Category Archives: Equipment

The gentle art of beekeeping

High summer.

The swarm season had been and gone. The June gap was over. Grafts made at the peak of the swarm season had developed into lovely big fat queen cells and been distributed around nucleus colonies for mating.

That was almost six weeks ago.

From eclosion to laying takes a minimum of about 8 days. The weather had been almost perfect for queen mating, so I was hopeful they’d got out promptly, done ‘the business’, and returned to start laying.

That would have been about a month ago.

Good queens

I’d spent a long morning in the apiary checking the nucs and the colonies they were destined for. In the former I was looking for evidence that the queen was mated and laying well. That meant looking for nice even frames of sealed worker brood, with some – the first day or two of often patchy egg laying – now emerging.

Brood frame with a good laying pattern

It was warming up. More significantly, it was getting distinctly close and muggy. I knew that thunderstorms were predicted late in the afternoon, but by late morning it already had that oppressive ‘heavy’ feel to the air. Almost as though there wasn’t quite enough oxygen in it.

Never mind the weather, the queens were looking good. 90% of them were mated and laying well.

Just one no-show. She’d emerged from the cell, but there was no sign of her in the nuc, and precious few bees left either.

Queenless nucs often haemorrhage workers to nearby queenright colonies (or nucs), leaving a pathetic remainder that may develop laying workers. There’s no point in trying to save a colony like that.

Actually, it’s not even a colony … it’s a box with a few hundred abandoned and rapidly ageing workers. Adding resources to it – a new queen or a frame of eggs and young larvae – is almost certainly a waste of resources. They’d better serve the colonies they were already in. The remaining workers were probably over a month old and only had another week or two before they would be lost, ‘missing in action’, and fail to return from a foraging flight.

If you keep livestock, you’ll have dead stock.

These weren’t dead stock, but they were on their last legs, er, wings. I shook the workers out in front of a row of strong colonies and removed the nuc box so there was nowhere for them to return. The workers wouldn’t help the other colonies much, but it was a better fate than simply allowing them to dwindle.

Spare queens

Most of the nucs were going to be used to requeen production colonies. A couple had been promised to beginners and would be ready in another week or so.

Midseason is a good time to get a nuc to start beekeeping. The weather – the predicted (and seemingly increasingly imminent) afternoon thunder notwithstanding – is more dependable, and much warmer. The inevitably protracted inspections by a tyro won’t chill the brood and nucs are almost always better tempered than full colonies. In addition, the new beekeeper has the pleasure of watching the nuc build up to a full colony and preparing it for winter. This is a valuable learning experience.

Late season bramble

Late season bramble

It’s too late to get a honey crop from these midseason nucs (usually, there may be exceptional years) but that’s probably also good training for the new beekeeper. An understanding that beekeeping requires a degree of patience may be a tough lesson to learn but it’s an easier one than discovering that an overcrowded nuc purchased in April, swarms in May, gets really ratty in June and needs a new queen at the beginning of July.

But, after uniting the nucs to requeen the production hives it turned out that I had one queen spare.

Which was fortunate as I’d been asked by a friend for an old leftover queen to help them improve the behaviour of their only colony. Rather than give them one of the ageing queens she could have the spare one from this year.

A queen has a remarkable influence over the behaviour and performance of the colony. Good quality queens head calm, strong colonies that are a pleasure to work with. But it’s not all good genes. You can sometimes detect the influence of a good new queen in a poor colony well before any of the brood she has laid emerges. I assume this is due to pheromones (and with bees, if it’s not genetics or pheromones I’m not sure what else could explain it – ley lines, phase of the moon, 5G masts nearby?).

Go west, young(er) man

My friend lived about 45 minutes away. I found the queen in the nuc, popped her into a marking cage and placed her safely in light shade at the back of the apiary while I rearranged the nuc for uniting over a strong queenright colony.

Handheld queen marking cage

Handheld queen marking cage

A few minutes later I’d recovered the queen, clipped her and marked her with a white Posca pen. I alternate blue and white (and sometimes yellow if neither of those work or can be found) and rely on my notes to remind me of her age should I need to know it. I’m colourblind and cannot see – or at least distinguish – red and green, either from each other or from lots of other colours in the hive.

I transferred the marked queen into a JzBz queen cage and capped the exit tube. Of all the huge variety of queen introduction cages that are available these are my favourite. They’re also the only ones I was given a bucket of … something that had a big part to play in influencing my choice 🙂

JzBz queen cages

JzBz queen cages

I put the caged queen in the breast pocket of my beesuit, extinguished the smoker and tidied up the apiary. It was warm, dark and humid in the pocket – for an hour or so she would be fine.

Actually, it was getting increasingly humid and the heaviness in the air was, if anything, getting more oppressive.

What I’d really like now would be a couple of large mugs of tea … I’d inspected a dozen large colonies and nearly the same number of nucs. The colonies that needed requeening had been united with the nucs (having found and removed the ageing queens) and I’d neatly stacked up all the empty nuc boxes in the shed. Finally, I’d retuned all the supers, some reassuringly heavy, and left everything ready for the next inspection in a fortnight or so 1.

That’s a lot of lifting, carrying, bending, squinting, prising, turning, rearranging and then gently replacing the crownboard and the roof.

Not really hard work, but enough.

Actually, quite enough … I’d really like that cuppa.

Was that thunder? Way off to the west … a sound so faint I might have imagined it. There were towering cumulus clouds building along the horizon.

Cloud

Threatening

Time to get a move on.

With the car packed I lock the apiary gate and set off.

West.

Leaving the flat agricultural land I climbed gently into low rolling hills. The land became more wooded, restricting my view of the thunderheads building, now strongly, in the direction I was heading. The sun was now intermittently hidden between the wispy clouds ahead of the storm front.

Could you do me a favour?

The bad weather was still a long way off. I’d have ample time to drop the queen off, slurp down a cuppa and be back home before any rain arrived. If my friend was sensible she’d just leave the new queen hanging in her cage in a super. The workers would feed her until the weather was a little more conducive to opening the hive and finding the old queen.

I pull into the driveway and my friend comes out to meet me. We share beekeeping chat about the weather, forage, the now-passed swarm season, the possibility of getting a nuc for next season 2.

“Could you perhaps requeen the colony? I’m really bad at finding the queen and they’ve been a bit bolshy 3 recently. I’ll put the kettle on while you’re doing it.”

I did a quick mental calculation … weighing up the positives (kettle on) and the negatives (bolshy, the distant – but approaching – thunder) and was surprised to find that my yearning for a cuppa tipped the balance enough for me to agree to do it.

I returned to the car for my smoker and some queen candy which I used to plug the neck of the JzBz cage. At the same time I also found a small piece of wire to hang the cage between the frames from.

“They’re in the back garden on the bench by the gate to the orchard.”

I look through the kitchen window across the unkempt lawn (was the mower broken?). Sure enough, there was a double brooded National hive topped with two supers on a garden bench about 30 metres away.

“I’ll stay here if you don’t mind … they gave me a bit of a fright when I last checked them.”

Sure. No problem. I’ve done this a hundred times. White, no sugar and, yes, I’d love a cookie as well.

Be properly prepared

I stepped into the back garden and fired up the smoker. It was still warm from being used for my own bees and the mix of cardboard, woodshavings and dried grass quickly started smouldering nicely. A couple of bees had come to investigate but had just done a few laps of my head and disappeared.

But they returned as I walked across the lawn.

And they brought reinforcements.

By the time I was half way across the lawn I’d been pinged a couple of times. Not stung, but the sort of glancing blow that shows intent.

A shot across the bows, if you like.

I didn’t like.

I pulled the veil over my head and zipped it up quickly, before rummaging through my pockets to find a pair of gloves. Mismatched gloved. A yellow Marigold for my left hand and a thin long-cuff blue nitrile for my right. It’s an odd look 4 but an effective combination. The Marigold is easy to get on and off, and provides ample protection.

Nitriles ...

Nitriles …

The nitrile is a bit of a nightmare to get on when it’s still damp inside. Another couple of bees dive bomb my veil, one clinging on and making that higher pitched whining sound they make when they’re trying to get through. I brushed her off with the Marigold, turned the nitrile inside out, blew into it to inflate the fingers, and finally got it on.

Why two different gloves? Two reasons. I’d lost the other Marigold and because nitriles are thin enough to easily pick a queen up with, and that’s what I’d been doing most of the morning.

And hoped to do again shortly when I found the old queen in the agitated colony.

Opening hostilities

I approached the hive. It was a strong colony. Very strong. It was tipped back slightly on the bench and didn’t look all that stable 5. I gave them a couple of puffs of smoke at the entrance and prised the supers up and off, placing them propped against the leg of the bench.

I was faintly aware of the smell of bananas and the, still distant, sound of thunder. It probably wasn’t getting any closer, but it certainly wasn’t disappearing either.

The thunder that is.

The smell of bananas was new … it’s the alarm pheromone.

Actually, it’s one of the alarm pheromones. Importantly, it’s the one released from the Koschevnikov gland at the base of the sting. This meant that one or two bees had already pressed home a full attack and stung me. Felt nowt. Presumably they’d hit a fold in the beesuit or the cuff of the Marigold.

Or my adrenaline levels were sufficiently elevated to suppress my pain response.

I was increasingly aware of the number of really unpleasant bees that were in the hive.

And, more to the point, coming out of the hive.

But I was most aware that I was only wearing a single thickness beesuit in the presence of 50,000 sociopaths with a thunderstorm approaching. Under the suit I had a thin short sleeved shirt and a pair of shorts.

It might be raining in half an hour … this could get ugly.

It was late July, it was a hot day, my bees are calm. I wasn’t dressed appropriately for these psychos.

I felt I needed chain mail … and an umbrella.

Time for a rethink

I gave the hive a couple of larger puffs from the smoker and retreated back to the car, ducking under and through – twice – some dense overhanging shrubs to deter and deflect the bees attempting to hasten my retreat.

Ideally I’d have put a fleece on under the beesuit. That makes you more or less impervious to stings.

Did I mention it was a warm day in July? No fleece 🙁

However, I did have a beekeeping jacket in the car. This is what I wear for most of my beekeeping (unless I’m wearing shorts). I removed the jacket hood and put it on over the beesuit, remembering to transfer the queen to the outer jacket pocket. I also found another nitrile glove and put it on to be double gloved.

“The queen’s not marked”, my friend shouted to me as I walked back across the garden, “Sorry!”

Now you tell me …

I See You Baby

I See You Baby

I returned to the hive. To reduce the immediate concentration of bees, I split the two brood boxes off the floor, placing each several metres away on separate garden chairs. I balanced the supers on the original floor to allow returning foragers and the increasing maelstrom of flying bees to have somewhere to return if needed.

And then I found the unmarked queen.

As simple as that.

Amazingly, it was on the first pass through the second brood box.

Each box was dealt with in the same way. I gently split the propolis sealing the frames together – first down one side of the box, then the other. I removed the outer frame, inspected it carefully and placed it on the ground leaning against the chair leg. With space to work I then methodically went through every frame, calmly but quickly.

I didn’t expect to find her so easily. I wasn’t sure I’d be able to find her at all.

It helped that she was huge and pale. It helped that she was calmly ambling around on the frame, clearly confident in the knowledge that there were 50,000 acolytes willing to lay down their lives to protect her.

Her confidence was misplaced 🙁

Veiled threat

And then a bee got inside the veil.

This happens now and then. I suspect they sneak through the gap where the zips meet at the front or the back. There are little Velcro patches to hold everything together, but it was an old suit 6 and the Velcro was a bit worn.

There are few things more disconcerting that 50,000 psychos encouraging a Ninja worker that’s managed to break through your defences and is just in your peripheral vision. Or worse, in your hair. With a calm colony you can retreat and deal with the interloper. You have to take the veil off. Sometimes you have to take the suit off.

Removing the veil would have been unwise. Perhaps suicidal. I retreated a few yards and dealt with the bee. It was never going to end well for one of us 🙁

Reassemble in the reverse order

Returning to the original bench, I removed the supers that were now festooned with thousands of bees, balancing them against the leg again. I found a pencil-thick twig and used it under one corner of the floor to stop everything wobbling. Both brood boxes were returned, trying to avoid crushing too many bees at the interface. A combination of a well aimed puff or two of smoke, brushing the bees away with the back of my hand and placing the box down at an angle and then rotating it into position reduced what can otherwise cause carnage.

I hung the new queen in her cage between the top bars of the central frames in the upper box, returned the queen excluder and the supers and closed the hive up.

It took 15 minutes to avoid and evade the followers before I could remove the beesuit safely. I’d been stung several times but none had penetrated more than the suit.

I finally got my cup of tea.

