, this is my first season with bees on the west coast and I was very keen to see how they were progressing. I also wanted to remove the nadired super and check the levels of pollen.

It certainly wasn’t shirtsleeve weather, but I needed no more than one fleece under my beesuit and I haven’t had to wear long johns since mid-March 😉

Ribes ...

Ribes …

The other advice you’ll often hear is that a good time to conduct the first inspection is when the ornamental currant (Ribes sanguineum) is flowering.

Treat this advice 1 with some caution. In St Andrews there’s a large amount of these flowering currants near the bus station that would always be in full bloom by mid/late March, whatever the weather.

We have no Ribes on the west coast. If we had, the deer would eat them all.

But we did have an unseasonably warm day on the first of the month.

So I had a quick look.

Very disturbing

A hive inspection inevitably disturbs the colony.

However gentle you are the activities of the bees are interrupted, the humidity of the hive changes and the temperature decreases.

The odours and pheromones, so critical for the organised functioning of the colony are also affected.

For these reasons alone there must be a good reason to inspect a colony.

And that’s before you consider the increased opportunities for robbing 2, potential damage to the queen, or a myriad of other reasons.

But none of this means that hive inspections should not be conducted if and when they are needed.

What it does mean is that you need to have a plan in mind when conducting a hive inspection. In addition, you need to have all the things you might need close to hand, and have a mental checklist (your hands will be full) of the order you’re going to execute the plan.

All of which sounds very contrived.

It doesn’t need to be.

What you don’t want to be doing is realising half way through the inspection that you need a clearer board … and it’s at home in the shed 3. Or that your queen has been superseded and the new queen needs to be marked … with the non-existent Posca pen which you lost at the end of last season 🙁

Be prepared

So, although I was only having a ‘quick look’ I did make sure I had everything I needed before I removed the hive roof. This included a:

  • smoker with sufficient fuel to last the duration
  • clearer board to allow the simple removal of the nadired super
  • queen marking kit and snips
  • hive tool with a wide blade to clear the floor
  • spare frame or two
  • pollen pattie 4
  • wrapped fondant block ‘just in case’ 5

All this needs to be close to hand but not so close you trip over it. The roof of an adjacent hive is as good a place as any for the small stuff.

Since I was going to rearrange the boxes I kept space immediately adjacent to the hive free to give me room to work.

Ready, steady … Go!

The hives I inspected were single brood Nationals with a nadired 6 super containing (or not containing?) honey from last season.

Nadired super and single National poly hive

Immediately over the top bars of the frames was the remnants of a block of fondant in a ‘carry out’ food container, with the headspace over the hive provided by one of my inverted deep-rimmed perspex crownboards. This was topped by a block of insulation and the roof 7.

The colonies were installed in these hives from 5 frame nucs in July last year. They had built up reasonably well and collected a half super of heather honey.

However, most of the old, dark frames from the nuc were still in the box as I’d not managed to finish rotating them out of the hive before the season ended.

Corpses and accumulated debris

I removed the roof and the insulation. I then lifted both the nadired super and the brood box together and carefully moved them aside.

This gave me access to the floor.

Sometimes the floor is clear at this time in the spring. At other times you can find a thick accumulation of corpses, or a scattering of mummified larvae with chalkbrood.

Rarely you’ll find a dead mouse … or a live one 8. It’s not at all unusual to find slugs in the hive. These appear to particularly like the damp environment underneath the frame lugs in Abelo poly hives.

Old floors …

Old floors …

Usually I’d choose to replace the floor with a recently cleaned one.

One spare is all you need. You place the new floor down, complete the inspection, close the hive and then scrape clean and blowtorch the old floor before using it as a replacement for the next hive in the apiary.

However, despite my careful planning (!) I had no spares as they were all back in the bee shed, 150 miles away. D’oh! At least I was aware of this before I started which is why I’d made sure I had a wide-bladed hive tool with me.

I scraped the floor clean of a few bee corpses and checked that the entrance channel was clear before putting the floor back in its original location.

I gently separated the brood box from the nadired super. During this process I checked the amount of bees in the super, making an immediate judgement whether the brood nest extended that far down in the hive.

Had the super contained a lot of bees (and therefore potentially brood) there would be a risk that the queen was also ‘down below’. This would have necessitated a quick rethink.

As it was, the super had just a couple of hundred bees in it and it was clear – just by looking down the seams between the frames – that there was no brood present.

It was safe to proceed.

Elbow room and the queen

Only now did I remove the crownboard, lifting one edge first and giving the bees a gentle puff from the smoker to encourage them to stay put.

I removed the fondant block and left it nearby. The bees would return to the hive unaided, or I’d shake the last few in before closing the hive.

The colony inspection was brief and focused. The first few frames contained no bees and so were ignored. Other than the outer dark frame – see below – they weren’t even removed from the hive.

Ready for inspection

I quickly and carefully went through the frames occupied by bees, checking for:

  • sufficient stores (there were still stores on some of the frames I’d not lifted from the hive as well)
  • levels of pollen
  • brood in all stages – eggs, larvae and sealed brood
  • the queen (was she the same I’d last seen in the box over 7 months ago?)

which took no more than a minute for each of the 4-5 frames. Each frame was lifted, inspected on each side and – with one exception – replaced in the same position it had come from.

The brood nest was off-centre, pushed up against one of the side walls of the hive. This isn’t unusual with poly hives as they are so well insulated. However, it means that expansion of the brood nest can only go in one direction.

Giving them a little more elbow room

So, the exception was a frame, with some stores but mainly nice empty comb. I placed this between the brood nest and the side wall of the hive. This gives the expanding colony the option of growing in two directions.

Later in the season, when it’s warmer and the colony is growing faster, you can expand the brood nest further. However, this early in the year 9 just giving them the option to go in either direction is a start.

Marked, laying queen

The marked, clipped queen was easy to spot. I managed to disturb her while laying an egg which you can just see at the tip of her abdomen in the picture inset above.

Replacement of dark frames

Unfortunately the queen was laying up one of the old dark frames in the hive. I couldn’t therefore move this to the outside of the brood nest, but made a mental note to in a month or so.

On the opposite side of the hive were a couple of old dark frames that had been largely cleared of stores.

Old dark frames rotated out of the hive and replaced

These were removed and replaced with new frames. In a few weeks I’ll move these close to the centre of the hive. With abundant spring nectar, and warmth, they will draw fresh comb for the expanding brood nest.

Both the frames above show slight signs of mould. This isn’t unusual to see on frames at the end of the winter, and is generally nothing to worry about. The hive is a humid environment and the outer frames often get very little attention from the bees.

Emptying the super

The super contained a few hundred bees. It also clearly contained a bit of residual honey.

On a warm day I might have simply shaken the bees out. Quick and easy and all over in a single visit. However, it was not warm and this would have been even more disruptive. I therefore added a clearer board and placed the super on top of that. I replaced the crown board, the roof and strapped everything up securely.

Clearer boards

Clearer boards …

The warmth and odours of the hive quickly draw the bees down to join their nest mates, leaving the super empty. This was removed the following day.

The super still had a bit of capped honey in it, as well as a frame or two of uncapped ‘nectar’.

This wasn’t fresh nectar. There’s precious little about at the moment and any the bees are collecting is being secreted around and above the brood nest so that it’s immediately available. Remember, this super had been underneath the brood box since mid-September.

Much of the nectar could be shaken out of these frames. I assume it was uncapped from last year and that it has absorbed moisture from the atmosphere 10. It didn’t have the wet bubbly, yeasty smell and appearance that fermenting stores have … presumably because it’s been too cold 🙁

Thriving or just hanging on?

The two colonies I inspected were doing OK.

More brood than I’d feared, but less than I’d hoped for.

Beekeeping is greatly influenced by the climate, the geography and the local flora. This was my first west coast spring inspection, so there’s lots new to me. It feels like a colder spring than 2020, but I didn’t have bees here then, so have nothing to compare it with.

Once the spring migrants start arriving I’ll have a better idea how it compares.

All of which emphasises the importance of the final part of the inspection. Writing up the hive records. Comparison of notes about both the bees and the environment will, over time, mean I have a much better idea of what’s happening when. And whether the colonies are doing well or badly considering the state of the season.

Black throated diver (Gavia arctica) in full summer breeding plumage

The sand martens are already here, and there are black throated divers on the hill loch. I expect blackcap, cuckoos and wheatear in the next 7-10 days. Much longer than that and it will officially be a cold, late spring.

I’ll be checking my east coast colonies, including half a dozen that have luxuriated in the bee shed overwinter, in the next fortnight or so.

Fife has been warmer and drier, so I expect those colonies to be further advanced.

I hope I’m not too late 🙁


 

Quick thinking & second thoughts

I gave my last talk of the winter season on Tuesday to a lovely group at Chalfont Beekeepers Society. The talk 1 was all about nest site selection and how we can exploit it when setting out bait hives to capture swarms.

It’s an enjoyable talk 2 as it includes a mix of science, DIY and practical beekeeping.

Nest sites, bait hives and evolution

The science would be familiar to anyone who has read Honeybee Democracy by Thomas Seeley. This describes his studies of the features considered important by the scout bees in their search for a new nest site 3.

Under offer ...

Under offer …

The most important of these are:

  • a 40 litre cavity (shape unimportant)
  • a small entrance of 10-15cm2
  • south facing
  • shaded but in full view
  • over 5m above ground level
  • smelling of bees

All of which can easily be replicated using a National brood box with a solid floor. Or two stacked supers.

And – before you ask – a spare nuc box is too small to be optimal.

That doesn’t mean it won’t work as a bait hive, just that it won’t work as well as one with a volume of 40 litres 4.

Evolution has shaped the nest site selection process of honey bees. They have evolved to preferentially occupy cavities of about 40 litres.

Presumably, colonies choosing to occupy a smaller space (or those that didn’t choose a larger space 5 ) were restricted in the amount of brood they could raise, the consequent strength of the colony and the weight of stores they could lay down for the winter.

Get these things wrong and it doesn’t end well 🙁

A swarm occupying a nuc box-sized cavity would either outgrow it before the end of the season, potentially triggering another round of swarming, or fail to store sufficient honey.

Or both.

Over thousands of colonies and thousands of years, swarms from colonies with genetics that chose smaller cavities would tend to do less well. In good years they might do OK, but in bad winters they would inevitably perish.

Bait hive compromises

If you set out a nuc box as a bait hive, you’re probably not intending to leave the swarm in that box.

But the bees don’t know that. Their choices have been crafted over millenia to give them the best chance of survival.

All other things being equal they are less likely to occupy a nuc box than a National brood box.

Another day, another bait hive, another swarm …

For this reason I don’t use nuc boxes as bait hives.

However, I don’t recapitulate all the features the scout bees look for in a ‘des res’.

I studiously ignore the fact that bees prefer to occupy nest sites that are more than 5 metres above ground level.

This is a pragmatic compromise I’m prepared to make for reasons of convenience, safety and enjoyment.

Bees have probably evolved to favour nest sites more than 5 metres above ground level to avoid attention from bears. The fact that there are no bears in Britain, and haven’t been since the Middle Ages 6, is irrelevant.

The preference for high altitude nest sites was ‘baked into’ the genetics of honey bees over the millenia before we hunted bears 7 to extinction.

However, I ignore it for the following reasons:

  • convenience – I usually move occupied bait hives within 48 hours of a swarm arriving. It’s easier to do this from a knee height hive stand than from a roof ladder.
  • safety – I often move the bait hive late in the evening. Rather than risk disturbing a virgin queen on her mating or orientation flights (assuming it’s a cast that has occupied the bait hive) I move them late in the day. In the ‘bad old days’ when I often didn’t return from the office until late, this was sometimes in the semi-dark. Easy and safe to do at knee height … appreciably less so at the top of a ladder.
  • enjoyment – I can see the scout bees going about their business at a hive near ground level without having to get the binoculars out. Their behaviour is fascinating. If you’ve not watched them I thoroughly recommend it.

Scout bee activity

The swarming of honey bees is a biphasic process. In the first phase the colony swarms and forms a temporary bivouac nearby to the original nest site.

The two stage process of swarming

The scout bees search an area ~25 km2 around the bivouacked swarm for suitable nest sites. They communicate the quality and location of new nest sites by performing a waggle dance on the surface of the bivouac.

Once sufficient scouts have been convinced of the suitability of one of the identified nest sites the second phase of swarming – the relocation of the swarm – takes place.

Swarm of bees

Swarm of bees

However, logic dictates that the scout bees are likely to have already identified several potential new nest sites, even before the colony swarms and clusters in a bivouac.

There are only a few hundred scout bees in the swarmed colony, perhaps 2-3% of the swarm.

