Category Archives: Equipment

The bee bag

Synopsis: Preparing for the season ahead should include making sure you have everything you need in the bee bag for apiary visits, but that you are not carrying things you never use. A place for everything, and everything in its place … at least until swarming starts.

Introduction

I think there’s sometimes a misconception that those who write (or talk) about a topic are the most knowledgeable on that topic.

After all, why else would they feel qualified to write?

And, if they’re knowledgeable – even if not all knowing – then they also have the luxury of time (to write, or to enjoy the scenery or whatever). Rather than repeatedly struggling doing the wrong thing, they briefly and efficiently do the right thing™.

Their incisive and unwavering decision making, coupled with a calm and measured confidence, means difficult tasks are made easier and routine activities are rendered trivial.

And this efficiency of thought and activity is complemented by an impressive level of organisation and preparedness. After all, how else would they be able to achieve what they do, without being prepared for all eventualities … and have the tools immediately to hand that are needed?

I’m sure that’s true of some who write … and it might even be true of some who write and talk about beekeeping … but it’s not true of me 🙁

At least, not often.

I might write about how I did something, making it sound trivial and unexciting:

“… pick the queen up by her wings and place her in the JzBz cage, add a few nurse bees to keep her company and place the cage safely in your pocket.”

But I omitted to describe the times I couldn’t find a JzBz cage, or got stung repeatedly grabbing workers, or let the virgin queen fly around the shed for 5 minutes before she disappeared out of the door.

Or when the cage fell through the hole in my pocket (caused by a razor sharp hive tool), down my trouser leg and into my boot.

Those who can, do; those who can’t, teach

The luxury of writing means I can skip over those things that make me sound like the author of the bestselling Slapstick beekeeping, and instead present a coherent vision of what beekeeping should be like.

Think of it as a sort of sanitised version of beekeeping, with the swearing bowdlerised and the Charlie Chaplin-style antics omitted to make me look vaguely competent.

Not, I should add, that every visit to the apiary looks like Laurel and Hardy 1 in beesuits.

I do my best to learn from my mistakes, or at least not forget them, and – every winter – I incrementally improve my organisation for the season ahead.

I review my notes from the season just finished and I make general, and sometimes very specific, plans for the following year. If these necessitate buying or building new equipment then I try and do that during the seemingly interminable short winter days (if that isn’t oxymoronic).

This winter this has involved completing my queen rearing incubator and building some cell punches for queen rearing.

Cell punches

The organisation involves preparing this new ‘stuff’ as well as sorting out some of the accumulated debris from the season just finished.

End of season squalor – yes, that is a small bag of fondant buried in the bee bag

In particular, I sort through, tidy and hopefully streamline, the contents of the bee bag.

The beekeepers box

When you visit the apiary there are a few tools you will almost always need – for example, a smoker and a hive tool. You’ll need something combustible in the smoker and some way of igniting it. And you should have something to carry that lot in that is itself non-flammable, so you don’t risk self-immolation when driving back home.

I’ve discussed the fireproof box I use for my smoker previously. I now keep smoker fuel and a kitchen ‘creme brûlée’ blowtorch in a clear plastic box. Bitter experience – you can guess what – taught me that a clear box enables me to easily check the blowtorch is present before I drive 150 miles to the apiary.

Where there’s smoke, there’s fire

The easiest – and most hygienic – way to store your hive tool is in a strong solution of washing soda in the apiary. It’s always there and it’s always clean.

But there are times in the apiary when you’ll need a lot more than a smoker and a hive tool.

I’m not referring here to the large items – the spare brood boxes, the supers, the split boards or queen excluders 2.

Instead, I’m referring to the smaller stuff … like the JzBz cage to put the queen into, or the (wickedly sharp) scissors to clip her wing or the Posca pen to mark her.

Just add fingers and thumb for a complete queen marking and clipping kit

Beekeepers have come up with all sorts of fancy carrying boxes made from wood or metal. Jim Berndt described a typical one in Bee Culture a few years ago. Built from 3/4” pine, and with space for the smoker, frame brush, frame hanger and any number of other things.