Confidence

This was several years ago. I took a few risks towards the end with the queen introduction but got away with it. The colony released the queen, accepted her and a month or so later were calm and well behaved.

I was lucky to find the queen so quickly in such a strong colony. I didn’t have to resort to some of the tricks sometimes needed to find elusive queens.

Ideally I’d have left the queen cage sealed to see if they were aggressive to her, only removing the cap once I was sure they’d accept her. This can take a day or two, but you need to check them.

There was no way I was going back into the hive and my friend definitely wasn’t.

The rain and thunder never arrived … like many summer storms it was all bluster but eventually dissipated as the day cooled.

This was the worst colony I’ve ever handled as a beekeeper. At least for out and out, close quarter, bare knuckle aggression. By any measure I’d have said they were unusable for beekeeping. I’ve had colonies with followers chase me 300 metres up the meadow, though the hive itself wasn’t too hot 7. This colony was an order of magnitude worse, though the followers were less persistent.

I suspect that aggression (or, more correctly, defensiveness) and following have different genetic determinants in honey bees.

Lessons

  • Knowing when to retreat is important. Smoking them gently before I returned to the car for a jacket helped mask the alarm pheromone in the hive and gave me both time to think and renewed confidence that I was now better protected.
  • Confidence is very important when dealing with an unpleasant hive. It allows you to be unhurried and gentle, when your instincts are screaming ‘get a move on, they’re going postal’.
  • Confidence comes with experience and with belief in the protective clothing you use. It doesn’t need to be stingproof, but it does need to protect the soft bits (my forearms, ankles and face react very badly when stung).
  • Indeed, it might be better if it’s not completely stingproof. It’s important to be aware of the reactions of the colony, which is why I prefer nitrile gloves to Marigolds, and why I never use gauntlets.
  • Many colonies are defensive in poor weather or with approaching thunderstorms. If I’d known just how defensive this colony were I’d have planned the day differently.
  • The unstable ‘hive stand’ would have agitated the bees in windy weather or during inspections.

Bad bees

It turned out the colony had been purchased, sight unseen, as a nuc the year before. By the end of the season it had become unmanageable. The supers had been on since the previous summer and the colony hadn’t been treated for mites.

They appeared healthy, but their behaviour was negatively influencing their management (and the upkeep of the garden). Beekeeping isn’t fun if you’re frightened of the bees. You find excuses to not open the hive, or not mow the lawn.

The story ended well. The new queen settled well and the bees became a pleasure to work with. My friend regained her confidence and is happy to requeen her own colonies now.

She has even started using proper hive stands rather than the garden bench … which you can now use for relaxing on with a mug of tea and a cookie.

While watching the bees 🙂


 

It’s the little things …

When I first started keeping bees colony inspections were a special occasion.

There was quite a bit of preparation beforehand, collecting together the paraphernalia the catalogues all described as essential for effective beekeeping. I’d fuss over the hives, sometimes opening them a second time (or twice in a weekend) to check things. I’d write up some notes afterwards that – like certain websites 😉 – tended to verbosity.

Despite this, things went well.

Honey happened.

Splits worked.

Swarms didn’t … or were re-hived.

Larvae were grafted and queens were mated.

Colony numbers increased. 

Ready for inspection … are you?

Inspections moved from being a special occasion to, at times, something of a chore. 

Never not enjoyable or not a learning experience, but not quite the event they’d once been. 

There were also a lot more of them.

Twenty or so a week, many more if you count the nucs and the mini-nucs some years.

During all this time I was learning a whole lot more about bees.

But as importantly, I was learning a lot more about keeping and managing bees.

The KISS principle

This US Navy acronym (for Keep it simple, stupid) means that things work best if they are kept uncomplicated.

And beekeeping, and particularly the essential weekly 1 inspections are one area where the KISS principle can be beneficial.

A combination of better (but less) preparation, greater efficiency during the time spent hunched over the hive(s) and improved (but less) record keeping, reflects improvements in my beekeeping over the last decade or so.

All of which have resulted in hive inspections again being a pleasure rather than a chore.

Most of these improvements are subconscious.

I’ve unknowingly ‘learned’ that doing things a particular way works better for me or the bees. None of the lessons have been learned the hard way – they’re definitely evolution, not revolution.

Described below are a few I’m aware of 2.

Remember, these suit my style 3 of beekeeping (whatever that is 🙂 ) and may not be relevant to you.

However, for all of the things listed below I’m aware the way I’ve done things has changed over time.

Or, I’m aware that the way I do things now seems to work well though I’ve no idea how I used to do them 😉

Preparation

My essentials now fit easily into my bee bag. Partly because I now need less and partly because they never live anywhere else.

Stuff that was in the bag but wasn’t used, was ditched long ago.

I now have two boxes (2 litre ice cream tubs) in the bag, one for “daily” items and one for “queen-related” things. Neither box is full.

There’s not much in the daily container. Hive tools are kept in the apiary in a bucket of washing soda, with a spare tiddler in the bee bag to cover the inevitable losses. I now always carry a roll of gaffer tape and some staple-free newspaper. The former has all sorts of uses and the latter is for uniting colonies. 

Staple-free to save the hassle of separating sheets, and potentially ripping them, when trying to unite colonies. You want one very small hole in the sheet … they’ll easily expand this and gently mingle.

The “queen” box contains things for grafting larvae (which haven’t changed since I last wrote about them, a lifetime ago) together with the things I need for queen marking and clipping 4.

The smoker and blowtorch live together in a metal box. I have matches in the “daily” box, but never use them. A blowtorch is a much better way to light a smoker properly.

Smoker fuel lives in a plastic tub. I’ve discovered that the plastic tubs sold full of suet balls make excellent containers for smoker fuel. They are square(ish), have a handle and a convenient tab to help prise up the lid. Altogether better than a honey bucket.

Two final things come under the heading ‘preparation’.

The first is learning to fuel and light the smoker so that it stays lit. Exactly how you achieve this depends upon the fuel you are using. Practice makes perfect.

Buy a large smoker, prime it with something that smoulders well (dried rotten wood for example), light it with a blowtorch and then pack it reasonably tightly with additional combustible material. Dried grass, animal bedding, woodturning shavings etc. Top the lot off with a handful of fresh grass. 

Once lit, stays lit … bigger is better

Once it’s going, my Dadant smoker will stay lit for one to two hours without more than the occasional squeeze of the bellows … or laying on its side if burning too fiercely.

It’s ironic that the more experience you get, the less you need the smoker … however the more experience you get, the more likely the smoker will actually work when you do need it 🙂

The final preparation involves reading the notes in advance from the last inspection … the ones that I made to remind me what will be needed next time I visit the apiary.

Don’t barbeque the bees 😉

Less is definitely more when you open the hive.

The less smoke, the less knocks, bumps or sudden jarring, the less squashed bees, the less adjusting and readjusting the frames … all of these make the inspection more useful and effective.

The bees (and the beekeeper) will be calmer.

They’ll be behaving better 5

… not running manically around the frame or pinging off your veil.

You’ll see a whole lot more and, after all, what else is an inspection for if it’s not to see things?

Smoking the colony does not mean kippering them 6.

One gentle puff at the hive entrance or under the open mesh floor is enough. However these both drive the bees up.

As useful, and arguably more so, is a gentle puff in the gap created when you first lifted the crownboard 7. This eases the bees away from the top bars of the frames, making your next task easier.

OK, let’s find the queen …

You need space to work and an orderly approach. 

Think about what you’re doing. The colony, with all its darkness, smells, sounds and vibrations, is pulled apart during an inspection. 

If I wanted to be anthropomorphic I’d say it’s a very distressing experience … like having a tornado ripping the roof off and rearranging the furniture while you were frying bacon and listening to some gentle jazz 8

But I’m not anthropomorphic. 

What you need to avoid is the bees getting defensive. That just makes the looking part of the inspection more difficult. 

And if the looking is difficult, finding the queen is going to be very tricky.

Except you don’t usually need to find the queen.

If the colony contains recently laid eggs and no queen cells you can be confident the queen is in residence and will remain so … so there’s no need to look for her. 

But if your inspection is gentle and methodical, and the colony remains calm, you’ll usually see her anyway 🙂

Frame management

Remove the dummy board, shake the bees off it (onto the top bars) and lay it aside 9.

Remove the outer frame. It probably contains stores and so it’s unlikely the queen is in residence. Check, then put it aside and get on with the inspection. 

But where and how do you ‘put it aside’? Standing on end, leaning against the leg of the hive stand? Preferably not.

Most of my hive stands are a frame-width wide so you can hang a frame by the lugs, secure in the knowledge that the frame cannot be knocked over, kicked or stood on.

But I usually don’t hang the frame by the lugs.

To do so takes two hands when you put the frame down, and two when you pick the frame up. If you don’t use two hands it’s a clumsy procedure and you need a very strong grip – there’s a risk of crushing bees on the side bars.

Whilst I do have two hands (!) it’s actually usually easier to balance the frame at an angle, supported on a frame lug and the sidebar on one end, and the bottom bars on the other. There’s less reaching involved and one lug can be used as a very effective handle.

Easy to put down and pick up

The frame is held clear of vegetation below the hive stand. The protruding lug provides excellent grip. It can be put down and picked up with one hand. 

When putting the frame down, gently place the lug on the further frame bar, slide the frame away from you until the further sidebar touches the hive stand (gently, allow the bees to move aside) then lower the bottom bar towards the nearer frame bar, gently moving the frame from side to side in a narrow arc. The bees will clear the lower bar rather than get crushed.

No crushed bees

It takes much longer to describe than to actually do.

If it’s blowing a gale, frames balanced like this might topple … but if it’s blowing a gale it’s really not an ideal day to be inspecting the colony.

Unless they’re in a bee shed 😉

Removing and returning frames

With space to work you can now start the inspection. 

The frames are probably propolised together. Even with good finger strength they can be difficult to separate. 

Hive tools ...

Hive tools …

Don’t try … use the hive tool, it’s what it’s for.

Gently break the propolis seal between every frame. Do all the frame lugs on one side first, then do the other. That way you don’t pass your hands repeatedly over the open hive, which can distress the bees make them defensive.

You don’t need to lever the frames far apart. Breaking the propolis seal only involves moving the frame a millimeter or two. The smaller the distance, the less chance a bee will sneak into the gap you’ve created and get crushed as you separate other frames.

Again, less is more.

With all the frames now ‘free’ you can do the inspection.

Slide the next frame a short distance along the frame runners into your working ‘gap’. You shouldn’t just lift the frame as bees at the interface with the adjacent frame will get “rolled” 10. Grip the frame by the lugs, inspect one face, turn, inspect the other face, turn again.

The frame is now in the same orientation as when it was lifted out of the hive. It can therefore be returned easily to minimise the disruption to the brood nest. By using the same routine for every frame the colony is reassembled with the minimum unnecessary disturbance.

Wrong

Don’t just put the frame back ‘near’ it’s neighbour and squeeze them altogether when you put the dummy board back at the end of the inspection. Return it so the Hoffman spacers directly contact the neighbouring frame. That way, no bees get crushed when additional frames are added back later in the inspection.

That’s better

You’ll find that you can gently return the frame, pushing the bees aside between the Hoffman spacers as you lower it into the hive. You have a better view (more light and an oblique viewing angle) when returning the frame into the gap than when the frame is hanging by the lugs in the hive. 

Gently shiggling 11 the frame from side to side as you lower it helps move the bees aside between the spacers.

By returning the frame right next to its neighbour you’ve also retained all your working space to move the next frame into.

You handle most frames only once, increasing the efficiency of your inspection but – more importantly – minimising the likelihood of crushing bees and agitating the colony.

Once through all the frames, you can even replace the removed frame of stores at the opposite end of the box to minimise further disturbance.

Finishing up

If there are supers on the hive there is probably a queen excluder separating them from the brood box. 

I’ve got a big stack of plastic queen excluders in the bee shed, but no metal wired, wooden framed ones. 

Framed wire QE ...

Framed wire QE …

That’s because all of the metal wired, wooden framed queen excluders are in use.

They are easier to remove and easier to replace on the hive. The bee space created by the frame prevents bees being crushed. The rigid frame means they can be replaced obliquely, then gently turned until square on the hive. In doing so, bees on the upper rim of the brood box are pushed aside, rather than squished below.