Could just a few hundred scouts both survey the area and reach a quorum decision on the best location within a reasonable length of time?

What’s a reasonable length of time?

The bivouacked swarm contains a significant amount of honey stores (40% by weight) but does not forage. It’s also exposed to the elements. If finding sites and reaching a decision on the best nest site isn’t completed within a few days the swarm may perish.

Which is why I think that scout bees are active well before the colony actually swarms.

Early warning systems

If scout bees are active before a colony swarms they could be expected to find and scrutinize my bait hive(s).

If I see them doing this I’m forewarned that a colony within ~3 km (the radius over which scout bees operate) is potentially making swarm preparations.

Since I’ll always have a bait hive or two within 3 km of my own apiaries I’ll check these hives at the earliest opportunity, looking for recently started queen cells.

Whether they’re my colonies or not, it’s always worth knowing that swarming activity has started. Within a particular geographic area, with similar weather and forage, there’s usually a distinct swarming period.

If it’s not one of my colonies then it soon might be 😉

So, in addition to just having the enjoyment of watching the scout bees at work, a clearly visible – ground level – bait hive provides a useful early warning system that swarming activity has, or soon will, start.

Questions and answers

Although talking about swarms and bait hives is enjoyable, as I’ve written before, the part of the talk I enjoy the most is the question and answer session.

And Tuesday was no exception.

I explained previously that the Q&A sessions are enjoyable and helpful:

Enjoyable, because I’m directly answering a question that was presumably asked because someone wanted or needed to know the answer 8.

Helpful, because over time these will drive the evolution of the talk so that it better explains things for more of the audience.

Actually, there’s another reason in addition to these … it’s a challenge.

A caffeine-fueled Q&A Zoom session

It’s fun to be ‘put on the spot’ and have to come up with a reasonable answer.

Many questions are rather predictable.

That’s not a criticism. It simply reflects the normal range of topics that the audience either feels comfortable asking about, or are interested in. Sometimes even a seemingly ‘left field’ question, when re-phrased, is one for which there is a standard answer. The skill in this instance is deciphering the question and doing the re-phrasing.

But sometimes there are questions that make you think afresh about a topic, or they force you to think about something you’ve never considered before.

And there was one of those on Tuesday which involved biphasic swarming and scout bee activity.

Do all swarms bivouac?

That wasn’t the question, but it’s an abbreviated form of the question.

I think the original wording was something like:

Do all swarms cluster in a bivouac or do some go directly from the original hive/location to the new nest site?

And I didn’t know the answer.

I could have made a trite joke 9 about not observing this because my own colonies swarm so infrequently 🙄

I could have simply answered “I don’t know”.

Brutally honest, 100% accurate and unchallengeable 10.

But it’s an interesting question and it deserved better than that.

So, thinking about it, I gave the following answer.

I didn’t know, but thought it would be unlikely. For a swarm to relocate directly from the original nest site the scout bees would need to have already reached a quorum decision on the best location. To do this they would need to have found the new nest site (which wouldn’t be a problem) and then communicate it to other scout bees, so that they could – in turn – find the site. Since this communication involves the waggle dance it would, by definition, occur within the original hive. Lots of foragers will also be waggle dancing about good patches of pollen and nectar so I thought there would be confusion … perhaps they always need to form a bivouac on which the scout bees can dance? Which explains why I think it’s unlikely.

In a Zoom talk you can’t ponder too long before giving an answer or the audience will assume the internet has crashed and they’ll drift off to make tea 11.

An attentive beekeeping audience … I’d better think fast or look stupid

You therefore tend to mentally throw together a few relevant facts and assemble a reasonable answer quite quickly.

And then you spend the rest of the week thinking about it in more detail …

Second thoughts

I still don’t know the answer to the question Do all swarms bivouac?”, but I now realise my answer made some assumptions which might be wrong.

I’ll come to these in a minute, but first let me address the question again with the help of the people who actually did the work.

I’ve briefly looked back through the relevant literature by Seeley and Lindauer and cannot find any mention of swarms relocating without going via a bivouac. I may well have missed something, it wouldn’t be the first time 12.

However, their studies are a little self-selecting and may have overlooked swarms that behaved like this.

Both were primarily interested in the waggle dance and the decision making process, they therefore needed to be able to observe it … most easily this is on the surface of the bivouac.

Martin Lindauer mainly studied colonies that had naturally swarmed, naming them after the location of the bivouac, and then studied the waggle dancing on the surface of the clustered swarm. In contrast, Tom Seeley created swarms by caging the queen and adding thousands of very well fed bees.

Absence of evidence is not evidence of absence.

So, what were the assumptions I made?

There were two and they both relate to confusion between waggle dancing foragers and scout bees.

  1. Swarming usually occurs during a strong nectar flow. Therefore there are likely to be lots of waggle dancing foragers in the hive at the same time the scouts are trying to persuade each other – using their own fundamentally similar – waggle dances.
  2. Bees ‘watching’ are unable to distinguish between scouts bees and foragers.

So, what’s wrong with these assumptions?

A noisy, smelly dance floor

Foragers perform the waggle dance on the ‘dance floor’. This is an area of vertical comb near the hive entrance. It’s position is not fixed and can move – further into the hive if the weather is cold, or even out onto a landing board (outside the hive) in very hot weather 13.

So, although the dance floor occupied by foragers isn’t immovable, it is defined. There’s lots of other regions of the comb that scouts could use for their communication i.e. there could be spatial separation between the forager and scout bee waggle dances.

Secondly, foragers provide both directional and olfactory clues about the identity and location of good sources of pollen and nectar. In addition to two alkanes and two alkenes produced by dancing foragers 14 they also carry back scents “acquired from the environment at or en route to the floral food source” which are presumed to aid foragers recruited by the waggle dancer to pinpoint the food source.

Importantly, non-dancing returning foragers do not produce these alkanes and alkenes. Perhaps the dancing scouts don’t either?

A dancing scout would also lack specific scents from a food source.

Therefore, at least theoretically, there’s probably a good chance that scout bees could communicate within the hive. Using spatially distant dances and a unique combination of olfactory clues (or their absence) scouts may well be able to recruit other scouts to check likely new nest sites.

All of which would support my view that bait hives provide a useful early warning system for colonies that are in the very earliest stages of swarm preparations … rather than just an indicator that there’s a bivouacked swarm in the vicinity.

But?

All this of course then begs the question … if the scout bees can communicate within the hive, why does the swarm need to bivouac at all?

The bivouac must be a risky stage in the already precarious process of swarming. 80% of wild swarms perish. At the very least it’s subject to the vagaries of the weather. Surely it would be advantageous to stay within the warm, dry hive until a new nest site is identified?

Apple blossom ...

Apple blossom … and signs that a bivouacked swarm perished here

This suggests to me that the bivouac serves additional purposes within the swarming process. A couple of possibilities come to mind:

  • the gravity-independent, sun-orientated waggle dancing 15 on the surface of the bivouac may be a key part of the decision making process, not possible (for reasons that are unclear to me) within the confines of the hive.
  • the bivouac acts to temporally coordinate the swarm. A swarm takes quite a long time to settle at the bivouac. Many bees leave the hive during the excitement of swarming but not all settle in the bivouac. Perhaps it acts as a sorting mechanism to bring together all the bees that are going to relocate, separate from those remaining in the swarmed colony?

Clearly this requires a bit more thought and research.

If your association invites me to discuss swarms and bait hives next winter I might even have an answer.

But, as with so many things to do with bees, knowing that answer will only spawn additional questions 😉


 

Waiting

Beekeepers will be familiar with the strange distortion of time that occurs during the season. The months with the shortest days appear to drag on interminably. In contrast, the long days of summer whizz by in a flurry of activity 1.

Beekeepers timewarp – perceived month length in blue and actual day length in red.

This is due to the indirect influence of latitude on our bees.

In winter, they’re largely inactive … and so are we, and time drags.

In summer, they’re busy foraging and breeding and reproducing (swarming) and foraging more and robbing … and we’re running around like headless chickens 2 trying to keep up. 

A spring swarm in a skep

Not always successfully 🙁

Latitude

The UK is a small country. The distance between the extremities – Jersey 3 and the Shetlands (both islands, some distance from the mainland 4 ) – is only about 800 miles, or a bit less than the long diagonal across California.

Nevertheless, this has a profound effect on daylength and temperature … and therefore on the bees.

On the winter solstice the day length in Jersey is about 8 hr 11 min. On the Shetlands it’s less than 5 hr 50 min. But that is reversed by the summer solstice. The longest day on the Shetlands is over 2.5 hours longer than the 16 hr 14 min that the poor crepuscular folk in Jersey enjoy 5.

For convenience, let’s assume that bees need an average maximum temperature of 10°C to fly freely 6. That being the case, bees in St Helier, Jersey, might fly for 9 months of the year, whereas those in Lerwick, Shetland, fly for less than 6 months of the year 7

Think back to those headless chickens. All of that “foraging and breeding and reproducing (swarming) and foraging more and robbing is being squeezed into about one third less time in Lerwick than in St Helier.

The winters are not fundamentally different. But the transition to spring happens much earlier in the south.

All of which makes this time of the year hard going for those of us living at northern latitudes … which, in a roundabout way, was what I was pondering while I stared at a depressingly inactive entrance to one of my colonies a fortnight or so ago. 

Ignore Twitter

For a few days Twitter had been littered with short videos of bees piling into hive entrances laden with pollen.

Helpful comments like “Girls are very busy today” or “15°C today and all colonies flying well” accompanied the videos.

I was ankle deep in snow and we’d recently had overnight temperatures below -14°C.

No flying today

Bees from one of my colonies on the west coast had been out on cleansing flights 8 but the other was suspiciously quiet. 

Obviously it was quiet when there was snow on the ground, but this situation continued as the weather warmed and the snow disappeared.

Despite a reasonable amount of experience in keeping bees in Scotland, and an awareness that the Twitter posts might have been from a beekeeper in St Helier, I was starting to get concerned about this second colony 9.

I knew there were live bees in the box as it has a clear crownboard. I could remove the roof and block of insulation and see the bees. However, the bees appeared to still be clustered and, having added a tray under the open mesh floor, there was little evidence of brood emerging.

In contrast, the other colony was flying well, collecting pollen and the cluster was largely dispersed.

Worrying times.

Fretting

Perhaps they’ve gone queenless?

Do queenless colonies tend not to break cluster as early in the season?

Do they not have any need to collect pollen because there’s no brood to be reared?

That’s scuppered my queen rearing plans for the season ahead … is it too late to order a couple more nucs?

Is it too early in the season to unite them and at least use the surviving bees?

Should I have a quick look in the centre of the cluster?

Should I wait until tomorrow when the weather is looking a little better? 10

Waiting

This went on for the better part of a week. The weather was not great, but was steadily improving. I was working outside much of the day.

The flying colony continued to fly. There was ample evidence they were rearing brood. 

The non-flying colony just sat there and sulked 🙁

And then, on the penultimate day of February, out they came …

What a relief …

The day was no warmer than the preceding one, it was certainly no sunnier. If anything it was actually a bit worse. 

But the bees came out as though someone had uncorked a bottle 🙂

First a couple around midday, then a dozen or two by 1pm and finally reaching a few hundred by 2pm (just after the picture above was taken 11 ).

Almost all the flying bees appeared to be taking orientation flights. Only a very few were collecting pollen.

And from that point on it’s been a case of ‘normal service is resumed’.

The colonies have continued to fly on the good less bad days. Both colonies are busy with the gorse pollen. Both – by the look of the trays under the OMF 12 – are rearing reasonable amounts of brood. 

Why the sulking?

Both my west coast colonies were obtained from the same source, though I know the queens are from different lineages. I suspect the fact that one was flying well before the other simply reflects differences in their genetics.

It’s notable that after the first day or two of strong flying activity, both colonies have quietened down significantly. The proportion of bees taking orientation flights compared with foragers has decreased significantly.

I interpret that burst of flying activity as a mix of new bees taking their first flights and older bees reorienting after a long period confined to the hive.

I’m no longer worried that the queen failed in midwinter 🙂

Patience, young grasshopper

This trivial example is just one of many where the beekeeper has to wait for the bees.

You can’t rush them.

They will go at their own pace and, usually (or possibly even, almost always) it will work out OK.

I was concerned about that apparently inactive colony. Had I intervened I would have done more harm than good. 

Since there was little I could do that would constructively help the situation I simply had to wait.

Which made me think about other examples where waiting is usually the best policy in beekeeping.

Queen rearing

I’ve given a couple of talks recently on queen rearing and am already well-advanced with my own plans for the season.

Queen rearing involves several key events, all of which must more or less coincide. The colony (and other colonies in the region) must have sexually mature drones present. There really needs to be a good nectar flow to ensure the developing queens are well nourished. Finally, the weather must be suitable for queen mating.