It must have weighed a ton.

Jim admitted as much when he acknowledged that he’d build the next one from thinner wood.

I’ve seen boxes with integrated seats, or was it a seat with an integrated beekeepers box?

The bee bag

But anything rigid, by definition, lacks flexibility.

If there’s not space in the box for Thorne’s-must-have-gadget-of-2022 (something you only need every other month in the apiary) then you have to carry it separately. If there is space in the box but you only need Thorne’s-must-have-gadget-of-2022 twice a season then the box is heavier and bigger than it need be.

All of which can be avoided by using a cheap bag to carry the necessities down to the apiary.

And what could be cheaper than a supermarket ‘bag for life’ ? 3

A bag for life … or at least 3 years of beekeeping

These bags are light and easy to carry, with strong woven handles. Although they aren’t cavernous (they never have quite enough space for my shopping) they are certainly big enough to carry the essentials, and not-so-essentials, to and from the apiary.

Importantly, they are strong.

Being open and flexible you can, if needed, squeeze all sorts of additional things in.

Although I described them as cheap a better term would be inexpensive. I think they started at about 25p, but they seem to be £1 to £1.25 now.

Being made of polypropylene they are easily rinsed out or wiped clean should they get dirty.

And they will get dirty.

And since they are so cheap inexpensive, it’s not the end of the world if you melt them with the smoker or perforate them with a hive tool.

I’ve used this sort of bag for my beekeeping – not the same one, though they tend to last several seasons – for many years. The Tesco’s centenary was in 2019 and the bag above will certainly get me through to the end of the 2022 season.

Bringing order to entropy

Each winter I sort through the debris that accumulates at the bottom of the bag. I clean everything and get rid of anything that’s been carried around unused for the season. Finally, I replenish the perishables, the worn out or the irreparably damaged.

And then I’m ready for the season ahead 🙂

I don’t just carry around a bag containing a pick’n’mix of jumbled beekeeping paraphernalia 4. The items in the bag are separated into logically-labelled containers for my beekeeping activities.

And long, much repeated and enjoyable field testing has shown that the very best type of containers to use are those designed for ice cream 🙂

Not, I hasten to add, your ’fancy Dan’ Ben and Jerry’s ‘£5 for a couple of scoops’ ice cream in those pathetic cardboardy tubs 5.

Instead, what you need are plastic, square or rectangular (for efficient packing) and with well-fitting lids. Two litre containers are much better than anything much smaller, not just because they’re more fun to empty, but also because they are likely to themselves house smaller containers.

I’m still using some 2.5 litre containers that were sold full of Lidl Gelatelli Vanilla (see the photo above). The ice cream was pretty good but they appear to have stopped making it 6.

I’m sure, if you work hard, you’ll be able to find something equally good … it’s a thankless task, but someone has to do it 😉

What’s in the bag?

I can get everything small I need into two of these boxes – one marked ‘daily’ and the other labelled ‘queen stuff’.

I like to keep the labelling simple to avoid confusion.

Daily

These are the things I use, or might use, on every trip to the apiary:

  • a box containing drawing pins (difficult to use with gloves) and map tacks (easy to use with gloves), together with the red numbered disks I use to label the queen in the hive 7.

A variety of pins, some numbers for queens (see text) and two tubes for sampling weird-looking bees

  • numbers for the outside of the hive
  • marker pen for labelling anything except queens
  • a wired queen excluder cleaner 8 and an uncapping fork for checking drone brood for Varroa
  • spirit level for levelling a hive. This is important if you use foundationless frames. Once you’ve tried to rearrange the frames in an wonky hive full of drawn foundationless frames you’ll realise how useful a small spirit level is 9

Not needed on a daily basis admittedly, but kept in the ‘daily’ box – QE scraper, level and uncapping fork

  • a selection of closed cell foam blocks to hold frames together when transporting hives. These are simply wedged tightly between the top bar and the sidewall of the hive and thereby minimise the risk of crushing the queen (or other bees) when moving the hive.
  • screw cap sample tubes, just in case I see any weird, sick or odd looking bees during inspections
  • a couple of JzBz queen cages
  • digital voice recorder for taking hive notes

Closed cell foam blocks.