With the supers, crownboard and roof back in place there are only three things left to do:

  1. Make the hive secure. Will the roof stay on, and the hive stay upright, if there’s a gale … or a cow or deer ambles into it at night? The zephyr-like breeze when you inspect might be replaced with 50 mph gusts in 48 hours. Ratchet straps really do help, though tall stacks of boxes can still topple if top-heavy with honey.
  2. Put the smoker out. Plug it with grass and let it cool before putting it away. If you do this immediately after closing the last hive it will be ready by the time you …
  3. Write up the hive notes. Less really is more here. No verbiage 12. You need to record the current ‘state’ of the colony – strength, health, stores. Ideally, also record its behaviour – defensiveness, running (are the bees stable on the frame?) and unpleasant traits such as following. All of this can be achieved with a simple scoring system. An additional sentence of freehand might also be needed – “Defensive – don’t use for grafting”. Importantly, make sure you note down anything needed at the next visit … 

Objective and subjective notes

Which neatly takes us back to preparation.

I’m sure there are a million other things I do now that are an improvement on what I used to do. I’m also certain there are better ways to do some of the things I now do 13.

Are you aware of changes to your beekeeping practices that have improved things, for you or – more importantly – for the bees?


Notes

Today (10th July) is Don’t step on a bee day … that improves colony inspections as well 😉

A June Gap

As far as the beekeeping season is concerned, we’ve had the starter and we’re now waiting for the main course. 

Like restaurants, the size of the ‘starter’ depends upon your location. If you live in an area with lots of oil seed rape (OSR) and other early nectar, the spring honey crop might account for the majority of your annual honey.

If you are in the west, or take your hives to the hills, you might have skipped the starter altogether hoping the heather is the all-you-can-eat buffet of the season.

Lockdown honey

In Fife they appear to be growing less OSR as the farmers have had problems with flea beetle since the neonicotinoid ban was introduced.

Nevertheless, my bees are in range of a couple of fields and – if the weather behaves – usually get a reasonable crop from it. My earlier plans to move hives directly onto the fields, saving the bees a few hundred yards of flying to and fro, was thwarted (like so much else this year) by the pandemic.

The timing of the spring honey harvest is variable, and quite important. You want it to be late enough that the bees have collected what they can and had a chance to ripen it properly so that the water content is below 20% 1.

However, you can’t leave it too late. Fast-granulating OSR honey sets hard in the frames and then cannot be extracted without melting. In addition, there’s often a dearth of nectar in the weeks after the OSR finishes and the bees can end up eating their stores, leaving the beekeeper with nothing 🙁

Judging all that from 150 miles away on the west coast where I’m currently based was a bit tricky. I had to timetable a return visit to also check on queen mating and the build up of all the colonies I’d used the nucleus method of swarm control on.

Ideally all in the same visit.

Blowin’ in the wind

I’d made up the nucs, added supers and last checked my colonies around the 17-19th of May. I finally returned on the 10th of June.

In the intervening period I’d been worried about one of my more exposed apiaries. I’d run out of ratchet straps to hold the hives together and was aware there had been some gales in late May.

Sure enough, when I got to the apiary, there was ample evidence of the gales …

How the mighty fall

The only unsecured hive was completely untouched and the bees were happily working away. However, one of the strapped hives had been toppled and was laying face (i.e. entrance) down. You can see the dent in the fence where it collided on its descent.

If she hadn’t already (and I expect she hadn’t based upon the date of the gales) I suspect the queen struggled to get out and mate from this hive 🙁

Nuked nucs

Two adjacent 8-frame nucs were also sitting lidless in the gentle rain. The lids and the large piece of timber they’d been held down with were on the ground. The perspex crownboards were shattered into dozens of pieces.

These bees were fine.

Both queens were laying and the bees were using the new top entrance (!) for entering and leaving the hive. They were a little subdued and the colonies were less well developed than the other nucs (see below). However, their survival for the best part of three weeks uncovered is a tribute to their resilience.

They were thoroughly confused how to get back into the hive after I replaced the lids 🙂

Slow queen mating

Other than extracting, the primary purpose of this visit was to check the queenright nucs from my swarm control weren’t running out of space, and to check on the progress of queen mating in the original colonies.

Queen mating always takes longer than you expect.

Or than I expect at least.

Poor weather hampered my inspection of all re-queening colonies but, of those I looked at, 50% had new laying queens and the others looked as though they would very soon.

By which I mean the colonies were calm and ‘behaved’ queenright, they were foraging well and the centre of the ‘broodnest’ (or what would be the centre if there was any brood) was being kept clear of nectar and had large patches of polished cells.

Overall it was a bit too soon to be sure everything was OK, but I expect it is.

However, it wasn’t too soon to check the nucs.

Overflowing nucs

In fact, it was almost too late …

With one exception the nucs were near to overflowing with bees and brood.

I favour the Thorne’s Everynuc which has an integral feeder at one end of the box. Once the bees start drawing comb in the feeder they’re running desperately short of space.

Most had started …

Here's one I prepared earlier

Here’s one I prepared earlier

I didn’t photograph any of the nucs, but the photo above (of an overly-full overwintered nuc) shows what I mean; the feeder is on the right.

The nucs had been made up with one frame of predominantly emerging brood, a few more nurse bees, two foundationless frames, a frame of drawn comb and a frame of stores.

They were now all packed with 5 frames of brood and would have started making swarm preparations within a few days if I hadn’t dealt with them.

Good laying pattern from queen in 5 frame nucleus

And the queens had laid beautiful solid sheets of brood (always reasonably easy if the comb is brand new).

Housekeeping and more swarm prevention

The beauty of the nucleus method of swarm control is that you have the older queen ‘in reserve’ should the new queen not get mated, or be of poor quality.

The problem I was faced with was that the new queens weren’t all yet laying (and for those that were it was too soon to determine their quality), but the older queen was in a box they were rapidly outgrowing.

I therefore removed at least three frames of brood 2 from each nuc and used it to boost the re-queening colonies, replacing the brood-filled frames with fresh foundation 3.

The nucs will build up again strongly and the full colonies will benefit from a brood boost to make up for some of the bees lost during requeening. Some of the transferred frames had open brood. These produce pheromones that should hold back the development of laying workers.

Finally, if the requeening colonies actually lack a queen (the weather was poor and I didn’t search very hard in any of them) there should be a few larvae young enough on the transferred frames for them to draw a new queen cell if needed.

I marked the introduced frames so I can check them quickly on my next visit to the apiary.

This frame needs to be replaced … but could be used in a bait hive next year

The additional benefit of moving brood from the nucs to the full colonies is that it gave me an opportunity to remove some old, dark frames from the latter.

Shown above is one of the removed frames. As the colony is broodless 4 and there’s the usual reduction in available nectar in early/mid June, many of the frames in the brood box were largely empty and can easily be replaced with better quality comb.

Everyone’s a winner 😉

Drone laying queen

One of the nucs made in mid/late May had failed. The queen had developed into a drone layer.

Drone laying queen

The laying pattern was focused around the middle of frame indicating it had been laid by a queen. If it had been laying workers the drone brood would be scattered all over the frames.

There was no reasonable or efficient way to save this colony. The queen was removed and I then shook the bees out in front of a row of strong hives.

I was surprised I’d not seen problems with this queen when making up the nucs in May 5. I do know that all the colonies had worker brood because the nucs were all made containing one frame of emerging (worker) brood.

Perhaps the shock of being dumped into a new box stopped her laying fertilised eggs. Probably it was just a coincidence. We’ll ever know …

Extraction

And, in between righting toppled hives, checking for queens, stopping nucs from swarming, moving a dozen hives/nucs, boosting requeening hives and replacing comb … I extracted a very good crop of spring honey.

Luvverrrly

Although I had fewer ‘production’ hives this season than previous years (to reduce my workload during the lockdown) I still managed to get a more than respectable spring harvest. In fact, it was my best spring since moving back to Scotland in 2015.

The crop wasn’t as large as I’d managed previously in Warwickshire, but the season here starts almost a month later.

A fat frame of spring honey

I start my supers with 10 or 11 frames, but once they are drawn I reduce to 9 frames. With a good nectar flow the bees draw out the comb very nicely.

The bees use less wax (many of my frames are also drawn on drone foundation, so even less wax than worker comb 6), it’s easier to uncap and I have fewer frames to extract.

Again … everyone’s a winner 😉

Not the June gap

Quite a few frames contained fresh nectar, so there was clearly a flow of something (other than rain, which seemed to predominate during my visit) going on. These frames are easy to identify as they drip nectar over the floor as you lift them out to uncap 🙁

In some years you find frames with a big central capped region – enough to usefully extract – but containing lots of drippy fresh nectar in the uncapped cells at the edges and shoulders. I’ve heard that some beekeepers do a low speed spin in the extractor to remove the nectar, then uncap and extract the ripe honey.

I generally don’t bother and instead just stick these back in the hive.

If there’s one task more tiresome than extracting it’s cleaning the extractor afterwards. To have to also clean the extractor during extracting (to avoid the high water content nectar from spoiling the honey) is asking too much!

Colonies can starve during a prolonged nectar dearth in June. All of mine were left with some stores in the brood box and with the returned wet supers. That, plus the clear evidence for some nectar being collected, means they should be OK.

National Honey monitoring Scheme

I have apiaries in different parts of Fife. The bees therefore forage in distinct areas and have access to a variety of different nectar sources.

It’s sometimes relatively easy to determine what they’ve been collecting nectar from – if the back of the thorax has a white(ish) stripe on it and it’s late summer they’re hammering the balsam, if they’ve got bags of yellow pollen and the bees are yellow and the fields all around are yellow it’s probably rape.

Mid-April in the apiary ...

Mid-April in a Warwickshire apiary …

But it might not be.

To be certain you need to analyse the pollen.

The old skool way of doing this is by microscopy. Honey – at least the top quality honey produced by local amateur beekeepers 7 – contains lots of pollen. Broadly speaking, the relative proportions of the different pollens – which can usually be distinguished microscopically – tells you the plants the nectar was collected from.

The cutting edge way to achieve the same thing in a fraction of the time (albeit at great expense) is to use so-called next generation sequencing to catalogue all the pollen present in the sample.

Pollen contains nucleic acid and the sequence of the nucleotides in the nucleic acid are uniquely characteristics of particular plant species. You can easily get both qualitative and quantitative data.

And this is exactly what the National Honey Monitoring Scheme is doing.

They use the data to monitor long-term changes in the condition and health of the countryside” but they provide the beekeeper’s involved with the information of pollen types and proportions in their honey.

National Honey Monitoring Scheme samples

Samples must be taken directly from capped comb. It’s a messy business. Fortunately the labelling on the sample bottles is waterproof so everything can be thoroughly rinsed before popping them into the post for future analysis.

I have samples analysed already from last year and will have spring and summer samples from a different apiary this season. I’ll write in the future about what the results look like, together with a more in-depth explanation of the technology used.

When I last checked you could still register to take part and have your own honey analysed.


Notes

Under (re)construction

Lockdown means there have been more visitors than ever to this site, with numbers up at least 75% over this time last year.

This, coupled with the need to upgrade some of the underlying software that keeps this site together, means I’m in the middle of moving to a bigger, faster, better (more expensive 🙁 ) server. I’m beginning to regret the bloat of wordpress over the lean and mean Hugo or Jekyll-type templating systems (and if this means nothing to you then I’m in good company) and may yet switch.

In the meantime, bear with me … there may be some broken links littering a few pages. If it looks and works really badly, clear your browser cache, re-check things and please send me an email using the link at the bottom of the right hand column.

Thank you

 

The million drones fiasco

Accidents happen.

Sometimes they are due to stupidity, sometimes to forgetfulness, or sometimes they are just the result of plain dumb luck.

They’re also often caused or at least exacerbated by ‘local’ factors – like a rainstorm or a cancelled train preventing timely inspections. 

Or a countrywide lockdown necessitated by a global viral pandemic.

With the exception of the cancelled train my excuse for what follows is “all of the above” 😉

Social distancing

Beekeeping, like other activities involving livestock management, has been a permitted activity during lockdown. Beekeepers have been allowed to travel to their apiaries and to move bees for pollination etc

I was away when lockdown was imposed and opted 1 to stay where I was. For the first half of the season I’ve had to forego weekly colony inspections. I’ve not had the pleasure of watching the colonies build up, of queen rearing or of sweating profusely when shifting nectar-filled supers 🙁

Instead all my beekeeping – the first inspection of the season, the swarm prevention and the swarm control – have been squeezed into two visits, each of a few frantically busy days, in late April and mid-May.

And, inevitably, mistakes have been made.

Well, one mistake … that I’m currently aware of.

First inspections and swarm prevention

We’re late starters in Fife.

It’s not unusual to delay the full first inspection until the very end of April in this part of Scotland. A couple of years ago we had knee-high oil seed rape (OSR) ankle deep in snow at the end of April.

There seems little point in disturbing the colony if it’s too cold to have a leisurely look through the brood box. The bees get tetchy, the brood gets chilled and you don’t have time to look for the important things – like disease, or that elusive queen you failed to mark last autumn.