Again, you can’t rush these things. You might have no influence on them at all …

The swarm in the skep (above) was captured on the last day of April 2019. It was an unusually early spring in Scotland and the earliest swarm I’ve seen since 2015. 

The bees had judged that conditions were right. There were reasonable numbers of drones about and the weather remained pretty good for at least the first half of May. The swarm was a prime swarm, and I fully expect that the virgin queen that emerged in the originating colony got successfully mated 13.

OSR ... can you believe it?!

Late April 2016 … OSR and snow

In contrast, three years earlier the conditions at the end of April are shown above. Colonies contained few drones and swarming first occurred in late May.

Under these conditions, starting queen rearing is a pointless exercise. The colonies aren’t ready, the environment is hostile and there is probably insufficient nectar being collected. 

It pays to wait.

Queen mating

Anyone who has kept bees for a year or two will be familiar with the often interminable wait while a virgin queen gets mated.

Assuming a colony swarms on the day that the developing queen cell(s) is capped 14, the queen that follows her must emerge, mature, go on her mating flight(s) and then start laying.

My calculations are that this takes an absolute minimum of 14 days.

For the first seven days the new queen is pupating, she then emerges and matures for 5-6 days before going on one (or more) mating flights. After mating it then takes a further 2-3 days before she starts laying.

I’ve not looked through my records but cannot remember it ever taking 14 days. In reality, even with ideal conditions, at least 17-18 days is more usual and 21 days is not at all uncommon.

Returning a marked and clipped queen to a nuc

It’s worth remembering that there’s a time window within which the queen must mate. This opens 5-6 days after emergence (when she becomes sexually mature) and closes at 26-33 days after emergence, after which time she’s too old to dependably mate well.

A variety of factors can influence the speed with which the queen gets mated. 

Bad weather is the most obvious. If the weather is poor (rain, cool, very windy etc.) she won’t venture forth. For Scottish beekeepers, there’s a nice study by Gavin Ramsay 15 of the total number of ‘good’ queen mating days we enjoy in our brief summers … it can be very few indeed.

Queens mate faster from smaller hives. Queens in mini-nucs mate faster than those in 5-frame nucs which, in turn, mate faster than those in full hives. 

And, as far as the beekeeper is concerned, these few days drag by very slowly 16

There’s nothing to be gained by checking and re-checking. There’s potentially a lot to be lost if you get in the way of a queen returning from a mating flight.

Just wait … and more often than not it will all be just fine.

Enthusiastic beginners

The final example where there’s a benefit from waiting is for the beginner beekeeper getting their very first colony 17.

They’ve attended a winter ‘Introduction to beekeeping’ course, they’ve read and re-read the Thorne’s catalogue (and ordered loads of stuff they don’t need) and they are desperate to start keeping bees.

I know the feeling, I was exactly the same when I started.

Every year I get requests for nucs in March, or “as soon as possible” or “so I can install them in the hive at Easter”.

The commercial suppliers offer bees early in the season, often from April onwards. 

Or did, before the ban on imports, though some still do.

But in my opinion I think there are real benefits from waiting until a little later in the season.

In the absence of imported packages or nucs, there are only two sources of nuc colonies early in the season:

  • Overwintered nucs. These are usually in very short supply and therefore command a significant price premium. The queen will be from the previous year … not in itself a major problem, though they are probably more likely to swarm than a nuc headed by a current year queen.
  • Bees in a box headed by a queen that was imported. The proportion of bees in the box related to the queen depends upon the time that has elapsed since the queen was added to the box. Think about the timing of brood development … it takes three weeks from adding the queen to have any adult bees related to her. It takes six weeks or more to re-populate the box.

I think the price premium of an overwintered nuc is justified because they have already successfully overwintered. However, a similar box of bees would be perhaps half the price two months later 18.

It’s an expensive way to start if things go wrong.

What could possibly go wrong?

An overwintered nuc will probably build up very fast, perhaps outstripping the skills (or confidence) of the tyro beekeeper. 

If the weather is bad the new beekeeper potentially has a large, poorly-tempered, colony to manage. It’s daunting enough for some beginners doing their first few inspections, but if they’re struggling with a fast-expanding colony – potentially already making swarm preparations – on cool or wet days, then it can become a bit of a chore.

Or worse.

A few stings, a bee or two in the veil and the beekeeper gets a bad fright. The next inspection is missed or delayed. The colony inevitably swarms as the weather picks up.

Suddenly 75% of their £300 investment has disappeared over the fence 19 and they’re left with a hive full of queen cells.

In contrast, the beginner who starts with a nuc later in the season, headed by a ‘this years’ queen, avoids all those problems. 

The new queen is pumping out the pheromones and there’s very little chance the colony will swarm. They’ve arrived in late May or early June, the weather is perfect and the bees are wonderfully calm. 

They still build up at quite a pace, surprising the beginner. They’ve drawn out all the comb in a full brood box within a fortnight and will need a super just about in time for the summer nectar flow.

Beginners often open their colonies too frequently. They dabble, they fuss, they make little tweaks and adjustments. 

My first ever colony – late May. I still feel guilty about that first queen 🙁

Sometimes – like I did with my first colony – they inadvertently crush the queen during a particularly cack handed colony inspection.

D’oh!

It’s still early in the season so mated queens are difficult to get. Pinching a frame of young brood from another colony weakens it at a critical time in its build up, and leaves the beekeeper reliant on excellent weather to get a new queen mated 20.

Altogether not ideal.

So beginners should wait. By all means attend the apiary sessions or tag along with an experienced beekeeper during April and May. You’ll learn a lot.

The wait will do you and, indirectly, the bees good.

At the very least it’s great preparation for the waiting you’ll do for queens to get mated, or for a colonies to start flying well next spring 😉


 

Creamed honey

Which of these is the odd one out?

Comb honey, chunk honey, baker’s honey, creamed honey, blossom honey, borage honey, Scottish honey, honeydew honey?

Anyone?

Reserved descriptions

Honey that is for sale needs to be labelled properly.

I don’t intend to discuss the labelling regulations as, a) they may be different here in Scotland to wherever you live, b) they’re a bit of a minefield, and c) if revised this page would quickly become out of date.

However, logicall, honey that is for sale needs to have a label that includes the word ‘honey’.

Makes sense so far 😉

In addition, there are a number of reserved descriptions such as comb honey, borage honey, Scottish honey that are allowed.

These reserved descriptions may be only used ‘where the product meets the definition’.

So, you can only use the words ‘comb honey‘ when the honey is sold wholly or partly in the comb. You can only use the reserved description ‘borage honey‘ if the honey is primarily made from nectar collected from borage etc.

Similarly, the honey must be collected entirely within a certain geographic area to be named after the area.

The odd one out is ‘creamed honey‘.

My understanding is that this used to be allowed 1 but is no longer an acceptable reserved description. It’s certainly not listed as such on the Trading Standards website 2.

It’s no longer acceptable because honey doesn’t contain cream.

Creamed honey

I think this is disappointing … after all, creamed honey never contained cream as far as I’m aware.

Instead the description was meant to indicate the smooth consistency of the product, the ‘melt on your tongue’ creamy texture.

Soft set (spring) local honey

Why should food names and labels be literal? After all, we eat hot dogs and sweetbreads 3.

When I last checked these weren’t made from dogs … or bread 4.

But it was clearly too confusing for some, so – inevitably – the word ‘creamed’ was banned from use as a reserved description on honey labels 🙁

But creamed has another meaning.

The Oxford English Dictionary includes the following definition of ‘creamed’ …

To deal with vigorously and with success, esp. to beat or thrash; to defeat heavily, as in sporting contexts; to ruin or wreck (a motor vehicle, etc.). colloquial (originally U.S.).

… the usage of which dates back to 1929.

And this is a perfect description of an easy way to produce a really high quality honey from coarse- and fast-granulating nectars like oil seed rape.

Oil seed rape (OSR)

For many beekeepers OSR provides a bumper early season honey harvest. The honey is extracted in late May or early June, allowed to set and then processed for sale.

Anyone who has bees near OSR will know that the honey, without processing, is spoonbendingly 5 hard.

Mid-April in the apiary ...

Mid-April in a Warwickshire apiary …

To make it spreadable (and saleable) I usually use a version of the Dyce method for producing soft set honey.

Frankly, this is a bit of a palaver 6.

Soft set honey

You need to completely melt the honey, cool it to 34°C, seed it with a honey with a suitable fine crystal structure, mix it thoroughly and then allow it to set at ~13°C with very regular stirring.

This whole process takes several days.

It’s not constant work and it’s not particularly hard work, but it is all a bit protracted. Done properly it produces honey with a good texture that sells well … and is outstanding on crumpets.

All gone … soft set honey from OSR

There are other ways of achieving this … such as buying an automated machine which does all the intermittent stirring for you.

At a price … perhaps £2500 with full temperature control.

But I don’t want to produce 50 or 100 kg of honey at a time. And I don’t want yet another piece of equipment sitting around taking up valuable space.

Like the majority of the 45,000 beekeepers in the UK, I produce nothing like the quantities of honey to justify this commercial-scale equipment.

And, like the majority of those 45,000 beekeepers, I don’t want to spend all of my time producing honey to pay for this sort of equipment. I want to rear some queens, walk in the hills, go sailing or drink coffee on the patio.

Frosting in soft set honey

Furthermore, in my experience soft set honey can show significant batch-to-batch variation in terms of its tendency to develop frosting in the jar. Some batches never show frosting, others develop the unsightly appearance (that has no influence on the flavour) within a week or two.

Honey with frosting

Honey with frosting

In my experience, I and third party sellers are more concerned about the unsightly appearance than the customers are.

I want to produce a honey that tastes and looks good.

The shopkeeper wants a honey that they know is going to sell well.

It’s not entirely clear to me what causes frosting. Some has the distribution and appearance that suggests minute bubbles have risen through the honey, getting trapped under the shoulders of the jar.

At other times it looks as though the honey has contracted slightly, pulling away from the sidewalls of the jar.

The example above is particularly unsightly and looks very like the honey is re-crystallising again, losing the ‘melt on your tongue’ crystal structure for something altogether coarser. Whatever, they went back to the furthest recesses of the cupboard where I found them 😉

Creaming honey

There’s another way to generate a fine crystal structure from a coarsely crystallised honey.

You cream it … in the OED sense of the word:

You vigorously beat it … 

Which neatly brings me to the Rapido / Rasant Honey Creamer.

Rapido / Rasant honey creamer

A few months ago Calum – who regularly submits insightful comments to posts on this site – recommended this honey creamer for processing oil seed rape honey (OSR). Calum called it the Rapido. It’s produced by Germerott Bienentechnik and they appear to call it the ‘Rasant‘ (and have what looks like a second variant available since I purchased mine).

The Rapido is a stainless steel paddle that is used to vigorously beat the honey. It’s about 9 cm in diameter and is securely mounted on a 60 cm shaft. The non-honey end of the shaft is hexagonal and can therefore be secured in the chuck of a powerful drill.

The instructions indicated a 1000 W drill was required, or – with a different fitting at the non-honey end of the shaft – you can use a plasterers mixer 7.

And it works a treat:

This is a 30 lb bucket of honey converted from coarsely crystallised to a beautifully fine crystal structure in a little under four minutes.

Usage

It’s not quite as quick as I’ve described as you still need to pre-warm the honey and allow time for it to settle.

Here’s the full process I’ve used for about four buckets (~60 kg) of OSR honey in the last month.

  1. Warm the bucket in a honey warming cabinet at 30-33°C. It must be warmed right through, so leave for at least 12-15 hours.
  2. Remove any surface scum if there is any. The majority of my buckets don’t have any, so this can be skipped. My set OSR honey has already been through a coarse and fine stainless steel filters during extraction.
  3. Starting slowly as shown above, mix with the Rapido. Make sure all the honey is mixed, which may involve pushing the non-rotating paddle down the sidewalls of the bucket to loosen it slightly 8.
  4. Continue mixing for 3-4 minutes until the honey is the consistency shown at the end of the video.
  5. Pour into a bucket with tap.
  6. Return to the honey warming cabinet at 30-33°C for a further 12-15 hours to allow bubbles to settle out (or is that rise out?). I’m not certain this stage is needed … but since it involves me doing nothing it’s easy to do.
  7. Jar the honey.
  8. Allow to cool. Add labels.
  9. Sell the honey and wait for the plaudits and repeat custom 🙂 It will happen.

Once the resulting honey cools it has a wonderful texture – easy to spoon and spread, but does not drip off the spoon.

Just perfect for crumpets or homemade bread 🙂

This really is honey that has been ‘creamed’ … beaten vigorously and with success.