Queen stuff

Since a lot of my season is taken up with queen rearing this box contains both the tools for queen rearing and the used-less-than-daily tools needed for marking and clipping the queen:

  • queen marking cage (I like the push and twist ones best, as you can tell from the amount of propolis and paint covering mine)
  • dressmakers snips (Fiskar’s) for clipping the queen. These are very sharp. Don’t leave them in you bee suit pocket or you will get injured 🙁
  • Posca marking pens. Check these in the winter and make sure they haven’t dried up or gone super-gloopy. Either outcome makes for frustration when marking the queen. I only routinely use white, blue or yellow and buy whatever is cheapest or easiest to get, and use that colour for the season (or until the pen expires)
  • tools for grafting larvae and, new this season, the cell punches shown above

Grafting tools. Of these, only the middle (a 000 sable artists brush) one is needed.

  • USB rechargeable head torch (for use when grafting 10 )
  • magnifying glasses 11
  • more JzBz queen cages and some Nicot cages to protect soon-to-emerge cells

What’s in the bag but not in the box?

Inevitably, not everything fits into one of these two conveniently-sized ice cream containers 12.

The base of the bag contains some folded sheets of newspaper which are used when uniting colonies. Before the broadsheets became the same size as the Daily Mail they were preferable as a single sheet would cover a brood box. Now they’ve been shrunk you have to overlap two sheets.

Or read the Financial Times … and there’s very little point in me doing that 🙁

Unstapled newspaper … pictures of an enthusiastic Angela Merkel contrasting nicely with a John Cleese stereotype.

Avoid newspapers that are stapled.

Inevitably when pulling them apart (in a stiff breeze, with an open hive ready to be united) they tear at the staple, increasing your frustration and making you look more like Laurel or Hardy.

I also carry a couple of pieces of fibreglass insect mesh. This stuff is sold by the metre to cover open windows and so keep mosquitoes out, but is ideal for covering an open hive when moving colonies on a hot day. A Thorne’s travelling screen costs £19.40 and works no better than a piece of this mesh which costs £19 less 13. By some sort of miracle I’ve ended up with two colours of mesh, one for standard brood boxes and one for nucs 14.

Fibreglass mesh for use as travel screens (that’s £19 you owe me).

I wear gloves while beekeeping so the bag contains a box of disposable long cuffed latex-type gloves for routine use. There is also be a pair of Marigold washing up gloves for any colonies that are a bit rambunctious 15.

At least there should be a pair of Marigold’s in there … something else to order.

I try and keep a couple of hive straps in the bag.

Finally, you can never have enough gaffer tape … so there’s always a roll in the bee bag. It’s ideal for temporarily sealing hive entrances, strapping nucleus roofs down for transport or patching up holes in the bee bag.

Rejects for 2022

Having sorted through the bee bag I collected a small pile of stuff that wasn’t used last season.

And don’t let me see you in there again! Rejects from the bee bag.

In the case of the ‘crown of thorns’ queen marking torture chamber I don’t think I’ve used it for years. I’ve no idea why it was still in the bag. There’s probably more of my blood on the needle-sharp points than there is paint on the mesh … and there’s clearly no point in me carrying it around for another year.

The awful ‘Chinese’ grafting tool goes out as well, as do some JzBz queen cups, a dodgy pink sparkly Posca pen 16, an ill-fitting pair of magnifying glasses and a shonky magnifier.

And that ‘clip catcher’ … again, almost never used.

Elementary my dear Watson

As I slowly approach very (very) early middle age 17 my presbyopia is becoming more noticeable. I’ve needed magnifying glasses for grafting for several years and, increasingly, in poor light can struggle to see eggs. Unfortunately, about half my beekeeping is done in sub-optimal lighting … the colonies I keep in the bee shed are easy to inspect, whatever the weather, but the lighting is far from ideal.

LED hand magnifier (with some Nicot cups for using when testing if a colony is queenright).