However, this season started well and I should have started colony inspections in the second week of April.

But by that time the world had changed dramatically …

I finally snatched a couple of days around the 25th of April to do the first inspections and swarm prevention all rolled into one … and coupled this with reducing my colony numbers by 50% to make management over the coming months easier 2.

I’ll discuss how I did all this in a couple of full-on days some other time. The end result was about a dozen united colonies, each topped with three supers, containing a good marked laying queen. Many of the colonies were very strong, with up to 15 frames of brood after uniting 3.

The colonies were strong and healthy. All were headed by a laying queen. I saw all but a couple of the queens 4 and clipped and marked all those I found that weren’t already 5.

Safely back in the hive

Three supers were overkill for the usual spring nectar flow. However, there was already a reasonable flow on and I wanted to give the colonies a good amount of space in the hope of delaying swarm preparations. 

Swarm control

Colonies usually start making clear their intent to swarm in the second half of May here. It varies a bit depending upon how advanced or otherwise the season is – one of those unknown knowns.

I kept in email contact with beekeeping friends about their own colony build up. By the time I received the first email saying charged queen cells were present (~16th of May) I was travelling back to do my own swarm control.

I decided to use the nucleus method whether queen cells were present on not.

Effectively I was going to implement preemptive swarm control on some colonies. By taking the queen out into a nuc the colonies would be forced to requeen, I’d then leave a single charged/capped queen cell and let them get on with it.

All looking good …

And for eleven of the colonies that’s precisely what happened. 

I removed the queen on a frame of emerging brood and shook some of the bees from a second frame into the nuc box. These were to be relatively small nucs but made sure each had a full frame of capped stores (saved from colonies at the first inspection). I also added a frame of drawn comb and two foundationless frames.

I sealed the nucs and moved them to another apiary.

Three of many … and hive number 29

Most of the brood boxes had play cups with eggs and about 50% had charged queen cells. There were no capped cells. I marked frames containing promising looking charged cells and closed the boxes up.

… and still looking good six days later

Six 6 days later I went carefully through every frame in the de-queened colonies.

One good queen cell, an old play cup and some rather old comb

All the boxes had good looking queen cells and I made sure I left just one in each colony. 

The nucs also all looked great when I checked them on the same day. 

New comb with queen already laying it up

The queens were laying well and the bees were drawing new comb. They would be fine for another few weeks. 

Come in Number 29, your time is up

One of the colonies proved more problematic.

Hive #29 … this had been left as a strong single brood colony on the 25th of April.

Three weeks later it was – unsurprisingly – still a strong single brood colony. The bees were busy and the supers were already filling nicely 7.

What was missing from the brood box in mid-May were eggs, larvae or capped brood 🙁

Had I inadvertently killed the queen 8 at the last inspection? The 21-22 day interval would have meant that all worker brood would have matured and subsequently emerged 9.

However, the temperament of the colony suggested it wasn’t queenless. The bees were calm, they were foraging well and bringing in good amounts of OSR pollen.

With a sense of dread I had a look in the supers …

Let there be drones

About 75% of my many super frames are drawn on drone cell foundation. For the same amount of wax – by weight – you store more honey. I also think there may be advantages when spinning it out in terms of honey recovery 10.

In addition, if you use drone cell comb immediately over the brood box, you dissuade a strong colony from storing an arch of pollen over the brood nest in the super … 

Drone comb in super

… though they do often leave cells empty, ready for the queen to lay.

But she can’t do that because she’s trapped under the queen excluder. 

Right?

Wrong 🙁

The middle few frames of the lower couple of supers were wall to wall capped drone brood and drone larvae. The queen was busy laying up some of the remaining space that wasn’t already filled with nectar.

I found the marked and clipped queen on the very first super frame I removed.

Sod it.

Snatching victory from the jaws of defeat

Perhaps.

Here was the dilemma. Hive #29 was strong and healthy but effectively queenless. Time was against me. I didn’t have the luxury of simply plonking her beneath the QE and checking the colony didn’t make swarm preparations in another three or four weeks 11

I’d already united all my other colonies and made up the nucs. I didn’t want to disassemble any of these to accommodate this colony.

With bad weather approaching in a few days I decided to make up a nuc with the queen and, in due course, donate a queen cell from another colony.

Which is what I did. 

An adjacent colony helpfully raised several very good looking cells which I knew were charged. One of these, on a frame holding a sideplate-sized patch of brood, was added to the colony just before the rain arrived.

Open the box, open the box

But on the same day I added the queen cell I also checked the supers thoroughly.

I wanted to make sure that every frame was drone foundation and that I’d not missed a queen cell drawn from any worker comb in the supers. That might have resulted in a virgin queen running about in my supers and, knowing my luck, squeezing through the QE and slaughtering the queen from the cell I’d just introduced. 

There were lots of “queen cells” in the supers. However all were little more than play cups drawn along the top edge of the drone comb, against the top bar. 

Lots of drone brood … but no real queen cells

None contained eggs. It was as though the bees, sensing the colony was now truly queenless, had known what to do but had no primary material to work with.

Over the next fortnight or so this hive was going to generate hundreds thousands lots of drones. Not in itself a bad thing – this was a good colony and the positve influence on local bee genetics might be beneficial.

However, all the drones would emerge in the supers and be prevented from exiting the hive due to the queen excluder.

When this happens the drones die in their droves stuck half way through the excluder.

This is a distressing sight and, for a drone, a demoralising experience (I would imagine 12).

Under normal circumstances I would simply return every 3-4 days, pop the lid off the hive and release them. This wasn’t possible living four hours away … 

… so I played the ‘get out of jail free’ card by adding a thin eke and upper entrance.

Upper entrance

When I next check the colony I expect the drone brood to have all emerged and, largely, left the supers. I hope there’s a mated laying queen in the bottom box and there should be some capped worker brood.

What there’s unlikely to be is three full supers of honey 🙁

With no worker brood being reared for at least 5 weeks the foraging workforce will be significantly depleted. I hope they manage to defend what they’ve already collected … time will tell.

What went wrong?

After finding the supers full of drone brood I wrote “dodgy” on both sides of the queen excluder frame as I replaced it with a plastic spare.

I assumed the queen had found a bent wire and   s  q  u  e  e  z  e  d  her way through to have a field day – actually three weeks – in the supers.

However, I think the explanation is more prosaic than that 13.

My notes indicated I’d not seen the queen in this hive during the April inspection. In this instance evidence of absence was not absence of evidence … there were lots of eggs and brood in all staged. The colony was queenright and the queen was in the right place.

At least before I opened the hive 😉

And this is where stupidity, forgetfulness and plain dumb luck played their part. I … 

  • stupidly botched the inspection, taking the strength and health of the colony as the most important signs that all was well, but …
  • forgot that the next inspection – when I would be making up nucs – would also need worker eggs in the brood box to rear new queens from.
  • There’s more … I also presumably forgot to thoroughly inspect the queen excluder before laying it to the side, allowing …
  • dumb luck to intervene when the queen scooted around to the other side of the excluder and so end up trapped in the supers when I reassembled the hive.

Mea culpa.

That’s my best guess anyway.

Did I do the right thing?

Hive #29 was the last to be inspected after a hard day of beekeeping in late April.

Coincidentally it was also the last to be checked in mid-May 14

This limited my options somewhat and I made a judgement call as to the best course of action. Doing what I describe above risks the queen failing to emerge or mate. It also potentially risks the box being robbed as the workforce diminish, particularly with the upper entrance I’ve added.

Both of these could lead to the loss of the hive, but the loss/problem would be all mine. At the time, standing there swearing sweating in my beesuit, gasping for a beer, it seemed like the safest bet. It also seemed like the responsible course of action in the middle of a global pandemic.

I chose not to just dump the queen back into the brood box, add the upper entrance and leave them to it. Had the colony subsequently swarmed 15 the problem might then have been someone else’s

Did I do the right thing?

We’ll know soon enough … 😉


 

The nucleus option

The definition of the word nucleus is the central and most important part of an object, movement, or group, forming the basis for its activity and growth”.

Therefore a nucleus colony of honey bees is something smaller than a full colony, but that has inherent capability to grow into a full and active colony.

A nucleus colony is usually abbreviated to nuc (pronounced nuke), often prefixed by an indication of its size e.g. five frame nuc or 2-frame nuc. The very fact that the size of the nuc is often included is an indication that they can exist in a range of different sizes. 

If the size is not defined a nuc is likely to have 5 brood frames. In this post I’ll stick to that convention; unless otherwise specified I’ll use the term nuc to mean a 5-frame nuc. 

What’s in a nuc … ?

A nuc is a fully functional colony of honey bees, just on a smaller scale than a full colony. Therefore it will contain stores, adult bees, brood in all stages and a queen.

5 frame nuc colony

5 frame nuc colony …

Of course, when first prepared it may be missing some of these components. However, to be fully functional, and to have the capacity to grow into a full colony, it must contain everything that would be expected in a full hive, just less.

Other than queens. To be functional a nuc, like a full colony, needs no less than one queen 😉

And, of course, no more than one 🙂

Part of the skill in preparing good quality nucs – for whatever purpose – is to ensure they are a balanced and functional mini-colony. They need enough adult bees to rear brood, to defend the colony and to forage effectively. They need sufficient stores to avoid starvation during a bout of bad weather, and they need a mated, laying queen to help the mini-colony expand.

… and what’s it in?

A nuc is usually housed in an appropriately sized nucleus hive, but actually doesn’t need to be. Commercially-purchased nucleus hives almost always take 5 brood frames 1, though there are exceptions. Paynes Beekeeping sell a very widely used 6 frame National nuc. Paradise Honey polystyrene Langstroth nucs also take 6 frames and, to add further confusion, can be divided easily longitudinally into two 3-frame nucs. 

Here's three I prepared earlier ...

Everynuc poly nucs

Of course, if you make your own – or butcher commercial offerings – a nucleus hive can be any size you want. As the need arises 2 I use two, three, five and eight frame nucs.

Two frame nuc box

Two frame nuc box … a bit too small for the nucleus method of swarm control (but usable at a pinch)

But the nucleus colony does not have to occupy the entire hive.

A well-prepared nuc can expand in size quite quickly. One of the biggest problems in working with nucs is their tendency to get overcrowded. As I discussed a fortnight ago, overcrowding is a well-established trigger for swarming, and a nuc is perfectly capable of swarming … thereby undoing all your efforts in establishing it in the first place.

Therefore, bearing in mind the necessity to produce a functional and balanced mini-colony, it is not unusual to create the nucleus colony smaller than the hive it is housed in, so providing some space for future expansion.

National hive dummy boards DIY

Dummy boards …

As described below, three frames in a five frame hive hive can start a new nucleus colony. You can even put the frames into a full brood box. In both cases the unoccupied space needs to be reduced or at least separated from the developing colony. With the frames pushed against the sidewall of the hive the addition of a dummy board against the ‘open’ face of the colony is usually sufficient.

Warmth and weighty matters

Being smaller than a full colony, and containing fewer bees, a nuc is less able to keep the cluster warm if the weather turns cold. This isn’t usually an issue during the late spring and summer, but is a major concern if you want to overwinter nucleus colonies.

To make things a bit easier for the bees many commercial nucleus hives are made out of expanded polystyrene. These are mass produced from moulds and sometimes include integral feeders or other design ‘features’. Some of the features included are better than others … and some are pretty useless. In my experience 3 none of the poly nucleus hives sold are perfect, but some are very good and almost all are perfectly usable.

MB poly nuc

MB poly nuc …

I’ve discussed several – now rather ageing – commercially-sold poly nucs previously. I may mention them again in passing, but will focus on the contents of the nuc for most of this post.

The low weight of polystyrene nucleus hives is an additional bonus. Less weight to carry when moving them between apiaries, when selling them or when stacking them up empty for the winter.

But nucleus hives don’t have to be made of polystyrene. For summer use only (or when preparing nuc colonies for sale) you can get nucleus hives made of folded Correx for a few pounds. I’ve also got a few lovely cedar nucleus hives built by Peter Little of Exmoor Bees. These have separate open mesh floors, tightly-fitting removable Varroa trays and deep roofs. They’re beautifully made but usually languish unused in the shed in favour of the poly Everynuc’s I routinely use.

Why prepare a nuc?