I’d like to end with a “big shout out” (as the young people say) to Calum for the recommendation in the first place.

Thanks mate 🙂


Notes

A shorter post than usual this week as I’m moving house 9. I’m writing this when I should be packing boxes … or trying to find things I now need that were packed into boxes yesterday. Assuming things have gone to plan I’m no longer a permanent resident of Fife (though I’ll continue to work there) and now live in the wild west 🙂

Germerott Bienentechnik don’t have a UK distributor for the Rasant honey creamer (I know, because I’ve chatted with them about it) so it needs to be purchased direct from Germany. It costs ~€50 but is quite heavy so shipping costs are high. Post-Brexit there may also be additional taxes involved 🙁

UPDATE (23/2/21) As indicated in the comments below, Thorne’s now appear to be selling this as a honey churner … at least it looks identical to me. I’ve also been in contact with Werner and Klaus at Bienentechnik and they are happy to take your order and can be contacted on info@bienentechnik.com. Inevitably, there may be some post-Brexit shipping issues to overcome 🙁

Finally, there’s always a demand for raw honey. Although I still wouldn’t call this honey ‘raw‘, I can claim honestly that it’s not been heated to temperatures higher than would naturally occur in the hive. Some customers will prefer this.

The danger zone

… your bees are entering it about now.

I had hoped to start this post with a pretty picture of a row of colourful hives topped with a foot or more of snow. It would have been an easy picture to take … we’ve certainly got the snow.

And this was before we had a load more snow in the afternoon …

It would have been an easy picture to take … had I been able to get to the apiary 🙁

I’m writing this in central Fife. We’ve had the heaviest snowfall I’ve seen here in 6 years (well over a foot) and the roads are just about impassable. Why risk a shunt for a pretty picture?

Little snow, big snow. Big snow, little snow.

So here’s one taken earlier in the winter.

So what’s all this about the danger zone?

The danger zone

Bees that are rearing brood in the winter use stores at twice the rate when compared with bees that are not rearing brood.

How do we know this?

Clayton Farrar (1904 – 1970) was Professor of Entomology at the University of Wisconsin, Madison. He retired from his role as chief of the USDA Laboratories in Beekeeping in 1963. He’s well known (at least within certain beekeeping circles) for promoting two-queen honey production hives.

However, he also conducted lots of other studies on honey bees. Some of these were on the importance of pollen for brood rearing. Studies back in the 1930’s showed that when pollen was unavailable, brood rearing ceased.

Farrar compared the winter weight loss by colonies that were starved of pollen and those which had ample pollen. Those starved of pollen used their stores up only 50% as fast as those busy rearing brood.

Why do they use more stores?

I’ve recently discussed the winter cluster. In that post I made the point that the temperature of the winter cluster is carefully regulated.

In the absence of brood rearing, the core temperature of the cluster is about 18°C.

However, at that temperature honey bee development cannot happen 1.

When brood rearing the colony must raise the temperature of the core of the cluster to ~35°C.

The bees in the cluster achieve this elevation of temperature by isometric flexing of their flight muscles.

And they need energy to do this work … energy in the form of sugar stores.

Biphasic stores use

What this means is that as a colony transitions from a broodless (which may or may not occur, depending upon your latitude, climate, temperature 2 ) winter period to rearing brood, they start consuming the stores faster.

You can see this clearly in the right hand side of this graph from a paper from Tom Seeley, presented in his excellent book The Lives of Bees. This shows the winter weight change through two and a bit seasons. I’ve marked the approximate position of the winter solstice with a black arrow and mid-February (i.e. about now) with a red arrow.

Colony weight (top) and weekly weight change (lower).

Just focus on the 1928/83 winter as this most clearly shows an inflexion point in the rate of stores usage (we know it’s stores being used as it’s midwinter, so there’s no forage available).

The colony transitions from a maintenance rate to a brood rearing rate and the slope of the weight loss line steepens.

You can also see the same thing happening in the 80/81 and 81/82 winters, though it’s less obvious.

My colonies started rearing brood soon after the winter solstice. Yours might have not had a brood break at all.

However, in both cases the colony is likely to be rearing more brood now than it was 5-6 weeks ago.

Therefore it will be using more stores now … and so there’s an increased chance of the colony running out of stores.

It’s also appreciably colder over much of the UK now than it was a few weeks ago. We’ve had temperatures as low as -12°C this week, meaning the bees need to maintain a 49°C temperature differential to protect the developing brood in the hive.

This means that – all other things being equal – the colony will be using even more stores now than they were a month ago to maintain the same critical core temperature of the cluster for brood rearing.

Duunnn dunnn… duuuunnnn duun… duuunnnnnnnn dun dun dun …

That’s a rather poor attempt at spelling out the opening few bars of the Jaws theme 😉

The danger zone is in the late winter or early spring.

The colony must rear more brood to become strong enough to reproduce (swarm) in late April to early June.

And, from a beekeeping perspective, they must rear more brood to become a strong enough colony to properly exploit oil seed rape and other early nectars for the spring honey crop.

But there’s no forage available and/or it’s too cold to venture out for early nectar.

Snowdrops and gorse are flowering … somewhere over there

So the danger is that they starve to death 🙁

I’ve recently discussed determining whether your colony is rearing brood (and it will almost certainly have started by now, even if it’s taking a brief temporary break when the temperature plummeted) and also given an overview of ‘hefting’ hives and monitoring colony weight.

Fondant topups

If the colony feels light, or your records suggest it is dangerously light, you urgently need add a readily available (to the bees, if not to you) and easy to access source of sugar.

Syrup is not suitable at this time of the year. Even with lots of insulation, the space above the crownboard is a pretty chilly environment. A bucket of syrup placed there is likely to be simply ignored … at least until the ambient temperature has increased.

By which time it might be too late.

If the colony feels light they need stores now, not when it warms up (though they’ll also need stores then … if they survive that long).

Fondant is the stuff to use.

I’ve written extensively about it previously and I buy it by the pallet load. It stores perfectly for months or years, so I always have it available. I use it for almost all my bee feeding.

Fondant mountain ...

Fondant mountain …

You can also make it relatively easily 3.

Fondant is ~80% sugar. It’s also malleable but semi-solid … a bit like plasticine.

But it tastes appreciably better 😉

I’ve found the best way to provide fondant is in transparent (or at least translucent) shallow food containers.

Waste not, want not

In the photo above the clear(ish) ones are much better than the brown or green ones. Better still are the double-area ones you buy chicken breasts in 4. These are wide but shallow and can accommodate at least 2 kg of fondant.

Where to place the fondant

I stressed that the fondant must be easy to access by the bees.

There’s no point in adding it if they don’t have immediate access to it.

And if it’s -8°C outside the bees are not going to be wandering around looking for food … any that leave the cluster will soon get chilled, become torpid and perish.

You therefore need to put the fondant directly in contact with the bees.

Often the advice is to provide the fondant over the hole in the crownboard.

However, consider the this diagram.

Plan view of fondant above the feed hole in a crownboard

If your bees form a large cluster – like A above – they are in contact with the fondant that has been placed directly above the central feed hole in the crownboard.

And, if they stay there, all will be OK.

But what about the smaller cluster (B)?

These bees don’t have direct access. If the weather is cold enough and the space above the crownboard is badly insulated the fondant might as well have been left in the packet.

In the shed 🙁

I therefore add the fondant under the crownboard.

Fondant block ...

Fondant block …

I place the fondant block, inverted, covering part of the cluster. They can immediately access it and they will soon use it if they need it.

Time for another?

Time for another?

The photo above shows why clear or translucent containers are preferable – you can easily tell how much of the fondant remains.

In the photos above the cluster is located approximately centrally within the brood box. However, think back to the colony I discussed a fortnight ago. In that, the cluster was tight up against the polystyrene side wall of the hive, some distance from a central hole in the crownboard (if mine had a central hole 😉 ).

Headspace

These plastic food containers are about 5 cm deep. Filled to the brim they can hold about 1.2 kg of fondant. That might well not be enough … hence my preference for the larger containers.

Or just use two of them …

Fondant absorbs moisture from the environment, softening the surface. With the fondant directly in contact with the top bars of the frames and the bees, this softened fondant is readily used.

I made the mistake once of wrapping the fondant in clingfilm and providing a hole for the bees to access it. Over time they drag the shredded clingfilm down into the hive, incorporating it into brace comb.

It makes a right mess. Avoid clingfilm.

If you are concerned about sloppy fondant dribbling down onto the cluster (something I’ve noticed a couple of times with either very weak colonies or in very damp environments) you can cover the face of the block with a sheet of plastic. Cut a 2 cm square hole in this and place it over the centre of the cluster.

And how do you accommodate this 5 cm block of fondant under the crownboard?

You can use a 5 cm deep eke, with your normal crownboard on top.

Alternatively, you can build crownboards that have a single bee space on one side and an integral ‘eke’, in the form of a 5 cm deep rim, on the other.

Perspex crownboard with integrated insulation

I built a few of these many years ago, with perspex and an inbuilt block of ‘Kingspan’ insulation. They work really well.

When you need the headspace – for example for a block of fondant – you simply invert the crownboard and place the insulation on top, under the roof.

What, no fondant?

If you haven’t got any fondant, don’t despair.

But also don’t delay while you try and source some fondant.

Fondant is sugar after all, and everyone should be able to get sugar.

Despite having a mountain of fondant squirreled away, I still keep a few bags of granulated sugar ‘just in case’.

Emergency rations

Cut a 2 x 2 cm hole in the front of bag of sugar and add about a half teacup full of water. Let it soak in for a few minutes. Add less than you think is needed … you can always add a bit more.

You want to dampen the sugar, not dissolve it. The aim is to be able to invert the bag directly over the cluster 5.

So do that as soon as you can.

Bees need water to be able to ‘eat’ granulated sugar, so dampening it helps both keep it in the bag and saves them doing extra work collecting condensation from the hive walls.

And, just to avoid any ambiguity, only used white granulated sugar.

It takes bees to make bees … and honey

Colonies that are strong early in the season are better able to exploit the spring nectar, including that from oil seed rape.

Mid-April in the apiary ...

Spring in a Warwickshire apiary …

Some beekeepers feed their colonies thin syrup (1:1 w/v) in early spring to boost brood rearing in time to have booming colonies ready for the rape.

I’ve not done this, or ever felt I really needed to. However, I’m not commercial and do not rely on the honey harvest to feed the family, pay the kids’ school fees or fuel the Porsche.

And, other than feeding the family, I don’t know any commercial beekeepers who rely on honey sales for those other things either 6.

Usually the combination of young queens, low Varroa levels and ample autumn feeding produces colonies strong enough for my beekeeping in the spring.

Rapidly expanding colonies in March and early April require good amounts of brood to be reared during the dark winter days in January and February. After all, you cannot rear lots of bees without having lots of bees available to do the brood rearing.

This is an area where it is beneficial to have young queens heading the colony. These lay later into the autumn, resulting in more winter bees.

If these bees are healthy and well fed the colony should have a flying start to the following season, if you’ll excuse the pun.

But check them nevertheless as they enter ‘the danger zone’.

As you add your third or fourth super to a hive in early May, think back to that cold, wet day three months earlier when you gave them an extra block of fondant … and give yourself a pat on the back 😉


Notes

I finally managed to get out a couple of days after it stopped snowing.

Hives in the snow

The two hives on the right have a 4 mm thick Correx roof, directly on top of a 5 cm thick block of Kingspan. Going by the amount of snow still sitting on top of these hives they’re not losing too much heat through the roof 🙂

The Danger Zone was a song by Kenny Loggins that featured in the 1986 movie Top Gun. In retrospect, it’s a pretty cheesy movie. However, 35 years ago it was the first VHS videotape I purchased. It had a Dolby soundtrack and, played loud through the stereo speakers while sitting close to the TV (to get that ‘widescreen’ cinema feeling) it sounded pretty good 😉

I do not often listen to Kenny Loggins but when I do, so do my neighbors …

Frequently asked questions

The 2020/21 winter has been very busy with online talks to beekeeping associations. I’m averaging about five a month, with only the fortnight over Christmas and New Year being a bit quieter. 

When chatting to the organisers of these talks it’s clear that they are getting increasingly successful 1. Audience numbers are encouragingly high as people become more familiar with online presentations.

Beekeepers know they can lounge around in their pyjamas drinking wine, chat with their friends before and after the talk 2, and listen to a beekeeping presentation … a sort of lockdown multitasking.

Some of you that spend hours each day on Zoom will know exactly what I’m talking about 😉

I still lament the absence of homemade cakes, but I suspect the online format is here to stay. At least for some associations, or at least some of the winter programme each year. 

Talking to myself

There’s little point in doing science unless you tell others about it and, as as a scientist, I have presented at invited seminars and conferences for my entire career. 