Having chucked out one magnifying glass I’ve found an LED illuminated magnifying glass to try this season. This has a good quality glass lens and a dazzlingly bright set of warm/cool/both LED’s around the rim, powered by a rechargeable lithium battery.

Let there be light. USB rechargeable LED magnifier.

With a choice between wearing reading glasses for all my colony inspections – and inevitably tripping over a super I fail to notice at my feet – or periodically using a magnifying glass if the lighting is poor, I’ve chosen the latter route.

I’ll report back later in the season whether it was the right route to choose.

I’m ready, but the season isn’t

With the unwanted stuff discarded, and the wanted stuff checked and tidied, the bee bag is now ready for the season ahead. I’ve ordered some new Posca pens, charged the magnifying glass and the digital voice recorder …

I’ll probably still look like Fred Karno when I’m floundering around in the apiary, but at least I’ll have the things I need with me.

Unfortunately, it currently looks as though the season isn’t ready for me.

Where did all that lovely weather go?

The last 7-10 days have been stunning, but it’s currently 3°C and snowing 🙁

Which is probably fortunate as I still have a couple of hundred frames to build …


Note

I first wrote about the bee bag way back in November 2016. Time has passed, the contents of the bag have changed a bit (though the jokes are largely the same) so that page now redirects here.

Beeswax wraps

One of the great things about beekeeping as a hobby is that you are never short of gifts for friends and family 1. A jar or two of honey instead of a bottle of wine – or in addition to a bottle of wine – for dinner parties is always received with enthusiasm.

In your first year or two of beekeeping honey might not be available in excess. You get caught out by swarming or you lose the colony through poor mite management.

However, with a little more attention to swarm prevention / control and timely application of miticides your colony strength increases. Your colony numbers also probably increase. Together these, coupled with favourable weather and a geographically well-sited apiary, ensure a good honey crop.

You’ll never again be short of a last minute gift 🙂

But bees don’t only produce honey

With increasing hive numbers you will also start producing surplus wax. Bits of brace comb, wax cappings or wax melted out in a steam wax extractor … it all starts to add up.

Oops … brace comb

Before you know it you’ve got a few kilograms of wax and you need to find something creative to do with it.

Wax block

Or uncreative … the simplest solution is to trade it in for fresh foundation 2. The block shown above has been filtered through a sheet of kitchen paper and is reasonably clean. In my experience, the wax doesn’t need to be anything like this clean to still be acceptable for exchange.

Of course, the obvious thing to do with excess wax is to make candles.

You need good quantities of nice quality wax, a bain-marie, moulds, wicks and significantly more skill than I’ve got 3. It’s also useful to have a very understanding and patient spouse … there will be spillages 🙁

Alternatively, with relatively little wax you can easily make beeswax wraps to seal food – or food containers – in the fridge or for lunches.

Beeswax wraps

‘The eco-friendly, plastic free, alternative to clingfilm’.

That’s how Thorne’s advertises the beeswax wraps they sell. At two for about £13 (24 cm square) or three for £6 (12 cm square) they are not inexpensive … and when you see how easy they are to make yourself you’ll a) be gobsmacked/impressed 4 at the profit margin and, b) want to make some yourself for use or gifting.

We’ve been using commercial (a gift, in a coals to Newcastle way, from a non-beekeeper) or homemade wraps for at least a year now. The ones I have made are at least as good as the commercial ones, though they don’t come in the nice brown recycled packaging 5.

If you get your skates on you probably have sufficient time to prepare these before Christmas for last minute, in person, gifts.

If I’d written this a month or two ago you’d have also had time to post them – and they’re ideal for this for obvious reasons – but the last posting date 6 for Christmas was probably in October 🙁

Ingredients

The wraps are beeswax-impregnated cotton fabric of some sort. I’ve used plain or patterned cotton of a variety of colours. Depending upon the quality of the wax the material will discolour slightly, so it usually helps to have an off-white colour to start with.

I’ve no idea of the density or weight of the fabric. For comparison, I’d say it was similar to sheets or pillowcases.