There are all sorts of reasons to prepare a nucleus colony, but – at least in my beekeeping – the three main ones are:

  • swarm control – the nucleus colony houses the old queen while the original colony requeens. If this is successful the nuc can either be expanded to a full colony or, after removal of the old queen, united with the original colony so strengthening the hive to exploit the summer nectar flows. I wrote about a nucleus method of swarm control last year.
  • making (limited) increase – a strong colony can almost always be used to prepare a nuc without jeopardising the chance of getting a good honey crop. Depending when the nuc is prepared it will either be strong enough to fill a full hive by the season’s end, or can be overwintered as a nuc. Splitting a nuc off a strong colony can also help delay swarming.
  • much greater increase – a variant of the above is to completely split a strong colony into 4 – 8 nucs. The final number depends upon the strength of the original colony 4. Remember that you need a queen or queen cell for each prepared nuc. I’ve discussed this approach previously when queen rearing using a Cloake board and in doing circle splits.

Whatever the reason, the basic mechanics of preparing nucleus colonies is the same. The important point to remember is that the goal is to produce a fully functional colony, just on a smaller scale. Unless it has sufficient stores, enough bees of the right type or a functional (or soon to be functional) queen it will struggle, and it may not survive.

Stores

I start all my nucs with a frame of largely or completely sealed stores pushed up against the sidewall of the box in which I’m going to house them.

During the first or second inspection of the season I am usually able to remove at least one frame of stores from every full colony. This is leftover from the winter and, with the spring nectar flows underway, no longer needed.

Spreading the brood nest

I replace the removed frame(s) with either drawn comb or, more usually, a new foundationless frame. These are inserted at the edges of the brood nest – effectively spreading the brood nest – rather in the space directly occupied by the frame of stores.

The colony benefits from the additional space to draw new comb for the queen to lay, so delaying the urge to swarm. And I benefit from ~2kg (5lb) of stores in the removed brood frames which I carefully hoard until I need them 🙂

Make sure you store them somewhere safe where wasps, bees and rodents cannot get at them.

Bees

This is where things start to get a little more complicated. The amount of bees – both brood and workers – added to the nuc depends upon a number of things, most important of which are:

  • where the nuc is going to be located after it has been made up. If it being moved to an out apiary more than a couple of miles away then you can usually add fewer bees. Conversely, if it is staying in the same apiary (or being moved nearby) you have to expect many of the flying bees will return to the original hive and make allowances for this by adding more at the start.
  • whether the nuc will be started with a laying queen, a virgin queen or a queen cell. A laying queen can and will start laying eggs immediately, with the resulting workers emerging in ~21 days from making up the nuc. A virgin will have to go out and mate and start laying, so adding several days to this period. If you start the nuc with a queen cell there may be a few more days to be added as well.

Remember that the flying worker bees you add as you create the nuc will all likely have died before any new bees emerge from eggs laid in the nuc. Therefore, to ensure there is a continuity of foragers you need to prime the nuc with sealed brood and plenty of young bees.

So, the next thing to add to the nucleus hive, adjacent to the frame of stores is a frame of sealed brood together with all the bees on the frame. Unless you also intend to place the queen from the original hive into the nuc make sure the queen is not on this frame.

If there is also some emerging brood on this frame as well, all the better. These will help bolster the young bee population you add, enabling them to help rear more brood and get established faster.

If the original colony is particularly strong or you want to create a strong nuc you can add a second frame of brood (and adhering bees), but this is not necessary. What is necessary is to ensure there are enough bees to compensate for ageing foragers and the loss of bees back to the original hive.

Flying bees and hive bees

When you remove a brood frame from the hive it has two general sorts of workers on it – the so-called ‘flying’ bees and the ‘hive’ bees. The former are the foragers, the latter the younger nurse bees. You can crudely separate them by deftly shaking the frame once 5. The flying bees are dislodged, the hive bees hang on tight.

Nurse bees will, as they age, mature into guards and foragers. These will be needed before adult workers emerge from any new eggs laid in the nuc. 

Therefore, I almost always shake in a frame or two of nurse bees into the nuc that is being setup. 

Doing this takes just a few moments … 

  • Lift a brood frame from the original colony and check that the queen is not on it 6
  • Shake the frame once over the original hive to displace the flying bees
  • Shake the remaining adhering ‘hive’ bees into the empty gap in the nucleus hive between the frame of brood and the sidewall
  • Return the brood frame to the original hive

Space to expand

The nucleus hive now probably contains two frames (one of stores and one of brood) and, assuming it’s in a 5-frame box, the bees have space to expand as the colony builds up.

But they also need frames to occupy.

Therefore, add a single foundationless frame, or a frame with foundation or – the 5 star deluxe treatment – a frame of drawn comb to the nucleus hive. The last is a real luxury and means the queen will have somewhere to start laying immediately.

Go on … spoil them 😉

My precious …

With the exception of a queen (see below), the nuc is now complete for the moment. Since I predominantly use foundationless frames I usually add a dummy board to isolate the colony from the echoing space in the 5-frame nuc box. For convenience I’ll usually place the two foundationless frames on the far side of the dummy board so I don’t need to remember them when the colony expands.

The arrangement of frames is therefore:

  • Stores
  • Brood (sealed and emerging), plus adhering bees
  • Drawn comb, or undrawn foundation or foundationless frame
  • Dummy board
  • Foundationless frame
  • Foundationless frame
Foam block ...

Foam block …

If the nuc is to be moved to a remote apiary I’ll also add a closed cell foam block to stop the frames moving about during transport.

Queen

When first created nucs are too small and unbalanced (in terms of the composition of bees in the box) to successfully rear a good quality queen from an egg or young larva.

They will try, but it is not a recipe for success. You’ll often end up with an undersized and underperforming scrub queen. 

Don’t let them.

Why bother putting all those valuable stores, brood and bees into a box without giving them the very best chance of flourishing?

Instead, you need to provide them with a queen – either mated and laying, a virgin or as a mature queen cell. I don’t want to cover the sometimes tricky subject of queen introduction here, so will restrict myself to the two most common scenarios:

  • using the mated queen from the hive you split the nuc off
  • making up a nuc with a ripe queen cells 

The first instance is straightforward. Either make sure the frame(s) transferred to the nucleus hive include the queen or find her in the original hive and transfer her to the nuc.

Transferring her on a frame is easy. Adding her subsequently means picking her up and gently placing her on the top bar of the transferred brood frame in the nucleus hive. Do this carefully and quickly and she will be accepted without any issues 7.

Queen cells

Although also needing care, starting a nuc with a mature, ripe queen cell is even easier.

You can make up the nuc with a frame already containing a sealed queen cell. This is simplicity itself. Just ensure you do not bump, jar or bruise the queen cell during the transfer process.

Sealed queen cell ...

Sealed queen cell …

Alternatively you can add a queen cell from another frame. This can be from the original hive, or from another colony altogether 8

  • Cut around the queen cell  to leave a wide margin of comb. A couple of centimeters isn’t too much.
  • Choose a space on the face of the brood frame in the nucleus hive. If there isn’t one, make one by pushing the comb down with your thumb.
  • Place the sealed queen cell vertically in the gap and use the wide margin of wax to fix it in place by squeezing the wax together. 

You want the queen to emerge onto brood, not stores, and you want the cell roughly central in the cluster of bees to ensure it’s well looked after until she emerges. I usually fix the cell under the top bar.

All gone ...

All gone …

Of course, if you rear your own queens (or have a friend/mentor who does), the queen cells are usually attached to small plastic cups which can simply be hung in place between the top bars.

Location and relocation of nucs

If the new nuc is to remain in the original apiary you should expect that many of the flying bees will return to the original hive. Help discourage them by stuffing the nuc entrance with grass for 48-72 hours.

By the time the grass has dried and the bees have pushed their way out they’ll realise things have changed and will reorientate to their new home.

Stuffed

Stuffed …

It’s also worth checking the population of bees a few days after making up the nuc. If your nucleus hive has a perspex crownboard this can be done with minimal disturbance to the bees. If the nuc looks sparsely populated you can shake in more nurse bees from the original colony (see above).

5 frame nuc ...

5 frame poly nuc …

If you move your nuc a few miles from the apiary it was prepared in the bees will be forced to reorientate to the new location. You’ll therefore lose far fewer of the flying bees, so maintaining a reasonable foraging force during the initial establishment of the new colony.

When transporting nucs take all the normal precautions. Seal the entrance, strap the box up tightly and orientate them with the frames in line with the direction of travel.

Maintenance of nucs

Nucs need a little more TLC 9 than full colonies. Particularly when first set up they are less able to defend themselves as the population of bees is unbalanced.

This is a very good reason not to feed nucs syrup from the start. Workers returning to their original hive may take back news of a readily-available source of ‘nectar’ and induce robbing.

Later in the season, once a nuc is established it may still benefit from a reduced size entrance to give the bees less to defend. 

Being smaller than a full hive they have less space for stores and less space for expansion. Unsurprisingly the two major problems are starvation and overcrowding. Both are readily avoided by regular inspection.

Requeening a nuc ...

Requeening a nuc …

Finally, if you start a nuc with a queen cell it makes sense to find and mark 10 her before moving the colony to a larger hive. Queens are always easier to find in nucs than in full colonies.

There are far too many additional tips and tricks to preparing nucs than I have space for here, but at least it’s a start. The key point to remember is that nucs are far more likely to be successful if set up and managed with a balanced population of bees and ample resources.


Colophon

The title of this post is a modified version of the nuclear option. Formally this is a parliamentary procedure in the US senate. More generally, by analogy to nuclear warfare, it means the most drastic or extreme response possible to a particular situation.

Preparing nucleus colonies is nothing like this. Indeed, it is one of the most useful things to do in beekeeping.

I’ve no idea how this post grew to over 3000 words … my version of filibustering which the nuclear option can be used to defeat. Next week we return to science with an exciting new study 11 on the rise and rise of chronic bee paralysis virus as a threat to beekeeping in general, and beefarming in particular.

 

Income and outgoings

I discussed beekeeping economics a couple of weeks ago.

I used some potentially questionable survey data on hive numbers, winter losses, honey yields and pricing, together with ‘off the shelf’ costs for frames, sugar and miticides.

Even ignoring the costs of travel and depreciation on equipment the ‘profit’ was not substantial.

Actually, it was just £102 per colony.

Consider the hard work involved, the heavy lifting, the vagaries of the weather and the amount of honey given away to friends and family.

You are not going to get rich fast (or at all) and the Maldives will have to remain a dream.

What a fantastic beekeeping year that was …

Most of us 1 keep bees for pleasure. However, a small profit from our endeavours can’t do any harm, and may actually do some good.

It might pay for a “sorry I was late back from the apiary … again” crate of beer/bunch of flowers 2 or for the new smoker to replace the one you reversed the car over.

Smoker still life

Smoker

So how do you fund the purchase of a crate of beer/bunch of flowers and a new smoker?

How do you increase the profit per colony from that rather paltry £100 to something a little more substantial?

It’s clear that to do this you need to reduce your outgoings and increase your income.

Income and outgoings

I’m going to restrict myself to the same range of outgoing costs and sources of income to those I covered on beekeeping economics.

I’m ignoring most equipment costs, depreciation, petrol, honey gifts to friends etc. All these reduce ‘profit’.

Here is the summary table presented earlier. Remember, this is for a four hive apiary, per annum 3.

Item Expenditure (£) Income (£)
Frames and foundation 40.00
Miticides 38.00
Food 26.00
Honey (jars/labelling) and gross 63.00 550.00
Nucleus colony 15.00 40.00
Sub totals 182.00 590.00
Profit 408.00

Cutting your food costs

Not a whole lot of leeway here I’m afraid.

Granulated sugar is probably the least expensive way of feeding your bees for the winter. Other than shopping around for the best price there’s not much option to reduce your outgoings.

However, before buying sugar it’s always worth asking your local supermarket for any spoilt or damaged packets. Supermarkets are under pressure to reduce waste and can usually be persuaded to support something as environmentally-friendly as local bees.

It costs nothing to ask.

Many beekeeping associations will arrange bulk purchases of either Ambrosia-type invert syrup or fondant. I’ll comment more extensively on this later.

Cutting your medicine costs

There are even fewer opportunities for savings if you want to use VMD-approved miticides.

I’ve discussed miticide costs extensively in the past. The figures are now a bit dated (and they omitted Apivar which was not available off-prescription at the time). However, it remains broadly true that the annual cost per hive is about the same as a jar of honey 4.

If you’re using Api-Bioxal for midwinter trickling remember that you can safely dilute it to a final concentration of 3.2% (w/v), rather than that recommended on the label. Historically the UK has used oxalic acid at 3.2% and there’s no increase in efficacy at the higher strength. Full details are provided on the preparation of oxalic acid elsewhere.

At 3.2% w/v a 35g “10 hive” pack of Api-Bioxal will treat 15 hives.

There … at £11.95 a packet I’ve just slashed your midwinter treatment costs from £1.20 a hive to  80p.