Some readers will be familiar with public speaking in one form or another. They’ll be familiar with the frisson of excitement that precedes stepping up to the podium in a large auditorium. 

Assuming there’s a large audience filling the large auditorium of course 😉

Those with little experience of speaking might wish the audience was a bit smaller, or a lot smaller … or not there at all.

But the reality is that the audience is a really important part of a presentation. At least, they are once the speaker has sufficient confidence to calm down, to stop worrying they’ll say something stupid, and to ‘read’ the audience. 

An attentive beekeeping audience

By observing the audience the speaker can determine whether they’re still interested and attentive. Not just in the topic (after all, they’re sitting there rather than disappearing to the coffee shop), but in particular parts of the presentation. 

Are you going too fast?

Have you lost their attention?

Was that fancy animated slide you spent 20 minutes on a dismal failure?

Did that last witty aside work … or did it crash and burn? 3

Almost none of which can be determined when delivering a Zoom-type online presentation 🙁

You can ‘see’ the audience.

Or parts of it.

Postage stamp-sized headshots, with poor lighting, distracting backgrounds 4 and enough pixelation to make nuanced judgements about boredom or even species sometimes tricky.

Is that a Labradoodle in the audience … or just another lockdown haircut?

Has the internet frozen … or has everyone simply fallen asleep?

It’s not ideal, but it’s the best we’ve got for now.

Which makes the question and answer sessions even more important than usual.

Mixed abilities

My talks usually include a 5 minute intermission. Talking for an hour uninterrupted is actually quite tiring 5 and it’s good to make a cup of tea and gather my thoughts for ’round two’.

It also allows the audience to raise questions about subjects mentioned in the first half that left them confused.

Fortunately these ‘half time’ questions tend to be reassuringly limited in number 6.

Have a break, have a Kit Kat

However, at the end of the talk there is usually a much more extensive Q&A session. This often covers both the topic of the talk and other beekeeping issues. 

A typical audience contains beekeepers with a wide range of beekeeping experience. Enthusiastic beginners 7 jostle for screen space with ‘been there, done that, bought the T-shirt’ types who have forgotten more than I’ll ever know.

Inevitably this means the talk might miss critical explanations for beginners and omit some of the nuanced details appreciated by the more experienced. As the poet John Lydgate said:

You can please some of the people all of the time, you can please all of the people some of the time, but you can’t please all of the people all of the time 8.

Think about this simple statement:

Varroa feed on the haemolymph of developing pupae.”

The beginner might not know what haemolymph is … or, possibly, even what Varroa is.

The intermediate beekeeper might be left wondering whether the mite also feeds on nurse bees when ‘crowdsurfing’ around the colony during the phoretic stage of the life cycle.

And the experienced beekeeper is questioning whether I know anything about the subject at all as I’ve not mentioned fat bodies and their apparently critical role in mite nourishment.

So I encourage questions … to help please a few more of the people 😉

You’re on mute!

In my experience these are best submitted via the ‘chat’ function. The host – an officer of the BKA or a technically-savvy member press ganged into hosting the talk – can then read them out to me.

Or I can … if I can find my glasses.

One or two beekeeping associations have a Zoom ‘add in’ that allows the audience to ‘upvote’ written questions, so that the most popular appear at the top of the list 9. This works really well and helps ‘please more of the people more of the time’.

The alternative, of asking the audience member to unmute their mic and ask the question is somewhat less satisfactory. It’s not unusual to watch someone wordlessly ‘mouthing’ the question while the host (or I) try and explain how to turn the microphone on.

Finally, it’s worth emphasising that the Q&A session is – as far as I’m concerned – one of the most helpful and enjoyable parts of the evening.

Enjoyable, because I’m directly answering a question that was presumably asked because someone wanted or needed to know the answer 10

Helpful, because over time these will drive the evolution of the talk so that it better explains things for more of the audience.

Anyway – that was a longer introduction than I intended – what sort of questions have been asked frequently this winter (and the talks they usually appeared in).

What do you define as a strong colony? (Preparing for winter)

Strong colonies overwinter better than weak colonies. They contain more bees. This means that the natural attrition rate of bees during the winter shouldn’t reduce the colony size so much that it struggles to thermoregulate the cluster

Midwinter cluster

A strong colony in midwinter

I also think large winter clusters retain better ‘contact’ with their stores, so reducing the chances of overwinter isolation starvation.

Strong colonies are also likely to be healthy colonies. Since the major cause of overwintering colony losses is Varroa and the viruses it transmits, a strong healthy colony should overwinter better than a weak unhealthy colony. 

Colony age structure from August to December.

However, you cannot necessarily judge the strength of a colony in June/July as an indicator of colony strength in the late autumn and winter.

This is because the entire population of bees has turned over during that period. 

A hive bulging with bees in summer might look severely depleted by November if the mite levels have not been controlled in the intervening period.

The phrase ‘a strong colony’ is also relative … and influenced by the strain of bees. Native black bees rarely need more than a single brood box. Compare them to a prolific carniolan strain and they’re likely to look ‘weak’, but if they’re filling the single brood box then they’re doing just fine.

When should I do X? (Rational Varroa control and others)

When usually means ‘what date?’

X can be anything … adding Apivar strips, uniting colonies, adding supers, dribbling oxalic acid.

This is one of the least satisfactory questions to answer but the most important beekeeping lesson to learn.

A calendar is essentially irrelevant in beekeeping.

Due to geographic/climatic differences and variation in the weather from year to year, there’s almost nothing that can be planned using a calendar.

Only three things matter, the:

  1. state of the colony
  2. local environment – an early spring, a strong nectar flow, late season forage etc.
  3. development cycle of queens, workers and drones

By judging the first of these, with knowledge of the second and a good appreciation of the third, you can usually work out whether treatments are needed, colonies united or supers added etc.

This isn’t easy, but it’s well worth investing time and effort in.

Honey bee development

Honey bee development

The last of these three things is particularly important during swarm control and when trying to judge whether (or when) a colony will be broodless or not. The development cycle of bees is effectively invariant 11, so understanding this allows you to make all sorts of judgements about when to do things. 

For example, knowing the numbers of days a developing worker is an egg, larva and pupa allows you to determine whether the colony is building up (more eggs being laid than pupae emerging) or winding down for autumn (or due to lack of forage or a failing queen).

Likewise, understanding queen cell development means you know the day she will emerge, from which you can predict (with a little bit of weather-awareness) when she will mate and start laying.

How frequently should you monitor Varroa? (Rational Varroa control)

This question regularly occurs after discussion of problematically high Varroa loads, particularly when considering whether midseason mite treatment is needed. 

Do you need to formally count the mite dropped between every visit to the apiary?

Absolutely not.

If you are the sort that does then be aware it’s taking valuable time away from your trainspotting 😉 12

The phoretic mite drop is no more than a guide to the Varroa load in the hive. 

Think about the things that could influence it:

  • A colony trapped in the hive by bad weather has probably got more time to groom, so resulting in an increased mite drop.
  • An expanding colony has excess late stage larvae so reducing the time mites spend living phoretically.
  • A shrinking colony will have fewer young bees, so forcing mites to parasitise older workers. Some of these will lost ‘in the field’ and more may be lost through grooming.
  • Strong colonies could have a much lower percentage infestation, but a higher mite drop than an infested weak colony. You need to act on the latter but perhaps not the former.
  • And a multitude of other things that really deserve a more complete post …

So don’t bother counting Varroa every week … or even every month.

Does what it says on the tin.

I think checking a couple of times a season – towards the end of spring and in mid/late summer – should be sufficient. You can do this by inserting a Varroa tray for a week, by uncapping drone brood and looking for mites, or by doing an alcohol wash on a cupful of workers (but these methods aren’t comparable with each other as they measure different things with different efficiencies). 

But you must also look for the damaging effects of Varroa and viruses at every inspection.

If there are significant numbers of bees with deformed wings – characteristic of high levels of deformed wing virus (DWV) – then intervention will probably be needed. 

DWV symptoms

DWV symptoms

And if there are increasing numbers of afflicted bees since your last regular inspection it’s almost certain that intervention will be needed sooner rather than later.

I should add that I also count mite drop during treatment. This helps me understand the overall mite load in the colony. By reference to the late summer count I can be sure that the treatment worked. 

What do you mean by a quarantine apiary? (Bait hives for profit and pleasure)

This question has popped up a few times when I discuss moving an occupied bait hive and checking the health of the colony. 

A swarm that moves into a bait hive brings lots of things with it …

Up to 40% by weight is honey which is very welcome as they will use it to draw new comb. If there’s good forage available as well it’s unlikely the swarm will need additional feeding.

However, the swarm also brings with it ~35% of the mites that were present in the colony that swarmed. These are less welcome.

I always treat swarms with oxalic acid to give them the best possible start in their new home.

Varroa treatment of a new swarm in a bait hive…

More worrisome is the potential presence of either American or European foul broods. Both can be spread with swarms. The last things you want is to introduce these brood diseases into your main apiary.

For this reason it is important to isolate swarms of unknown provenance. The logical way to do this is to re-site the occupied bait hive to a quarantine apiary some distance away from other bees. Leave it there for 1-2 brood cycles and observe the health and quality of the bees.

What is ‘some distance?’

Ideally further than bees routinely forage, drift or rob. Realistically this is unlikely to be achievable in many parts of the country. However, even a few hundred yards away is better than sharing the same hive stand. 

If you keep bees in areas where foul broods are prevalent then I would argue that this type of precautionary measure is essential … or that the risk of collecting swarms is too great.

And how do you know if foul broods are prevalent in your area?

Register with the National Bee Unit’s Beebase. If there is an outbreak near your apiary a bee inspector will contact you.

Remember also that the presence of foul broods in an area may mean that the movement of colonies is prohibited.

‘Asking for a friend’ type questions

These are great.

These are the sort of questions that all beekeepers are likely to need to ask at sometime in their beekeeping ‘career’.

Typically they take the form of two parts:

  1. a description of a gross beekeeping error
  2. an attempt to make it clear that the error was by someone (anyone) other than the person asking the question 😉

Here are a couple of more or less typical ones 13.

  • My friend (who isn’t here tonight) forgot to remove the queen excluder and three full supers from their colony in August. Should I, oops, she remove them now?
  • Here’s an an entirely hypothetical scenario … what would you recommend treating a colony with in March if the autumn and midwinter mite treatments were overlooked?
  • Should my friend remove the Apiguard trays he a) added in November, or b) placed in his colonies before taking them to the heather?
  • I’d been advised by an expert beekeeper to squish every queen cell a few days after discovering my colony had swarmed in June. It’s now late September … how much longer should I wait for the colony to be queenright?

These are very good questions because they illustrate the sorts of mistakes that many beginners, and some more experienced beekeepers, make. 

There’s absolutely nothing wrong with making mistakes. The problem comes if you don’t learn from them.

I’ve made some cataclysmically stupid beekeeping errors. 

I still do … though fewer now than a decade ago, largely because I’ve managed to learn from some of them.

Partly I learned from thinking things through and partly from asking someone else … “A friend has asked me why his colony died. Was it the piezoelectric vibrations from the mite ‘zapper’ bought from eBay or was the hive he bought not suitable?


 

In the bleak midwinter

Winter has finally arrived.

Green thoughts in a white shade

We’ve had temperatures fluctuating around 0°C for the last two to three weeks now, with some very hard frosts and more than enough snow to make the track impassable.

Like the bees, I’ve spent the time hunkered down focusing on keeping warm and conserving my stores.

Unlike my bees, I’ve benefited from triple glazing and a wood burning stove 😉

And the main thing I’m worried about running out of is milk for my cappuccino 1.

The 20th was particularly cold with temperatures well below -5°C and stunningly clear. There was something strange about the conditions, as the loch froze. The surface, for 30 metres or more from the shore, had a thin film of ice covering it.

Ice, ice baby

As the tide dropped the shore was left with a sparkling crust of 1mm thick glass-like ice confetti.

The salinity of seawater is typically ~3.5% … this amount of salt reduces the freezing point to about -2°C, a temperature we’ve regularly experienced in the last fortnight. This suggests the ‘strange’ conditions were probably the absence of any swell coupled with the really calm conditions.

Whatever the cause, it was beautiful.

Early season forage … you must be joking 😉

Under conditions like these the bees are effectively invisible. They’re very tightly clustered . With daytime temperatures rarely reaching 3°C none venture out of the hive. With the exception of cleansing flights and the removal of corpses – and it’s too cold for either of these – there’s little reason for them to leave the hive anyway.

The gorse is in flower … somewhere under there

The only thing flowering is gorse and it would be a foolhardy bee that attempted to collect pollen at the moment.