Fabric and pinking shears

The beeswax is prepared with jojoba oil (to provide some antibacterial properties), almond oil (to increase pliability) and powdered pine rosin (to provide the ‘tack’ or stickiness).

You’ll need the following:

  • Cotton fabric cut into suitably-sized pieces. Use pinking shears to generate a run-free edge.
  • 100 g clean, filtered beeswax.
  • 10 g jojoba oil (100 ml @ £6.49) 7.
  • 10 g almond oil (500 ml @ £6.99).
  • 70 g powdered pine rosin (500 g for £8.99).

Ingredients for beeswax wraps

The pine rosin (the left-overs from turpentine distillation from pine resin) is usually sold in yellow to amber-coloured translucent lumps. Before use it needs to be ground into a powder. I use a pestle and mortar but I suspect you could do a much faster job with a coffee grinder 8.

In addition to the ingredients above you will also need a limited amount of additional ‘equipment’:

  • some means of melting the ingredients and holding them at temperature. A slow cooker is ideal for this purpose though you could also do this in a homemade bain-marie (e.g. a pyrex bowl in a saucepan of water over a low and controllable heat). Wax is flammable. Take care.

Slow cooker …

  • a metal oven tray and an oven to put it in.
  • baking parchment.
  • a dedicated poor quality paintbrush. ‘Dedicated’ as it will be useless for anything else afterwards. ‘Poor quality’ as we’re not discussing fine art here … it’s just for spreading the melted stuff evenly over the fabric.
  • disposable wooden stirring sticks (lolly sticks, or similar).

Instructions

beeswax wraps

Evenly spread the beeswax mix

  1. Add the powdered pine rosin to the slow cooker and allow it to melt with occasional stirring. I set my slow cooker on medium heat for this.
  2. Add the remaining ingredients to the melted rosin. I weigh the oils and add the solid wax and allow everything to melt together with more gentle stirring.
  3. Pre-warm the oven to ~125°C.
  4. When the mix is ready place the metal oven tray covered with a sheet of baking parchment and the first piece of pre-cut fabric in the oven for a couple of minutes.
  5. Place the pre-warmed metal tray and fabric on a heatproof and newspaper-covered surface 9 and ‘paint’ the fabric with the beeswax mix. To reduce drips from the paintbrush I use an old coffee scoop to add the beeswax mix to the fabric and then spread it evenly with the paintbrush.
  6. Put the tray and coated fabric back in the oven for two minutes.
  7. Remove again and use the paintbrush to ensure the beeswax mix is spread evenly, with no lumpy bits or excess. This usually involves using the paintbrush to sort of spread the excess off to the sides 10.
  8. Lift the now covered fabric wrap by two corners and hold over the metal tray (not the floor!) for 15 seconds or so to catch any drips. Remember, it’s likely to still be hot. Use tongs of some sort if you have heat-sensitive fingers.
  9. Lay the finished wrap aside once it is sufficiently cool. This takes just a few seconds. You’ll often see instructions to hang these on a drying rack but I’ve never bothered.
  10. Add another piece of fabric and go back to #4 in these instructions. Repeat until you’ve run out of beeswax mix, fabric or patience.
beeswax wraps

Here are some I prepared earlier

Once cooled they can be folded gently and stored.

Notes

The quantities by weight in the ingredients list above are sufficient to make (at least) a couple of dozen wraps 11. If that’s more than you need, or if you want to prepare the beeswax mix in bulk in advance, simply pour it into a suitable container (e.g. a plastic ice cream tub) that has been pre-treated with something like FloPlast Silicone Spray to allow its easy removal for re-melting.

You can make large wraps suitable for a loaf of bread in the same way. Just fold the fabric over so that it fits onto the metal tray. Turn it over to ensure that the fabric is full impregnated with the beeswax mix.

beeswax wraps

Large wraps

I found the recipe above somewhere online. I tried a couple and this worked best for me 12.

The wraps I make are a little thicker and quite a bit ‘tackier’ than the commercial ones I’ve seen.

I’m using tacky here as an adjective meaning ‘sticky’ … not as the informal ‘poor taste or quality’ !