Look after the pennies and the pounds will look after themselves 😉

Frames and foundation

First quality ‘off the shelf’ frames with foundation cost about £3 each. Obviously it makes sense to shop around and/or buy in bulk.

However, much more substantial savings are possible if you do three things:

  • re-use frames after steaming and sterilising
  • use second quality frames bought on supplier ‘sale days’
  • use foundationless frames

If you nail and glue frames during construction they usually survive at least a couple of trips through a steam wax extractor. Yes, there’s some work involved in cleaning them up afterwards, but it’s no more work than building new frames each year.

Drone-worker-drone

Drone-worker-drone …

Second quality frames are sold in packs of 50 for about £37.50 5. Of the hundreds I’ve used I’ve had few (~2% or less) that were unusable due to knots, shakes, splits or other weaknesses.

Foundationless frames take a bit longer to build and you have additional expenditure on bamboo or wire/nylon. However, this outlay is insignificant when compared with the saving made on foundation.

Remember that foundationless frames built with bamboo supports can go through a steam wax extractor and be put back into service. Don’t use wax starter strips. Use lollipop sticks or tongue depressors fixed with waterproof wood glue.

Take your pick ...

Take your pick …

Purchased premium foundation is lovely stuff but freshly drawn comb on a foundationless frame is even better. Contamination-free, robust once fully drawn and much easier to clean from the frame when it eventually goes through the steamer.

Taken together – re-use, second quality and foundationless – I calculate that frames cost me ~25p each. This equates to a saving of £36.75 over a year 6. Remember also that additional outlay on brood frames is needed to produce nucleus colonies (see below) where the savings would be £13.75 per nuc produced.

That’s more like it 🙂

A co-operative association intermission

Beekeeping associations often have co-operative purchasing schemes. Bulk purchasing reduces both individual item costs and (often substantial) P&P costs. These schemes are often organised to pass on the majority of the discount and retain a small amount of the savings for association activities.

The larger the association the greater the savings that can be made, and there’s no reason why neighbouring associations or regional groupings cannot act together.

Yes, of course, it takes some organisation. If your association doesn’t have such a scheme either find one that does or set up your own.

My beekeeping alma mater (Warwick and Leamington Beekeepers) offered excellent discounts on jars, honey buckets, foundation, Ambrosia, fondant and gloves … and probably a load of other things I didn’t take advantage of when I was a member 7.

Products of the hive

That’s enough about outlay, what about income?

Honey bees make honey and bees.

Both are very valuable.

You can maximise income in two ways.

You can make more of either (or both) or you can sell them at a higher price.

You might even be able to achieve both.

I’ll deal with these in reverse order …

Maximising the prices of honey and bees

I’ve discussed honey pricing recently. If you’re producing a unique, high quality, well packaged product (and if you’re not, you should be) you need to price it accordingly.

More local honey

That’s not the £4 a pound charged for the imported, blended, filtered, pasteurised, uniform, dull, available-by-the-tonne-anywhere rubbish stuff sold by the supermarkets.

Look in the delicatessens and local artisan outlets … you might be surprised.

£10 a pound is not unreasonable.

£10 a pound is readily achievable.

But let’s not be greedy, let’s assume a very conservative £7.50 a pound.

Local honey

At £7.50/lb the average UK yield of 25lb of honey per hive equates to £687 (for the four hives) after paying out £63 for jars and labels 8

Two factors contribute to the price you can realise for bees (which, for this exercise, means nucleus colonies):

  1. Timing – to maximise the price you need to sell when demand is the highest and supply is limited. This means early in the season. You therefore must overwinter nucs and ensure they are strong and healthy in mid-late April. Four to six weeks later there’s a glut of bees available as colonies start swarm preparation … prices drop precipitously. Nucs are easy to overwinter with a little TLC.
  2. Quality – with a small number of colonies it is not easy to improve your stocks. However, by judicious replacement of poorly-performing queens/colonies you should be able to produce perfectly acceptable bees for sale. Don’t try selling bad bees – chalkbrood-riddled, poorly behaved, patchy brood or diseased (high Varroa, overt DWV etc.).

If you are selling one or more nucs you should expect to allow them to be inspected before the sale. Just like honey tasting, nothing is more convincing than trying the product.

Maximising the amount of honey and bees

All other things being equal 9 stronger colonies will produce more honey and generate more ‘spare’ nucs.

Compare a productive commercial colony and an unproductive amateur colony at the height of the season. What’s the difference?

Mid-May ... 45,000 bees, 17 frames of brood, one queen ... now marked

Mid-May … 45,000 bees, 17 frames of brood, one queen … now marked and clipped

The productive colony is on a double brood box underneath three or four full or rapidly filling supers. There are 16+ frames of brood and the beekeeper has already split off a nuc for swarm control.

In contrast, the unproductive colony has about seven frames of brood in a single brood box topped by an underwhelmingly light super. There’s little chance of producing a spare nuc this season … or much honey.

But at least they might not swarm 🙂 10

Generating these strong colonies requires good genetics and good beekeeping.

With further good management the productive colony could produce another couple of supers of late-season honey and at least one more nuc for overwintering.

Here's one I prepared earlier

Here’s one I prepared earlier

How does that help the bank balance?

Let’s assume an ambitious-but-not-entirely-unrealistic one nuc per colony and 75lb of honey per annum in total (being sold at £175 per nuc and £7.50 a pound for honey). Honey ‘profit’ for the four colonies in our hypothetical apiary works out at £2061 11 with a further £700 for the sale of four nucs at £175 each 12.

That works out at a very much more impressive £690 per colony.

Minimising losses

But wait, surely we have to use some of those valuable nucs to make up for the 25% overwintering colony losses that the average UK beekeeper experiences?

No we don’t 🙂

If you have the beekeeping skills to manage strong colonies you almost certainly also have below average overwintering losses.

And that’s because strong colonies are, almost by definition, healthy colonies which have low mite and virus levels. And, as we’ve seen time and time again, low virus levels means reduced winter losses.

This minimises the need for nucs to maintain overall colony numbers and so maximises the nucs for sale 🙂

For the sake of finishing this already overly long post, let’s assume overwintering colony losses are 12.5% (because it makes the maths easier … 10% or lower is readily achievable) rather than the 25% national average.

That being the case, for our four hive hypothetical apiary, we’ll need one replacement nuc every two years. Therefore, over a four year period we might generate 16 nucs and use just 2 of them to replace lost colonies.

Kerching!

Here are the figures for our hypothetical four colony apiary. These assume good bees, good beekeeping, low winter losses, good forage, good weather and a following wind.

I’ve assumed savings are being made where possible on frames and foundation, but also increased the number of frames (and miticides) needed to reflect colony size and strength.

Item Expenditure (£) Income (£)
Frames and foundation 7.50 13
Miticides 76.00 14
Food 52.00 15
Honey (jars/labelling) and gross 189.00 16 2250.00 17
Nucleus colony 5.00 18 612.50 19
Sub totals 329.50 2862.50
Profit 2533.00

Per colony the overall profit is £633/annum (cf £102/colony/annum for an ‘average’ hive and beekeeper).

These figures are not unrealistic (though they’re not necessarily typical either).

They won’t be achieved every year. They are dependent upon good forage, good weather and having the beekeeping skills needed to maintain strong healthy colonies.

They might be exceeded in some years. With good forage and a good season 100+ pounds of honey per colony can be achieved.

You have no control over the weather 20, but you can influence the other two factors. You can place your bees on better forage and you can continuously try and improve your skills as a beekeeper.

And learning how to maintain (and keep!) really strong healthy productive colonies is demonstrably a very valuable skill to acquire.

E & OE

Just like in the previous article, I’ve made all sorts of assumptions and cut all sorts of corners.

Managing big strong double-brood colonies producing a nuc each every year and topped by at least three supers inevitably means investing in lots more brood boxes, supers and nuc boxes 21.

It also means a lot more work.

Extracting and jarring hundreds of pounds of honey takes time. It also benefits from some automation … an extractor, a creamer, settling tanks, a honey processing room, a warm room for supers etc.

But that lot is not needed for our well-managed four hive hypothetical apiary.

The other things I’ve deliberately omitted are alternative ways of managing colonies for profit. For example, as suggested by Calum in a previous comment, propolis is a very valuable product of the hive. You can split a strong colony very hard to generate 6-10 nucs (but no honey). You can rear queens (very easily) and you can sell wax.

You could even produce Royal Jelly …

And it’s that endless variety and options that make beekeeping so fascinating.


 

 

Matchstick miscellany

White propolis

What is propolis for?

Why, when you go to open a hive that you’ve not visited for some time, is the crownboard invariably stuck down with propolis?

Are the bees trying to stop you looking in? Do they think a thin bead of propolis is defence against a well-aimed hive tool?

Of course not.

What they are doing is sealing up every tiny nook and cranny, every gap and interstice.

You might think the crownboard is a snug fit.

The bees don’t.

Even the brand new, smooth, flat plastic interface between an Abelo crownboard and brood box get glued together within days.

Every fissure through which wasps 1 could gain access or heat could escape or water enter or whatever is gummed shut with a liberal helping of propolis.

Propolis is of course also antibacterial and has a host of other great properties, but for the purpose of this post I’m restricting myself to its use as a sort of “No Nonsense Decorators Caulk” of the bee world 2.

Mind the gap

Additional evidence that bees really do ‘mind the gap’ is easy to find if you use crownboards with holes in them.

Not the great gaping opening(s) designed to accommodate a porter bee escape (I’ll return to these shortly), but instead something like the ventilated disks in the grossly over-engineered Abelo poly crownboards.

Abelo poly National crownboard ...

Abelo poly National crownboard …

Here’s a brand new one, just out of the packing, with all the little fiddly ventilated plastic disks and poly plugs to cover them.

And this is what one of those ventilated holes looks like after a few weeks use …

Exhibit A … ventilated hole in an Abelo crownboard

And the same thing applies to wire mesh screens when I use split boards as crownboards (because I’ve run out … even of the 25p polythene ones).

Split board

Split board …

Which end up looking like this …

Exhibit B … are you getting the message?

Matchsticks … don’t try this at home

I’m an increasingly irregular visitor and even less frequent contributor to the online beekeeping discussion forums. On one 3 there’s a perennial discussion thread around this time of year concerning matchsticks.

Matchless matches

Essentially the discussion starts with a question or comment on the need for matchsticks as spacers to separate the crownboard from the brood box during the winter.

You’ll find this advice in many beekeeping books going back more than half a century and you’ll hear it in many ‘Start beekeeping’ winter courses … often taught by beekeepers who learned their beekeeping half a century ago.

In many cases the online forum discussion is started by a recommendation in the monthly BBKA 4 newsletter, or another online forum or Facebook group (again often BBKA-based).

The subsequent ‘discussion’ is generally nothing of the sort. The advice is (in my view rightly) criticised but as much or more effort goes into bashing the BBKA as evidencing why the advice is wrong.

I’m not here to bash the BBKA and I’ve already provided the unequivocal evidence why it’s wrong.

Much better use …

If you provide a narrow space or gap over the top of the colony they will try and seal the gap closed with propolis.

So don’t.

If you want to use matchsticks in the winter … build a model of Notre Dame instead. The bees will appreciate it more.

What are the bees telling you?

The speed with which bees seal up gaps and crevices tells you that that they ‘prefer’ not to have have these types of spaces overhead.

I’m using the word ‘prefer’ here in place of some convoluted justification around evolutionary selection of traits that benefit the long-term survival of the colony and maintenance/transmission of the genes in the environment.

They seal the gaps because to not do so, over eons, is detrimental to Apis mellifera. Not necessarily to that colony per se, but to the species.

Whether they do it to reduce robbing, to stop draughts or rain entering or to prevent the loss of warm air is, in many ways, irrelevant.

Do beekeepers really know better than millions of years of evolution?

No.

The “I always used matchsticks and my bees do well” justification

Is so deeply flawed it barely deserves contradicting.

But since I’m here, I will.

Bees have a fantastic ability to survive and even flourish despite the most cackhanded fumbling by beekeepers 5.

Just because your bees overwintered successfully with a gaping void in the crownboard does not mean they need that gaping void to survive 6.

Observe what the bees do and apply it to your beekeeping.

But what about crownboards with a big hole in for a porter bee escape? The bees don’t block those with propolis.

No, they don’t. But that’s still not justification to leave a void above the cluster. Bees seal gaps smaller than ‘bee space’ (say 8-9 mm) with propolis.

Perhaps they don’t seal up these large holes in the crownboard because the ‘triggers’ that make them seal smaller gaps aren’t present.

As an aside, I wonder if they deploy guard bees to defend these large holes above the cluster? 7

But back to the matchsticks; these create a gap significantly less than 8mm and the bees clearly demonstrate – each and every time you crack open the crownboard – that this is far from optimal.