I’ve previously written about the genetically-determined flowering time of gorse. In an attempt to improve forage at certain times of the year I’ve been collecting seed from suitable plants and germinating it indoors. As soon as the weather improves I’ll plant these seedlings out 2 as the amount of gorse around the apiary is quite limited.

Gorse (and some broom) seedlings

Gorse seed is painful to collect and germinates poorly. I pour boiling water over the seed and then let it soak for 24 hours, which improves germination at least ten-fold.

Hive checks

Every fortnight or so I check the hive weights by hefting. Only two colonies have had any extra fondant yet and that was through ‘an abundance of caution’. I suspect they actually didn’t really need it.

The next eight weeks (here 3 ) is when brood rearing should be starting to really ramp up. It’s during February and March that starvation is an issue.

Here on the west coast, my colonies are rearing brood. This tray has been in for about a week. I’m including it as I’ve been asked several times about how to determine if a colony is rearing brood without opening the hive.

Biscuit coloured (or a bit darker) cappings indicating brood rearing in this colony

The red arrows indicate the biscuit coloured cappings that have fallen from the seams in which they are rearing brood. The inset shows a magnification of the indicated part of the image. The photo was taken with a camera phone and the cappings are perhaps a bit darker than usual (though I also know there are a few older brood frames in this hive 🙁 ).

And if the conditions are right, even with a well-insulated poly hive, you can identify which wall the cluster is up against by the evaporation of the overnight damp from the outer surface of the hive.

The location of the cluster is clearly visible on this Abelo poly hive

This is the front of the same hive from which the Varroa tray was photographed – the cappings on the tray and the cluster location correspond perfectly.

By the way … don’t bother looking for Varroa on the tray. This hive is in a Varroa-free region 🙂

As I’ve said before, it’s not unusual for colonies in poly hives to cluster tightly against the wall in winter. Those in cedar are more often away from the wall in my experience (and the same thing applies to brood rearing other than at the height of the season).

Hey good lookin’

The Abelo hive above is a nice looking box. The paint finish is bonded well to the polystyrene and provides good protection.

If you leave unpainted polystyrene out in the elements it starts to look pretty tired, pretty quickly.

I don’t have any pictures as none of my poly hives are unpainted.

At least, none are any more 😉

I’d acquired some new Maisemores nucs with bees and had a number of unused and unpainted Everynucs. Most manufacturers recommend you paint poly hives with masonry paint of some kind, or they sell (often quite pricey) paint that’s suitable.

Here's three I prepared earlier ...

Everynuc poly nucs

I’ve painted a lot of nucs with masonry paint, using a paint spray gun. It goes on fast and is reasonably hardwearing … but not great.

Swienty brood box ...

Swienty brood box …

In contrast, my Swienty brood boxes look as good now as when they were first painted 5 years ago. These received two coats of ‘Buckingham green’ Hammerite Garage Door paint.

This paint is designed for galvanised metal garage doors (the clue is in the name 😉 ). It contains a bunch of unpleasant sounding solvents but, when dry, appears to be entirely safe. I’d recommend not reading the 13 pages of safety data sheets or you might never dare open the tin because of the imminent risk of explosion.

Melting polystyrene

These solvents have the effect of slightly ‘melting’ the surface of the poly hive. This creates a really strong bond between the paint and the hive surface. The melting isn’t enough that you can notice the surface texture change … it’s just an invisible chemical reaction going on as you brush the stuff on.

Maisemore’s poly nuc after the first coat

However, this reaction might account for the rather patchy coverage of a single coat. If you paint it on thickly enough to try and produce a nice even finish it tends to run and sag a bit.

So give it two coats … and then it looks excellent.

Oxbridge Blues – a few painted poly nucs ready for the season ahead

Several months ago I bought a ‘remaindered’ tin of Hammerite paint in Oxford blue. I had wanted a contrasting colour (to my other boxes) for these nucs to help orientate returning freshly mated queens.

I paint the entire box, avoiding any of the ‘touching’ faces which are left unpainted. Some paint usually seeps into joins between the roof, body and/or floor, but you can easily prise them apart with a judiciously applied hive tool.

I’m rather pleased with how smart they now look.

I’m somewhat less pleased with the quality control on some of the Everynucs 4. Several had the mesh floor stuck down incorrectly, with parts unattached. In places the gaps were big enough for a bee to enter.

Open mesh floor and big gap at the side in an Everynuc

I simply pulled them off and restuck them down with a glue gun. This is an easy fix but really should not be necessary on a nuc box that costs almost £60 🙁

A+E

With the current Covid pandemic we have a responsibility to minimise the demands we are placing on our heroically overstretched healthcare workers.

For this reason I’ve been avoiding doing any DIY for beekeeping for many months now 😉

However, the season is looming ever-closer and I want to try some new things.

My toolbox contains approximately equal amounts of disconcertingly sharp implements and elastoplast. I’m well prepared 😉

I’m also currently living very remotely. In the event of a bad injury I’m unlikely to ever trouble the staff in A+E … unless the accident conveniently coincides with the ferry timetable 🙁

I therefore decided to risk life and limb by building the things I need to try queen rearing using a Morris board.

I’ll describe full details of the method later in the year.

For me, this method should offer advantages due to the type of bees, the size of my colonies, the number of queens I want to rear and the period over which I want to rear them.

You can buy these boards (for about £30 each) … or you can build better ones for about a fiver from offcuts from the wood bin, a bit of queen excluder and a piece of aluminium. They are a bit fiddly to build, with four opening doors and a ‘queenproof’ slide, but the cost savings and satisfaction you gain more than outweigh the blood loss involved.

Here’s one I started earlier … a Morris board under construction

The very fact I’m still able to write this post shows that I managed to retain all my fingers. Whether or not the Morris board works 5 I consider that fact alone a success 🙂

Doing the splits

The Morris board works by allowing access to 5 frame upper brood box for defined periods. I therefore also needed a brood box divided in half.

I’ve been doing a lot of wax extracting recently and a couple of cedar boxes have cracked under the stress of repeated steam cycles. I split one down to its component boards, burning the bits that were unusable, but recycling one side into the central division of another old cedar box.

Split brood box – detailed view of my very poor workmanship

I’ll be queen rearing in two apiaries simultaneously, so will need two of these upper boxes. However, I only managed to salvage one sufficiently large board from the steam-damaged box.  Fortunately I have some cedar nucs built precisely (so clearly not by me 😉 6 ) to National hive dimensions, so I can use two of these side-by-side with the same design Morris board.

Late afternoon sun, 24th January

But queen rearing remains both a distant memory and a very long way off in the future. Until then it’s a case of enjoying the short winter days and drinking cappuccino in front of the fire.

Good times


Notes

Hammerite Garage Door paint is usually £15-20 a tin (750 ml). It’s worth shopping around as there’s quite a bit of variation. I found it remaindered and paid under a tenner 🙂

I reckon there’s enough in one tin to do two coats on 9-10 nucs as long as you take care not to over apply the first one. You could probably thin it a bit (though I’m not sure what with 7) but I’d take care you don’t create something that just melts the poly box.

Even at £20 it still works out at only about £2 a nuc. Considering these can cost £40-60 it seems like a reasonable investment of money to keep them looking smart for years.

And a good investment of time (it took me ~15-20 minutes per coat) … after all, what else are you going to do in the bleak midwinter?

Going the distance

I’m going to continue with a topic related to the waggle dance this week.

This is partly so I can write about the science of how bees measure distance to a food source.

But it’s also to encourage those who didn’t read the waggle dance post to visit it. Weirdly it was only read by about 50% of the usual Friday/weekend readership and I suspect (from a couple of emails I received) that the weekly post to subscribers ended up in spam folders 1.

If you remember, the duration of the waggle phase of the dance – the straight-line abdomen-wiggling sashay across the ‘dance floor’ – indicates the distance from the nest to the desirable food source 2. The vigour of the wiggle indicates the quality of the source.

How do bees measure distance?

Karl von Frisch, the first to decode the waggle dance, favoured the so-called ‘energy hypothesis’. In this, the distance to a food source was determined by the amount of energy used on the outbound flight.

Does that seem logical?

Foragers forage randomly, but usually return directly

If correct, foragers would only be able to determine the energy used after their second trip to a food source. This presumes their first trip was longer as they searched the environment for something worth dancing about 3.

This would be an easy thing to test, though I’m not sure it was ever investigated 4.

As it happens, far better brains determined that the energy hypothesis was probably incorrect. Many of these studies explored how gravity influences the distances reported by dancing foragers.

Going up!

Bees use more energy when flying up. For example, when flying from ground level to the top of a tall building, when compared to level flight. Similarly, they use more energy flying if they have small weights attached to them 5.

A series of experiments, nicely reviewed by Harald Esch and John Burns 6, failed to provide good support for the energy hypothesis. There were lots of these studies, involving steep mountains, tall buildings or balloons, between the 1950’s and mid-80’s.

Interesting science, and no doubt it was a lot of fun doing the experiments.

For example, bees flying to a sugar feeder situated on top of a tall building dance to ‘report’ the same distance as bees from the same hive flying to a feeder at ground level adjacent to the same building.

Similarly, foragers loaded with weights do not overestimate the distance to a food source, as would be expected if the energy expended to reach it was being measured 7.

Interesting and entertaining science certainly, but none of it providing compelling support for the energy hypothesis

It’s notable that there is a rather telling sentence from the Esch & Burns review that states “While reading the original papers, one gains the impression that evidence supporting the energy hypothesis was favored over arguments against it”.

Ouch!

Splash landing

Although Von Frisch was a supporter of the energy hypothesis 8 he also published a study that provided evidence for our current understanding of how bees measure distance.

Bees generally don’t like flying long distances over water. Von Frisch provided two equidistant nectar sources, one of which was situated on the other side of a lake.

Bees flying over calm water underestimate distances

On very calm days the bees that flew across the lake under-reported the distance to the feeder. This underestimate was by 20-25% when compared to bees flying to an equidistant feeder overland.

Von Frisch commented “the bee’s estimation of distance is not determined through optical examination of the surface beneath her”.

He assumed that the mirror-like water surface provided no optical input as it contained no visual ‘clues’. After all, one calm patch of water looks much like any other. Von Frisch used this as an argument for the energy hypothesis.

He also noted that the bees generally flew very low over the water surface, often so low that they drowned 🙁

Perhaps these bees were flying dangerously low to try and find optical clues.

Such as their height above the surface?

Or perhaps the distance travelled?

Going with the flow

Having debunked the energy hypothesis, Esch & Burns proposed instead the optic flow hypothesis. This states that “foragers use the retinal image flow of ground motion to gauge feeder distance”.

Imagine optic flow as tripping a little odometer in the bee brain that records distance as her eyes observe the environment flashing past during flight. The clever thing about that is that the environment is variable. It’s not like counting off regularly spaced telegraph poles from a train window.

When flying, environmental objects that are nearby will move across her vision much faster than distant objects. Bees don’t have stereo vision, but instead use this speed of image motion to infer range.

Optic flow – the arrow size indicates the speed with which the object apparently moves, and hence its range

Esch & Burns returned again to tall buildings to provide supporting evidence for their optic flow hypothesis. They trained bees to fly between two tall buildings with 228 metres separating the hive and the feeder 9.

Returning foragers reported that the food source was only 125 metres away.

However, the bees didn’t make a direct flight. Instead they flew at altitude for 30-50 metres, descended to fly much lower, then ascended again to approach the feeder again at altitude.

Esch & Burns experiment to support the optic flow hypothesis

The interpretation here was that the high altitude flight provided insufficient optic flow to measure distance. The bees descend to get the visual input needed to judge distance, but it’s only for part of the flight … hence leading to under-reporting the distance separating the hive and feeder.

Tunnel vision

Jurgen Tautz 10 and colleagues trained bees to forage in a short, narrow tunnel 11. This elegant experiment provided compelling support for the optic flow hypothesis.

The tunnel was ~6 m long and with a cross sectional area of ~200 cm2 – big enough for a bee to fly along, but sufficiently narrow so that the bee would be closer to the ‘walls’ than in normal free flight. The walls and floor of the tunnel had a random visual texture. Only the end of the tunnel facing the hive was open.

The tunnel experiment.

These studies were conducted when the terms round and waggle were used to distinguish the dance induced by food sources <50 m and >50 m respectively from the hive 12. Rather than emphasise the shape of the dance I’ll just describe it as a >50 m or <50 m waggle dance.

‘Tunneling’ bees misreport distances

In the first tunnel experiment (1) the feeder was 35 m from the hive. 85% of dances indicated the feeder was <50 m away. However, when the feeder was moved to the opposite end of the tunnel (2) – still only 41 m from the hive – 90% of the dances indicated the feeder was >50 m away.