This tackiness is an advantage as it is a little more self-adhesive when you’re wrapping things, and it probably makes the wrap last a little longer as well. You could probably reduce the rosin content to make a ‘drier’ beeswax wrap, but I can’t guarantee it will stay wrapped.

The same sorts of guidance applies to the use of these wraps as any commercial ones. Do not use them to wrap raw meat or fish. If they get dirty wash them in lukewarm water with a very small amount of detergent. If they lose their ‘stick’ revitalise them by placing them in the over for 5 minutes at 125°C.

Have fun 🙂


Note

Elaine Robinson, a regular reader and commenter, sent me a description of an alternative way of preparing and applying the beeswax mix. Having mixed the ingredients she pours it onto a wetted piece of plywood where it sets in a thin sheet.

Preparing this sheets of beeswax wrap mix

Having floated this off in water she freezes it – or them as it makes sense to prepare a lot in advance – in a tub and then, by simply shaking the tub, turns it into broken shards.

Here are some that were prepared earlier – sheets of beeswax wrap mix

Using about 16 g of shards per 30 cm square wrap Elaine stacks the fabric and shards on a baking tray and places them in an oven at ~80°C.

Ready to use shards – use them straight from the freezer to avoid stickiness

After melting everything all that is then needed is a brush to ensure the edges of each of the beeswax wraps are fully covered … followed by folding the wraps and popping them into some very neat custom-made brown paper sleeves that she also prints at home.

All done!

Which look very impressive and made my efforts look rather inadequate 😉

 

Portable queen cell incubator

One of the earliest posts on this site, back in January 2014, described my honey warming cabinet.

Both that post and the cabinet are still going strong.

The cabinet has been used to process a lot of honey … and the post has been read tens of thousands of times and still remains in the top 10% of most read pages (of ~450 now) in 2021.

I attribute the popularity of the post to two things:

  • it was an erudite article written in an elegant and entertaining style 1
  • the design reflected the sort of inspirational genius rarely seen outside a Dyson factory 2
  • almost all beekeepers find that a honey warming cabinet is very useful
  • similar 3 commercial honey warming cabinets are a daft price

Today’s post is on a niche DIY project … a portable queen cell incubator. However, like the honey warming cabinet, it is something that can be built for significantly less than a similar commercial model.

Portable queen cell incubator version 2

Unlike the honey warming cabinet, this is something that will be of interest to only a subset of beekeepers.

Or perhaps fewer.

The fraction of a fraction of a small proportion

Firstly, only a small proportion of beekeepers actively 4 rear queens. Quite how big or small that proportion is I don’t know … perhaps 10%.

Secondly, only a fraction of that 10% of beekeepers will want to use an incubator for queen emergence or short-term storage 5.

And finally, only a fraction of that fraction might need the queen cell incubator to be portable.

But I’m one of them, and I know there are a few others who are regular readers … 6.

It also seemed appropriate to balance the article on frames – of general relevance, if not interest – last week with something of very specialist interest … reflecting the wonderful diversity of our hobby.

Design criteria

I discussed some general features of a portable queen cell incubator when I described my first attempt at building one back in July.

Broadly the design criteria were as follows: 

  • automatic temperature controlled environment maintained at between 33.3 °C (92 °F) and 35.5 °C (96 °F) 7
  • ideally with the temperature controlled to between 34.4 °C to 35 °C (94-95 °F)
  • high humidity
  • able to accommodate at least 10 queen cells in Nicot cages
  • portable and powered by a 5V or 12V supply so it could be used in a car (or from a battery)

Version 1 was a case of ‘close, but no cigar’.

It worked up to a point. Queens emerged in it and I successfully transported virgin queens across Scotland (including hotel stops), maintaining them for up to a week before introducing them (also successfully) into hives. 

Version 1 … a bit primitive if I’m honest … but it did work (more or less)

But it was a bit of a botch-up.

It consisted of a polystyrene box with a 5 V vivarium heat mat. Temperature control was not automatic, but was more sort of ‘hit and hope’.