I’m not going to get into the chimney effect, lost heat, holes in trees, water ingress, draughts etc.

Whether it’s a good idea to ventilate the winter cluster, to get rid of excess humidity or anything else, the evidence is compelling 8the bees would rather you didn’t.

Winter preparation miscellany

The two propolis-adorned crownboard pictures above were taken during an apiary visit in mid-October. I was opening hives for the final time this year. It was 12-13°C and bees were flying, bringing back pollen I presumed was largely from the ivy flowering nearby.

They fancied that fondant

Most had finished their final half block of fondant. The empty wrapper, eke and QE 9 were removed.

Others still had fondant left. In this case I bodily lifted off the QE, fondant and eke/super to give me access to the brood box.

Unfinished fondant

If you feed fondant above a QE you can balance it on an eke or empty super, so avoiding crushing the hundreds of bees clustered underneath the fondant 10

And the reason I needed access to the brood box was to recover the Apivar strips.

If the strip is fixed near the top of the frame this takes just seconds and a small amount of dexterity with a suitable hive tool.

The strips also have a small hole top and centre allowing them to be hung between frames on a matchstick.

But I don’t have matchsticks in the apiary 😉 so instead use the spike to fix them in the comb.

Apivar strips should not be left in for longer than the approved treatment period (6 – 10 weeks; these went in on the 28th of August, so are being removed after 7 weeks). This is important to avoid the reduced levels of amitraz in the ageing strips selecting for Apivar-resistant mites.

The few colonies I checked more thoroughly had little or no brood. All boxes were reassuringly heavy.

I saw a single drone amongst the dozen or so colonies I opened. Not long for this world I fear.

Since there was still pollen coming in I delayed fitting mouseguards to the colonies that need them.

I’ll deal with that once the frosts start 11.

Not long now 🙁


 

Quick fixes

Honey bees are remarkably resilient creatures.

As beekeepers we blunder around the hive on a weekly basis trying to ensure they don’t leave us for pastures new.

The custodians of the environment fill it with chemicals and replace those pastures with acres of distinctly bee-unfriendly monoculture.

Rather too much arable …

And, to add insult to injury, we crowd hives together and move bees with little consideration of the gallimaufry of pests and diseases we are helping to transmit.

Yet, despite this, colony numbers worldwide are increasing 1. This reflects the popularity of beekeeping, the value of honey as a commodity and the important use of honey bees to provide ‘ecosystem services’ (largely pollination) for agriculture.

Home is where the hive is

So, considering all the problems bees face when they’re out and about gathering nectar and pollen, the least we can do is provide them with well-built, watertight, secure and draught-free accommodation.

And, most of the time we do.

The quality of most commercial 2 hives these days is generally excellent. Independent manufacturers and the big national suppliers all sell very good beehives.

Even the flat-packed, second or third quality stuff you fill your car boot with on the annual ‘sale days’ is more than adequate.

You build it, you fill it with bees and they thrive.

They overwinter well, they build up strongly in the spring, you make some early splits to increase stocks and avert swarming.

They continue to thrive. It’s turning into a bumper season. You run out of supers during the strong spring nectar flows.

And then the swarming begins … and you run out of brood boxes (you’ve already run out of supers), crown boards, roofs etc.

This is when you discover all sorts of quick fixes that the bees cope just fine with. These allow you to continue beekeeping through periods with too many bees and too little equipment.

I’m going to use mostly pictures rather than lots of words. This is not an exhaustive list and it’s not restricted to the May and June swarming frenzy.

I’m sure many readers have their own solutions to short-term (or long-term) beekeeping problems. Feel free to post them in the comments section.

Hive stands

Abelo hives on pallet. Note entrances face in opposite directions.

Wooden pallets work fine as hive stands, as do stacked car tyres, or even simply stacking one hive on top of another (which saves a roof). If doing the latter it can help (the bees, but not necessarily the beekeeper) to have the entrances pointing in opposite directions.

Floors

You don’t need a fancy open mesh floor with an adjustable entrance. A sheet of Correx and some strips of softwood can be perfectly adequate.

Inside ...

Cheapy, cheapy floor … when you’ve run out of everything else.

And if you’re really running short of kit drill a hole through the sidewall of an eke and place it on the roof of another hive i.e. no floor at all.

It’s critical the hole is about the diameter of the cork from a good bottle of red wine. This is essential. For obvious reasons … you do want to use it as an eke again sometime in the future 😉

Boxes

Two stacked supers are a bit deeper than a single brood box (National hive). If you haven’t run out of supers (yet … you will) they make a perfectly adequate substitute.

Under offer ...

Two stacked supers, in this case set up as a bait hive. Note also the hive stand. And the roof.

Half of my bait hives are built from two supers.

As an aside, if you want to unite bees from these Paradise/Modern Beekeeping poly hives (see photo above) over the top of a standard National brood box, you’ll need a thin, wide shim to avoid bee-sized holes at the junction.

Shim

Shim …

This shim wrecks the ‘bee space’ but it’s only in use for a few days so it isn’t a problem 3.

Which, in a way, is the definition of the sort of quick fix I’m describing here … something that’s pressed into service for a relatively short period of time and that works satisfactorily, though perhaps not perfectly.

And is often still in use years later 😉

Crownboards

That’ll be 25p please

Poly crownboard ...

Poly crownboard …

… though a (well washed) fertiliser sack works just as well and is even cheaper.

Roofs

Might not be necessary at all if you stack another hive on top (see above).

However, if they are then Correx roofs take some beating.

Correx in the frost ...

Correx in the frost …

Literally.

These cost about £1.50 each to make, take minutes to build and are fully weathertight 4. I’ve got several that are over 5 years old and still going strong.

Not a quick enough fix for you?

Planting tray roof …

My bait hives were popular this year and I caught two swarms on successive days to a hive in the same location. I used an upturned planting tray for the roof of one of the bait hives and the bees didn’t seem to mind at all.

Incoming! from The Apiarist on Vimeo.

Clearer boards

Having planned to reduce my colony numbers this year I singularly failed to do anything of the sort.

I therefore ran out of clearer boards when I came to harvest the summer honey 5. I could have made multiple trips to the apiary but solved it with a quick fix.

Undaunted, a combination of some 4 cm ekes, a sheet or two of Correx (of course), a bit of gaffer tape (what else), a ‘lozenge’ escape or two, a Stanley knife and the inevitable half a dozen Band-Aids … and voila!

Quick fix clearer board – super side

Quick fix clearer board – hive side

These worked just fine and can be disassembled in minutes should I need the ekes again.

I’d bet good money they are used again next year …

etc.

To me, one of the great attractions of beekeeping is that it is an inherently practical occupation. In addition to the pleasure of working with the bees to produce a delicious, high quality and valuable product, you often need to use practical skill and ingenuity – coupled with Correx and gaffer tape – to solve day-to-day problems on the way.

For example, if you’re moving hives any distance it’s important they are well ventilated and that the frames don’t slide about with the consequent risk of crushing bees 6.

Travel screen mesh and eke

Travel screen mesh and eke …

Fibreglass net insect screening makes an ideal travel screen and is easily held in place with staples (in most poly hives) or an eke and a couple of stout straps.

And to stop the frames from sliding about a block or two of closed cell foam wedged between the hive wall and the dummy board is ideal.

Foam block ...

Foam block …

This type of closed cell foam is regularly supplied in packing material and is well worth saving if you find any. It’s the perfect example of a ‘quick fix’ that solves a problem at little or no cost.

Of course , you can never have too much gaffer tape. A quick fix to wasp problems until you find the errant entrance block.

Gaffer tape … remember to cover the sticky bit on the reverse to protect the bees.

And finally … you can never have too many straps to hold hives together or hold roofs down.

But you can often have too few.

Batten down the hatches … too few straps and fondant to the rescue

This photo was taken on the 14th of June, 2018. It looks balmy, but the windspeed was approaching 50 mph. I’d arrived to find some roofs already off 7 and too few straps to hold everything down.

There are two quick fixes in the picture. On the left a wooden plank holds the middle hive down with straps holding it (and the roofs on the flanking hives) in place. On the right, 25kg of fondant was press-ganged into service.


 

BOGOF

The swarm season this year has been atypical. At least here in the coolish, dampish, East coast of Scotland.

I hived my first swarm of the year on the last day of April and – as I write this – my most recent one in the middle of July.

The intervening period has been pretty quiet as the weather in May and June was – after a warm early spring – rather poor 1. The weather picked up a week or so ago, but it’s not been consistently good.

What we have had recently are some very warm and sunny days. The combination of some iffy weather, a bit of nectar coming in and then a few hot days are great conditions to trigger swarming.

Bait hives

For this reason I keep bait hives in my apiaries and one in my back garden throughout the season. These consist of a brood box with a solid floor, one old black frame anointed with lemongrass oil on the top bar, ten foundationless frames, a plastic crownboard and a roof of some sort.

Bait hive ...

Bait hive …

Any interest in these by scout bees suggests that there’s a colony nearby thinking of swarming. Scouts clearly check out potential locations before the colony swarms, but the scout activity increases significantly if they find your offering attractive and once the colony swarms and sets up a temporary bivouac from which it subsequently relocates.

Watching scout bee numbers increase allows you to guesstimate when a swarm might arrive. It’s an inexact science. A few scout bees are nothing to get excited about. Dozens are good and a hundred or two are very promising.

However, what’s best of all are a hundred or so scouts that rather suddenly disappear leaving the bait hive suspiciously quiet.

Which is more or less what happened on Sunday at the bait hive in my garden.

Walking wounded

Scout bees had discovered the bait hive sometime on Friday (or at least, this was when I first noticed them).

The weekend started warm with thunder threatened. I finished my colony inspections and returned for lunch to find a couple of dozen scouts checking out the bait hive 2. As the cloudy and muggy conditions continued scout bee numbers increased during the afternoon and then eventually tailed off as the evening cooled.

Sunday dawned warm and bright. Scouts were up and about before I’d made my first mug of coffee at 7 am. Numbers increased significantly during the morning.

While taking a few photos for talks I noticed a handful of corpses and walking wounded bees crawling around on the ground by the bait hive.

Missing in action

On closer inspection it was clear that there were intermittent fights between scouts at the hive entrance. There were more fights than cripples or corpses, and most fights ended with the scrapping bees breaking apart and continuing to, er, scout out the suitability of the bait hive.

Scout bees fighting from The Apiarist on Vimeo.

This behaviour seemed a bit unusual, but there wasn’t an obvious explanation for it. I wondered if I’d inadvertently used a frame with some stores tucked away in the top corners, with the fighting being between scouts and robbers perhaps 3.

Gone but not forgotten

Scout numbers continued to increase …

The calm before the storm

By Sunday lunchtime I was confidently predicting a swarm would be arriving ‘shortly’.

This prediction was upgraded to ‘very shortly’ once I realised – around 3 pm – that the scout bee activity had suddenly dwindled to just a few.

This happens when the scouts assemble en masse and persuade the bivouacked swarm to take flight and relocate. Honeybee Democracy by Thomas Seeley has a full explanation of this fascinating behaviour.

And, sure enough, ten minutes later a swirling maelstrom of bees approached purposefully down the street at chimney height, spiralling down to the bait hive.

You hear it first. Is it? Isn’t it? You look up and around. You can’t place the direction the noise is coming from. Then, at walking pace, they appear.

Hundreds, then thousands, milling around, getting lower, festooning the hive front, landing all around, taking flight and settling again.

Incoming! from The Apiarist on Vimeo.

At the hive entrance are hundreds of bees fanning frantically. The queen must have already entered the box. Slowly, over an hour or so, the bees settle, enter the box and just leave a few stragglers around the entrance.

One hour later from The Apiarist on Vimeo.

Swarms are a fantastic sight in their own right. They’re even better when you have some insights into how ten thousand individuals with a brain the size of a pin head are corralled and coordinated to rehouse the queen, the flying workers and a few dozen drones that are ‘along for the ride’.

Again, I cannot recommend Honeybee Democracy highly enough as a very accessible guide to swarms and swarming.

Late evening, another move

The evening slowly cools. I can’t resist gently hefting the box to guesstimate the size of the swarm. Small to middling perhaps … a view pretty-much confirmed when I peek under the roof to see about 5-6 seams of bees occupying the back of the box.

We have a new puppy and it was clear (i.e. I was told in no uncertain terms) that the occupied bait hive must be moved to a less accessible spot.

I plug the entrance with some tissue and gently carry them around to a puppy-free location on the other side of the house.

Swarms suffer short-term geographic memory loss. They can be moved any distance you want for the first day or two after hiving them. After that they’ll have reorientated to the new location and the standard 3 feet/3 miles rule applies (which isn’t a rule at all).