To test how the random pattern influenced the perceived distance the scientists used a third tunnel (3) lined with lengthwise stripes. In this instance – despite the feeder position being unchanged from experiment 2 – 90% of the dances indicated the feeder was <50 m away.

The stripes were predicted to ‘work’ in the same way as the smooth lake surface, providing no visual clues.

In the fourth experiment (4) the feeder was 6 m along a randomly patterned tunnel, which was placed just 6 m from the hive. Over 87% of dances indicated that the feeder was >50 m away.

Interpreting the waggle run

In open flight 13 there is usually an excellent correlation between the duration of the waggle run and the distance to a feeder (see the graph below 14 ). By extrapolation, the bees in experiments 2 and 4 ‘thought’ they had flown 230 m and 184 m respectively. In reality they had flown only 41 m and 12 m in these experiments.

Determining distances from waggle dance observation

How could the bees get it so wrong?

Increased optic flow

Tunnel-traversing bees fly just a few centimeters away from the visible ‘environment’.

As a consequence, at the same flight speed, they experience greater optic flow.

If, instead of driving around in your lumbering old van, you pack your hive tool in a Caterham 7 for the trip to the apiary you’d be well aware of what I mean.

Caterham 7 … check out that optic flow … then make another trip to collect the smoker

30 mph in a Toyota Hilux feels very much slower than 30 mph in a Caterham 7. This is largely because visual reference points, like the broken white lines between lanes in the road, appear in and disappear from your field of view much faster … because you’re much closer to them.

Because the tunnel dimensions were known it was possible to calculate the calibration of the bee’s odometer. Classically this would be defined in terms of metres of distance flown generating a particular waggle run length or duration.

These tunnel studies demonstrate that distance flown is not what calibrates the odometer. Instead it’s quantified indirectly in terms of the image motion experienced by the eye. Since environments vary the way to express this is the amount of angular image motion that generates a given duration of waggle.

And, using some mathematical trickery we don’t need to bother with 15, it turns out that this angular motion is only dependent upon distance flown, not the speed of flight.

This is important. Headwinds or tailwinds could change the speed of flight, but not the distance flown 16.

It’s all relative

It’s worth emphasising that the dance followers in experiments 2 (above) should still find the feeder.

The waggle dance would ‘instruct’ them to fly 230 m at the bearing indicated and they’d experience the same visual clues en route.

This means that they should still enter the narrow tunnel and experience increased optic flow because of the encroaching walls. But they’d be experiencing the same optic flow the initial dancing bee had experienced, so would not attempt to fly further down the tunnel.

This means that the optic flow experienced is context dependent. It is related to the environment the bees are foraging in.

This makes sense as the dancing bees and dance followers all occupy the same environment.

How do we know this? 17

Changing the environment

If we change the environment the dance followers search at the wrong distance.

I qualified the statement above when I said that the dance followers should still enter the tunnel and find the feeder.

Actually, most recruits will miss the tunnel entrance – remember it’s smaller that a sheet of A5 paper. At 35 m distance a bee would have to get the bearing correct to about 0.16° to enter the tunnel 18.

So the bees that do not enter the tunnel experience a different environment.

Where do they search for the feeder?

They search at the distance indicated by the waggle duration … so bees that missed the tunnel entrance in experiment 2 (above) would have searched for the feeder 230 m from the hive. Similarly, the dance followers in experiment 4 would have searched 184 m away 19

Context dependent dance calibration

And, finally, the calibration of the odometer depends upon the environment.

Odometer calibration depends upon the environment

If the environment experienced by the dancing bee en route to the feeder in experiments 2 and 4 is different, then it generates a different relationship between waggle run duration and distance.

For example, if one feeder was across a closely mown lawn and the other was across dense shrubby woodland, they would each generate a unique optic flow, so changing the image motion experienced, and hence the waggle run generated.

In the diagram above, you shouldn’t use dance calibration for bees trained to direction A to determine the distance bees going in direction B would forage.

Phew!

Optic flow, waggle dancing and implications for practical beekeeping

None 😉

At least, none that I can think of.

A Caterham 7 isn’t an ideal car for a beekeeper but would be a lot of fun to help you understand optic flow 😉

Most of us keep our bees in mixed environments. Your apiary isn’t situated with a cliff edge on one side and an unbroken prairie on the other. Since the environment is mixed, the waggle dance calibration is not going to be wildly different, whichever way the bees fly off in. You can therefore use an approximate figure of 1 second per kilometre to estimate the the distance at which your bees are foraging, irrespective of the direction they go.


Notes

Most of the referenced studies are at least two decades old. Honey bees have remained a fertile research tool for neurobiologists. Our understanding of honey bee vision continues to improve. However, I cannot discuss any of these more recent studies with reference to optic flow. Anyway, just because they’re old doesn’t make the experiments any less elegant or interesting 🙂

 

The waggle dance

Ask a non-beekeeper what they know about bees and you’ll probably get answers that involve honey or stings.

Press them a little bit more about what they know about other than honey and stings and some will mention the ‘waggle dance’. 

Karl von Frisch

That the waggle dance is such a well-known feature of honey bee biology is probably explained by two (related) things; it involves a relatively complex form of communication in a non-human animal, and because Karl von Frisch – the scientist who decoded the waggle dance – received the Nobel Prize 1 for his studies in 1973.

Von Frisch did not discover the waggle dance. Nicholas Unhoch described the dance at least a century before Von Frisch decoded the movement, and Ernst Spitzner – 35 years earlier still – observed dancing bees and suggested they were communicating odours of food resources available in the environment.

Inevitably, Aristotle also made a contribution. He described flower constancy 2 and suggested that foragers could communicate this to other bees.

Language and communication are important. The development of language in early humans almost certainly contributed to the evolution of our culture, society and technology. Communication in non-human animals, from the chirping of grasshoppers to the singing of whales, is of interest to scientists and non-scientists alike.

It is therefore unsurprising that the ‘dance language’ of honey bees is also of great interest. Although not a ‘language’ in the true sense of the word, Von Frisch described the symbolic language of bees as “the most astounding example of non-primate communication that we know” over 50 years ago. This still applies.

The waggle dance

The waggle dance usually takes place in the dark on the vertical face of a comb in the brood nest, usually close to the nest entrance. The dance is performed by a successful forager i.e. one that has located a good source of pollen, nectar or water, and provides information on the presence, the quality, identity, direction and distance of the source, so enabling nest-mates to find and exploit it.

The dance consists of two phases:

  1. The figure of eight-shaped ‘return phase’ in which the bee circles back, alternately clockwise and anticlockwise, to the start of …
  2. The ‘waggle phase’, which is a short linear run in which the dancer vigorously waggles her abdomen from side to side.

The direction of the food source is indicated by the angle of the waggle phase from gravity i.e. a vertical line down the face of the comb. This angle (α in the figure below) indicates the bearing from the direction of the sun that needs to be followed to reach the food source. 

For example, if the dancer performs a waggle phase vertically down the face of the comb, the food source must be opposite the current position of the sun.

The waggle dance

The distance information is conveyed by the duration of the waggle phase. The longer this run is, the more distant the source. A run of 1 second duration indicates the food source is about 1 kilometre away.

The quality of the food source is indicated by the vigour of the waggling during the waggle phase and the speed with which the return phase is conducted. 

Surely it can’t be that simple?

Yes, it can.

What I’ve described above allows you to interpret the waggle dance sufficiently well to know where your bees are foraging.

Next time you lift a frame from a hive and see a dancing bee, circling around in a little cleared ‘dance floor’ surrounded by a group of attentive workers, try and decode the dance.

Remember that the dance is performed with relation to gravity in the darkened hive. You’re looking to identify the angle from a vertical line up the face of the brood comb to determine the direction from the sun.

Time a few waggle phases (one elephant, two elephants etc.) and you’ll know how far away the food source is.

Really, it’s that simple?

Of course not 😉

The waggle dance was decoded more than half a century ago and remains an active subject for researchers interested in animal communication.

What you’ll miss in your observations is an indication of the type of nectar or pollen resource that the dancing bee is communicating. The dancing worker carries the odour of the food source and may also regurgitate nectar, presumably helping those ‘watching’ (remember, it’s dark … nothing to see here!) determine the type of resource to look for when they leave the hive.

You will also be unable to detect the pulsed thoracic vibrations that the dancing bee produces. These are also indicators of the quality of the food source; better (e.g. higher sucrose content) resources elicit increased pulse duration, velocity amplitude and duty cycle, though the number of pulses is related to the duration of the waggle phase, and so is another potential indicator of distance.

Inevitably, there are also pheromones involved.

There always are 😉

The dancing bee produces two alkanes, tricosane and pentacosane, and two alkenes, Z-(9)-tricosene and Z-(9)-pentacosene. These appear to stimulate foraging activity 3.

But it’s cloudy … or rain stops play … or nighttime

What happens to dancing bees if foraging is interrupted, for example by poor weather or night? 

The dancing bee continues to change the angle of the waggle phase as the sun moves across the sky. This means that a dancing bee will correctly signal the direction to the food source, even if they have not left the hive for several hours.

During their initial orientation flights they learn the sun’s azimuth as a function of the time of day, and use this to compensate for the sun’s time-dependent movement.

Some bees even dance during the night, in which case the watching workers must presumably make their own compensations for the time that has elapsed since the dance 4.

And what happens if the sun is obscured … by clouds, or buildings or dense woodland? How can those directions be followed?

Under these circumstances the foraging bee detects the position of the sun by the pattern of polarised light in the sky. 

Scout bees

The waggle dance is also performed by scout bees on the surface of a bivouacked swarm. In this instance it is used to communicate the quality, direction and distance of a new potential nest site. 

Swarm of bees

Swarm of bees

The intended audience in this instance are other scout bees, rather than the general forager population 5. These scouts use a quorum decision making process to determine the ‘best’ nest site in the area to which the bivouacked swarm eventually relocates.

The shape of the bivouac often lacks a true vertical surface. However, since it’s in the open the dancing bees can orientate the waggle run directly with relation to the sun’s direction, rather than to gravity.

Under experimental conditions the dancing bee can communicate the presence and quality of a food source on a horizontal comb, but – with no reference to gravity – all directional information is lost 6.

The round dance

The duration of the waggle phase is related to the distance from the nest to the food source. Therefore the recognisable waggle dance tends to get difficult to interpret for sources very close to the nest.

It used to be thought that there was a distinct directionless dance (the ’round dance’) for these nearby i.e. 10-40 metres, food sources. However, more recent study 7 suggests that dancers were able to convey both distance and direction information irrespective of the separation of nest and food source. This indicates that bees have just one type of dance for forager recruitment, the waggle dance.

Do all bees communicate using a waggle dance?

There are a very large number of bee species. In the UK alone there are 270 species, 250 of which are solitary.

There’s a clue.

Solitary bees are like me at a disco … they have no one to dance with 🙁

I’ll cut to the chase to help you erase that vision.

The only bees that use the waggle dance are honey bees. These all belong to the genus Apis.

They include our honey bee, the western honey bee (Apis mellifera), together with a further seven species:

  1. Black dwarf honey bee (Apis andreniformis)
  2. Red dwarf honey bee (Apis florea)
  3. Giant honey bee (Apis dorsata)
  4. Himalayan giant honey bee (Apis laboriosa
  5. Eastern honey bee (Apis cerana)
  6. Koschevnikov’s honey bee (Apis koschevnikovi)
  7. Philippine honey bee (Apis nigrocincta)

Dancing and evolution

Dwarf honey bees nest in the open on a branch and dance on the horizontal surface of the nest. The waggle run is orientated ‘towards’ the food source. Apis dorsata is also an open-nesting bee, but forms large vertically-hanging combs. It dances relative to gravity, and indicates the direction by the angle of the waggle run in the same way that A. mellifera does.

The cavity nesting bees, A. cerana, A. mellifera, A. koschevnikovi, and A. nigrocinta produce the most developed form of the dance.

The dances of A. mellifera and A. cerana are sufficiently similar that they can follow and decode the dance of the other.

The complexity of the nest site and the waggle dance reflects the evolution of these bee species. The earliest to evolve (i.e. the most primitive), A. andreniformis and florea, have the simplest nests and the most basic waggle dance. In contrast, the cavity nesting species evolved most recently, form the most complex brood nests and have the most derived waggle dance.

When and why did the waggle dance evolve?

Assuming that the waggle dance did not independently evolve (there’s no evidence it did, and ample evidence due to its similarity between species that it evolved only once) it must have first appeared at least 20 million years ago, when extant honey bee species diverged during the early Miocene.

The ‘why’ it evolved is a bit more difficult to address.

Behavioural changes often arise in response to the environment in which a species evolves.

Bipedalism in non-human primates (like the australopithecines) is hypothesised to have evolved in part due to a reduction in forest cover and the increase in savannah. Apes had to walk further between clumps of trees and bipedalism offered greater travel efficiency.

Perhaps the waggle dance evolved to exploit a particular type or distribution of food reserves?

In this regard it is interesting that the ‘benefit’ of waggle dance communication varies through the season.

If you turn a hive on its side the combs are horizontal 8. Under these conditions the dancing bees can communicate the presence and quality of a food source. However, they cannot communicate its location (either direction or distance).

No directional or distance information is now available

In landmark studies Sherman and Visscher 9 showed that, at certain periods during the season, the absence of this positional information did not affect the weight gain by the hive i.e. the foraging efficiency of the colony.

They concluded that during these periods forage must be sufficiently abundant that simply stimulating foraging was sufficient. Remember those alkanes and alkenes produced by dancing bees that do exactly that?

Tropical habitats

This observation, and some elegant experimental and modelling studies, suggest that dancing is beneficial when food resources are: 

  • sparsely distributed – therefore difficult (and energetically unfavourable) to find by individual scouting
  • clustered or short-lived resources – when it’s gone, it’s gone
  • distributed with high species richness – if there’s a huge range of flowers, which are the most energetically rewarding (sugar-rich) to collect nectar from?

One of the experimental studies that contributed to these conclusions (though there’s still controversy in this area) was the demonstration that waggle dancing was beneficial in a tropical habitat, but not in two temperate habitats. This makes sense, as food resources have different spatiotemporal distribution in these habitats. Tropical habitats are characterised by clustered and short-lived resources.

Therefore the suggestion is that the waggle dance of Apis species evolved, presumable early in the speciation of the genus, in a tropical region where food resources were patchily distributed, available for only limited period and present alongside a wide variety of other (less good) choices.

For example, like individual trees flowering in a forest …

Finally, it’s worth noting that there is evidence that bees that dance are able to successfully exploit food resources further away than would otherwise be expected from their body size.

This also makes sense.

It’s much less risky flying off over the horizon if you know there’s something to collect once you get there 10.


Notes

If you arrived here from my Twitter feed (@The_Apiarist) you’ll have seen the tweet started with the words “Dance like nobody’s watching”, words that are often attributed to Mark Twain. 

The full quote is something like “Dance like nobody’s watching; love like you’ve never been hurt. Sing like nobody’s listening; live like it’s heaven on earth”.

Pretty sound advice.

But it’s not by Mark Twain. It’s actually from a country music song by Susanna Clark and Richard Leigh. This was first released on the Don Williams album Traces in 1987. So only about 90 years out 😉 

Midwinter chores

I was going to title this post ‘Midwinter madness’ until I realised that there’s nothing I could write about related to beekeeping that could compare with current political events. So, it’s Midwinter chores instead …

We’ve had a week or more of low temperatures with intermittent light snow, freezing rain and bright sunshine. During the latter I’ve escaped to walk in the local hills.

North Fife hills

The North Fife hills – when they’re not filled with the cacophony of shooting parties out after pheasant or partridge – are looking fantastic, with unrestricted views to the Angus Glens, Schiehallion and Ben Lawers.

Of these, Schiehallion has a very distinctive shape (it’s just visible in the centre of the horizon above) 1. Its isolation allowed Nevil Maskelyne to use it in 1774 to calculate the mass of the earth in the appropriately named Schiehallion experiment 2.

This experiment used a combination of physics and mathematics, both of which are well beyond me, but are subjects I’ll return to at the end of the post.

Winter checks

In between these gentle walks I’ve infrequently checked all my colonies.

Many of my hives are fitted with clear perspex crownboards. This allows me to have a quick peek at the position and size of the winter cluster. Here are two examples:

Winter cluster – hive #36

and …

Winter cluster – hive #29

These hives are adjacent to each other in the same apiary. Both are in identical 10-frame Swienty poly brood boxes.

What is notable in the pictures above?

The first is that the crownboard with the mesh-covered central hole has been almost completely filled with propolis. I see this time and time again and am convinced that bees do not appreciate any ventilation over the cluster. I think the oft-seen advice to prop the crownboard up on matchsticks is total nonsense, at least for hives with open mesh floors.

Secondly, there is effectively no condensation on the underside of either crownboard. In the absence of ventilation – though both have my homemade open mesh floors – this is because they are both very well-insulated.

Insulation

Both crownboards are topped with a 5 cm thick block of Kingspan insulation. This is an integral part of the crownboard in #36, but just sits on top of #29. This insulation is present all year round, summer and winter.

Here is a picture of the same hives taken in October.

Hive #36 and #29 – note the roofs

Hive #29 has one of my homemade Correx roofs. These cost me about £1.50 each and about 10 minutes to make. They provide negligible insulation as they’re only about 4 mm thick. However, as far as these hives are concerned this is irrelevant as it’s the underlying block of Kingspan that’s doing the insulation.

Perspex crownboard with integrated insulation

The £29 Abelo poly roof on #36, although undoubtedly a whole lot smarter, might add a bit more insulation, but it also made me a whole lot poorer 🙁

Cluster size

The cluster size in hive #36 appears significantly larger than that in hive #29. The area covered by bees under the crownboard is perhaps twice the size.

I don’t read a lot into this.

My notes suggest that hive #36 was a bit stronger towards the end of the summer season. Although it looks as though It’s on brood and a half, the super is actually nadired and was filled with partially capped frames that weren’t ripe enough to extract. I expect they are all now empty. However, the interrupted nature of my 2020 beekeeping meant there’s never been a good opportunity to recover the super.

It’s worth remembering that the bees visible under the crownboard now are not the same bees that were visible in late August, when I last inspected the colony.

These are the long-lived winter bees. Many of them will still be there in early March.

However strong the summer colony was, this is an entirely different population of bees.

Although I’m sure there’s a relationship between summer and winter colony strength, I bet it isn’t linear and I’m sure there are a number of things that can influence it.

For example, consider two identical summer colonies. One is treated with Apivar and the other with Apiguard. In my experience (I used Apiguard for 5 years before moving back to Scotland) the thymol-containing Apiguard inhibits many queens from laying for an extended period. If this occurs when the colony is rearing the winter bees then 3, unless the queen (or colony) compensates 4 the final colony size will be smaller when compared with the Apivar-treated colony 5.

Other things, like the age of the queen or the levels of pathogens, are known (or might be expected) to exert a significant effect on late season brood rearing, further emphasising that there isn’t a simple relationship between summer and winter colony size.

Cluster shape

It’s also worth noting that the orientation and organisation of the cluster will influence its appearance. Consider this picture:

Appearances can be deceptive

The area (or volume if I could have drawn it in 3D) occupied by the cluster of bees in red is identical, but viewed from above, the diameter of the cluster in the top box would be half that of the cluster in the lower box 6.

I’ve noticed before that hives with ample insulation over the crownboard often appear to contain unusually large winter clusters. I’ve always assumed that this is because the bees prefer to orientate themselves into the warmest, most energy-efficient shape to get through the winter.

This shape might need to change to allow access to stores as the winter progresses.

Remember that bees have evolved to occupy often oddly-shaped hollow trees. These might have thick and thin walled regions, or odd draughts, necessitating the reorganisation of the winter cluster to achieve the optimum energy efficiency.

Gaffer tape

The other thing to note from the photographs above is the parlous state of the second crownboard. Both the central mesh (now sealed up) and some of the wooden frame are held together with gaffer tape. This is a near-ubiquitous aspect of my beekeeping, and an essential inclusion in the bee bag.

With the exception of the Correx roofs I use the 3M duct tape sold cheaply in the ‘Middle of Lidl’. It’s great stuff, easy to tear with gloved hands, and pretty strong and sticky.

However, it’s not particularly waterproof. If you want gaffer tape to hold your roofs together for years then the Lidl stuff doesn’t ‘cut the mustard’. Instead use Unibond Waterproof Power Tape, which I’ve written about when discussing building Correx roofs. Mine have withstood the rigours of the Scottish climate for at least 6 years 🙂

Corpses

In discussing the winter bees (above) I wrote ‘many of them will still be there in early March‘.

Many, but not all.

Throughout the winter bees die. If the weather is too cold for flying these corpses simply accumulate on the floor of the hive.

With a strong colony and a prolonged period of cold or wet weather the number of corpses can be so numerous that there’s a danger the hive entrance will be blocked.

If that happens the undertaker bees will not be able to remove them when the weather picks up.

In fact, if that happens, no bees will be able to exit the hive.

Under normal conditions bees do not defecate in the hive. They store it all up during periods of adverse weather and then go on a cleansing flight when the weather improves.

But they cannot do this if the entrance is blocked. This can lead to rapid transmission of pathogens such as Nosema in the colony, with soiling of the frames and inside of the hive.

The L-shaped entrance tunnel of my preferred kewl floors can get blocked with corpses during very prolonged cold or wet periods 7, and I’ve also seen it with reduced width entrances and mouseguards.

Hive entrance cleaning gizmo (patent pending)

To avoid any problems I simply clear any corpses from the entrance using a bent piece of wire every fortnight or so. In my experience there’s no need to do it any more frequently than that.

Stores

Despite the intense cold, the Fife colonies now appear to be rearing brood. I’ve not opened the boxes, and have no intention of doing so just to confirm brood rearing. Instead I’ve infrequently monitored the Varroa trays left underneath the stands in the bee shed 8. These now have faint stripes of biscuit-coloured capping crumbs, clear evidence that there is brood emerging.

And if there’s brood emerging they must have been fed (as developing larvae) on the stored honey from the hive.

Which means that the levels of stores available in the hive to get the colony through the remainder of the winter will be reducing.

I’ve used this ‘no expense spared’ graph before to show how the rate at which stores are consumed increases once brood rearing starts.

Colony weight in early spring

Don’t read too much into the labelling on the horizontal axis. The point I’m trying to emphasise is that stores are used much faster once the colony starts rearing brood, not that the rate changes suddenly in mid/late January.

And, if there’s a lot of brood rearing happening over a prolonged period, there’s a possibility that the colony will run out of stores and starve.

This means that it is critical to monitor the weight of the hive in the early months of the year 9.

Weighty matters

The goal is to determine whether the colony has sufficient stores to survive until forage becomes available.

Experienced beekeepers will do this by hefting the hive. This involves gently lifting the back 10 of the hive a centimetre or so and judging it’s weight.

This will then be compared with either (or both) the weight of a similar e.g. poly, cedar, single or double brood, empty hive or the weight of the same hive a week or two earlier.

As you might guess, this is a pretty inexact science 🙁

It really helps if all your hives are standardised … same material (cedar, poly), same number of brood boxes and the same type of roof.

However, the photo of the three hives (above) is pretty typical of my apiaries … different material, different roof and a different number of boxes.

D’oh!

Nevertheless, all I usually do is heft the hives.

As an alternative approach you can use a set of digital luggage scales. These can be used to weigh each side of the hive, again simply lifting it off the stand a centimetre or so until a stable reading is obtained. Add the two readings together and record them in your notebook.

Weighing a hive ...

Weighing a hive …

This method has the advantage that you get an actual number to compare week to week, not some vague recollection of the ‘feeling’ of the colony and what you think it should weigh.

Popeye

But there’s a problem with using the digital luggage scales.

To obtain a reading stable enough to be recorded you need to lift the hive and hold it very steady. At least, that’s what is needed with the scales I purchased.

With luggage this is trivial. You just stand above the bag and lift it with a straight arm and … peep! … you have the weight.

But a hive on a hive stand means that the digital scales are probably already at thigh or hip height. Lifting 20-30 kg a short distance and holding it steady enough with a bent arm is very difficult.

At least it is if you don’t have forearms like Popeye or eat 2000 calories of protein shakes for breakfast before spending the morning doing benchpresses 🙁

Now you’re torquing

Which brings me back to maths and physics.

A comment on a post last season brought the eponymously named Fisher’s Nectar Detector to my attention. This is a digital torque wrench adapted to read hive weights. They retail for about $130 in the US, but I don’t think they’re sold in the UK 11.

The torque wrench is attached to a short L-shaped steel bracket that is inserted between the brood box and the floor of the hive. The weight is determined by gently applying torque, separating the box by a small distance and then lowering it again.

Although I don’t like the idea of separating the floor and the brood box, I’m intrigued by the advantages this method might offer. I also see no reason why you couldn’t lift the back of the hive from the hive stand, much in the same way as you manually heft a hive.

But the digital wrenches available here (for ~£25-50) record torque (e.g. Newton-metres), not weight. Converting one to the other isn’t difficult if you have a good understanding of basic physics.

I don’t … 🙁

But I think the Professor of Mechanics in the School of Physics might 😉

I’ll keep you posted.