Early morning, more activity

Monday dawned calm, warm and bright.

It was clearly going to be a fabulous day.

One of the great things about being an academic is the flexibility you have once the students have disappeared to Ibiza or Machu Picchu or wherever for the summer 4.

I was therefore looking forward to a day of wall-to-wall meetings, at least 3 hours of which would be in a basement room with no windows 🙁

At 7:30 am I checked the relocated and occupied bait hive. All good. Almost no entrance activity but a contented gentle buzzing from inside suggested that all was well.

As I left the house I noticed a dozen or so bees milling around the stand where the bait hive had originally been located.

Puppy territory. Oops!

I quickly dumped a floor, a brood box with half a dozen frames and a roof on the stand in the hope that any stragglers from the swarm – which I suspected were scouts that had got lost, or workers that had already reorientated to the occupied bait hive late the previous afternoon – would settle (or clear off).

No signal

Having been trapped underground in an overrunning meeting on the hottest day of the year I missed the following messages that all appeared in a rush when my phone reconnected on surfacing.

11:55 Lots of bees

13:27 Even more bees. I thought you’d moved them last night?

15:06 Bl%^dy hundreds of bees. Where are you?

16:11 HUGE swarm

As I blinked myopically in the bright sunlight, like a lost mole, I realised what I’d seen yesterday were scouts from two separate colonies fighting at the bait hive entrance.

The bees I’d seen the following morning had been scouts from the second swarm.

Another day, another bait hive, another swarm …

Which had now arrived.

Overestimates and underestimates

As a beekeeper I’m well aware that a puppy-protecting non-beekeeper telling me about Lots of bees and Even more bees probably means Some bees.

The term ‘hundreds’ might mean any number less than 100.

It’s worth noting here that the partner of a non-beekeeper is considerably more accurate than the general public. If I get a message from someone with no experience of beekeeping about ‘hundreds of honey bees. Definitely honey bees!’ I know what they’re actually talking about are 12-15 solitary bees … probably Osmia.

Or wasps.

HUGE is tricky though. It has a sort of indefinable unmeasurable quality of largeness about it.

Thousands would have been easy … a small cast perhaps?

But HUGE … ?

It was huge.

Certainly the biggest swarm I’ve seen in recent years 🙂

I had to open the box to add a full complement of frames. The poly hive was heavy. You could feel the swaying mass of bees hanging from the wooden crownboard over the empty space in the box 5. The few frames present were completely covered.

I bumped the bees off the crownboard, lifted it away and the bees formed a very deep layer at the bottom of the brood box 6. The new foundationless frames I added projected well above the frame runners supported by the writhing mass of bees and only gently settled into place as the bees moved out of the way and up the sidewalls.

I strapped the box up and moved it to a puppy-safe location.

The following evening I treated both swarms with a vaporised oxalic acid-containing miticide and the morning after that I shifted them to an out apiary.

Look and learn

Only last week I discussed the importance of learning from observation.

Here was another lesson.

What did I learn from these two swarms and what assumptions can I make?

  1. Evidence of fighting between scout bees strongly suggests that there are two different swarms looking for a new home. I’m making the assumption here 7 that the two swarms issued from different hives (rather than being two casts from the same hive 8) because:
    1. I wouldn’t expect scouts from the same hive to fight, even if they were from different swarms. Is this actually known?
    2. I’m told the two swarms approached the bait hive from opposite directions (I saw the first one of course, but not the millions of bees in a huge swarm that arrived the following day when I was – literally – buried in meetings).
  2. Scouts are active well before a hive gets busy in the morning – at least one containing a recently hived swarm. I’ve noticed this before. Perhaps the recently hived swarm is concentrating on drawing comb as a priority?
  3. It is important to have sufficient spare compatible equipment available for all sorts of eventualities. I got away with it this time … just. The first bait hive used a planting tray as a lid. The second used some spare bits kicking around in the back of the car and a handful of foundationless frames just out of the steamer.
  4. I must remember to save time after the swarm arrives by preparing the bait hive properly in advance. This includes giving it a full complement of foundationless frames (and the one dark frame) and – if you intend to move it any distance after swarm arrival – making it ready for transport. In my case this includes using an insect mesh travel screen instead of a crownboard, adding a foam wedge to stop frames shifting about during transport and strapping the whole lot up tight.

Foam block ...

Foam block …

Natural cavities

The whole purpose of putting out bait hives is to attract swarms. As a beekeeper this saves me collecting them from the neighbourhood or – more frequently – politely refusing to collect them from 40′ up a Leylandii, a chimney or the church tower 9.

If something is worth doing you might as well do it properly. The optimal design for a bait hive is well understood (essentially it’s a National hive brood box – Honeybee Democracy again!), so that’s what I offer. Not a nuc 10.

However, to have two swarms essentially fighting for access to a single bait hive suggests there is a shortage of good natural or man-made cavities to which a swarm could relocate.

I live in a small village surrounded by mainly arable farmland. There are lots of hedges, small spinneys, conifer plantations, old farm buildings and houses about 11.

Rather too much arable if you ask me …

I’ve got a fair idea where bees are kept locally. I don’t think there are any within a mile of the bait hive other than my own colonies (and they did not swarm).

I would have expected there to be several suitable local natural or man made cavities that could ‘compete’ with a bait hive to attract swarms.

Clearly not … or they are already all occupied 12.

STOP PRESS Both were prime swarms as they had laying queens when I checked them on Thursday afternoon. I should have also added that a bait hive in the same location attracted another swarm in the preceding week. It’s been a successful spot every year I’ve been back in Scotland.


Colophon

Buy one, get one free (BOGOF) seemed an appropriate title for this post. It dates back to 1985 where it was first used in the journal Progressive Grocer (who knew there was such a thing?). Two for the price of one offers have been blamed for spiralling obesity problems and there has been political pressure to ban such offers in supermarkets.

In draft form this post was entitled twofer. As in two for the price of one. Etymologically this is an older term, but surprisingly the OED does not associate it with cricket.

Twofer is regularly used by cricket pundits to mean two wickets in successive balls. However, I decided to avoid the cricket link so as to not upset any of my valued New Zealand readers who might still be smarting from the double-whammy of a cricket World Cup defeat to England and losing the claim to have the World’s steepest street to Wales.

My commiserations 😉

Teaching in the bee shed

An observant beekeeper never stops learning. How the colony responds to changes in forage and weather, how swarm preparations are made, how the colony regulates the local environment of the hive etc.

Sometimes the learning is simple reinforcement of things you should know anyway.

Or knew, but forgot. Possibly more than once.

If you forget the dummy board they will build brace comb in the gap 🙁

There’s nothing wrong with learning by reinforcement though some beekeepers never seem to get the message that knocking back swarm cells is not an effective method of swarm control 😉

Learning from bees and beekeeping

More generally, bees (and their management) make a very good subject for education purposes. Depending upon the level taught they provide practical examples for:

  • Biology – (almost too numerous to mention) pollination, caste structure, the superorganism, disease and disease management, behaviour
  • Chemistry – pheromones, sugars, fermentation, forensic analysis
  • Geography and communication – the waggle dance, land use, agriculture
  • Economics – division of labour (so much more interesting than Adam Smith and pin making), international trade
  • Engineering and/or woodwork – bee space, hive construction, comb building, the catenary arch

There are of course numerous other examples, not forgetting actual vocational training in beekeeping.

This is offered by the Scottish Qualifications Authority in a level 5 National Progression Award in Beekeeping and I’ve received some enquiries recently about using a bee shed for teaching beekeeping.

Shed life

For our research we’ve built and used two large sheds to accommodate 5 to 7 colonies. The primary reason for housing colonies in a shed is to provide some protection to the bees and the beekeeper/scientist when harvesting brood for experiments.

On a balmy summer day there’s no need for this protection … the colonies are foraging strongly, well behaved and good tempered.

But in mid-March or mid-November, on a cool, breezy day with continuous light rain it’s pretty grim working with colonies outdoors. Similarly – like yesterday – intermittent thunderstorms and heavy rain are not good conditions to be hunched over a strong colony searching for a suitable patch containing 200 two day old larvae.

Despite the soaking you get the colonies are still very exposed and you risk chilling brood … to say nothing of the effect it has on their temper.

Or yours.

Bee shed inspections

Here’s a photo from late yesterday afternoon while I worked with three colonies in the bee shed. The Met Office had issued “yellow warnings” of thunderstorms and slow moving heavy rain showers that were predicted to drift in from the coast all afternoon.

All of which was surprisingly accurate.

Bee shed inspections in the rain

For a research facility this is a great setup. The adverse weather doesn’t seem to affect the colonies to anything like the same degree as those exposed to the elements. Here’s a queenless colony opened minutes before the photo above was taken …

Open colony in the bee shed

Inside the shed the bees were calmly going about their business. I could spend time on each frame and wasn’t bombarded with angry bees irritated that the rain was pouring in through their roof.

Even an inexperienced or nervous beekeeper would have felt unthreatened, despite the poor conditions outside.

So surely this would be an ideal environment to teach some of the practical skills of beekeeping?

Seeing and understanding

Practical beekeeping involves a lot of observation.

Is the queen present? Is there brood in all stages? Are there signs of disease?

All of these things need both good eyesight and good illumination. The former is generally an attribute of the young but can be corrected or augmented in the old.

But even 20:20 vision is of little use if there is not enough light to see by.

The current bee shed is 16′ x 8′. It is illuminated by the equivalent of seven 120W bulbs, one situated ‘over the shoulder’ of a beekeeper inspecting each of the seven hives.

On a bright day the contrast with the light coming in through the windows makes it difficult to see eggs. On a dull day the bulbs only provide sufficient light to see eggs in freshly drawn comb. In older or used frames – at least with my not-so-young eyesight – it usually involves a trip to the door of the shed (unless it is raining).

It may be possible to increase the artificial lighting using LED panels but whether this would be sufficient (or affordable) is unclear.

Access

Observation also requires access. The layout of my bee shed has the hives in a row along one wall. The frames are all arranged ‘warm way’ and the hives are easily worked from behind.

Hives in the bee shed

Inevitably this means that the best view is from directly behind the hive. If the shed was used as a training/teaching environment there’s no opportunity to stand beside the hive (as you would around a colony in a field), so necessitating the circulation of students within a rather limited space to get a better view.

A wider shed would improve things, but it’s still far from ideal and I think it would be impractical for groups of any size.

And remember, you’re periodically walking to and from the door with frames …

Kippered

If you refer back to the first photograph in this post you can see a smoker standing right outside the door of the shed.

If you use or need a smoker to inspect the colonies (and I appreciate this isn’t always necessary, or that there are alternative solutions) then it doesn’t take long to realise that the smoker must be kept outside the shed.

Even with the door open air circulation is limited and the shed quickly fills with smoke.

If you’ve mastered the art of lighting a properly fuelled efficient smoker the wisp of smoke curling gently up from the nozzle soon reduces visibility and nearly asphyxiates those in the shed.

Which brings us back to access again.

Inspections involve shuttling to and from the door with frames or the smoker, all of which is more difficult if the shed is full of students.

Or bees … which is why the queen excluder is standing outside the shed as well. I usually remove this, check it for the queen and then stand it outside out of the way.

Broiled

In mid-March or November the shed is a great place to work. The sheltered environment consistently keeps the temperature a little above ambient.

Colonies seem to develop sooner and rear brood later into the autumn 1.

But in direct sunlight the shed can rapidly become unbearably warm.

Phew!

All the hives have open mesh floors and I’ve not had any problems with colonies being unable to properly regulate their temperature.

The same cannot be said of the beekeeper.

Working for any period at temperatures in the low thirties (Centigrade) is unpleasant. Under these conditions the shed singularly fails to keep the beekeeper dry … though it’s sweat not rain that accumulates in my boots on days like this.

Bee shelters

For one or two users a bee shed makes a lot of sense if you:

  • live in an area with high rainfall (or that is very windy and exposed) and/or conditions where hives would benefit from protection in winter
  • need to inspect or work with colonies at fixed times and days
  • want the convenience of equipment storage, space for grafting and somewhere quiet to sit listening to the combined hum of the bees in the hives and Test Match Special 😉

But for teaching groups of students there may be better solutions.

In continental Europe 2 bee houses and bee shelters are far more common than they are in the UK.

I’ve previously posted a couple of articles on German bee houses – both basic and deluxe. The former include a range of simple shelters, open on one or more sides.

A bee shelter

Something more like this, with fewer hives allowing access on three sides and a roof – perhaps glazed or corrugated clear sheeting to maximise the light – to keep the rain off, might provide many of the benefits of a bee shed with few of the drawbacks.