If at first you don’t succeed … 

However, I’ve spent some time since then making version 2 which – remarkably – meets all of the design criteria listed above 🙂

I don’t intend to provide a step-by-step guide to building this portable queen cell incubator. You might want a bigger one, or one for mains power only, or to house bare cells rather than queens in Nicot cages, or one coloured red or whatever. 

But what I will show are the general ways I met my design criteria, with a list of parts and lots of pictures showing how it was put together. I’ll highlight the critical features that actually made it work as intended. I’ll also discuss testing and performance, which are as important as the design and construction.

Overview

The portable queen cell incubator consists of an insulated picnic box with a 12 V 15 W heating element. Supported above the element is a block of foam insulation to hold the Nicot cages. Temperature control is automatic and a very stable temperature is achieved by circulating the air in the incubator with a small fan. Ten Nicot cages can be accommodated at a suitable temperature for hours/days at a time in ~90% humidity.

It’s winter … so this hasn’t been tested with queens or queen cells.

Caveat emptor.

A list of parts is followed by cross-sectional diagram and lots of photos, with comments, of some of the components. Towards the end of the post I describe the testing process and the results.

OK, for the six readers who have not already moved on … buckle up. Here goes.

Materials

This is what I used. I didn’t shop around much for bargain prices, so you might be able to do better. Note that I struggled to find anywhere other than RS Components that sold suitable heating mats.

  • Insulated picnic box – e.g. an Andes 5 litre coolbox at £14.99
  • Piece of wooden laminate flooring (from my spares bin)
  • Silicone 15 W heating mat – e.g. one from RS Components at ~£30
  • A5 6mm aluminium sheet – purchased from eBay for £4.50
  • Offcuts of a cheapo plastic queen excluder (from my spares bin)
  • 20 mm M4 roofing nuts and bolts (from my spares bin)
  • Closed cell foam – the stuff they pack computers in when shipping (from my spares bin)
  • 40 mm 12 V computer fan – e.g. a Noiseblocker BlackSilent Fan XM-1-40mm at ~£4.50 8
  • STC-1000 12 V temperature controller – e.g. an Aideepen at £14. Make sure you choose a 12 V model.
  • Plastic food container for the electrics – stolen from the kitchen (from my spares bin)
  • Velcro tape, Sugru, zip ties, cable gland, thin bits of foam, some wire and a few electrical connectors (from my – yes, you guessed it – spares bin)
  • 12 V mains power supply with 5.5 x 2.1 mm male connector (from a woefully poor BT broadband modem via my spares bin)
  • 5.5 x 2.1 mm female power jack sockets (about £9 for half a dozen)
  • 12 V car cigar lighter adaptor with 5.5 x 2.1 mm male connector (about £8) 9

Testing, testing

For development and testing I used a Raspberry Pi Zero with DS18b20 external temperature sensor(s) and DHT22 temperature/humidity sensor to monitor the environment in the incubator. For the technically-minded these recorded internal and external temperatures and/or humidity at 1 minute intervals, displaying the results via ThingSpeak. Perl or python scripts were run via cron jobs and data was saved to CSV-format files for subsequent analysis.

Computer geekery used for testing purposes – Raspberry Pi Zero, two DS18b20 and one DHT22 sensors

You don’t need this type of computer geekery, but you do need to be able to accurately determine the temperature (at least) inside the incubator and to calibrate the STC-1000 thermostatic controller.

Ideally you want a thermometer small enough that you can place it in different locations to determine how even the heating is within the incubator.

Cross-sectional diagram of the queen cell incubator

Early attempts just placing the foam (holding the Nicot cages) directly above the heating element were an abject failure. Temperature control was all over the place.

It turns out that you need a 1 cm gap between the foam and the element and you need a fan to circulate the air. That was the breakthrough … after which it was pretty much plain sailing.

Queen cell incubator schematic

A very humid environment is not ideal for electrical things like fans or thermostats. I therefore opted to house everything except the fan in a plastic food container velcro’d to the outside of the insulated picnic box.

Mission control

Not pretty … but functional.

If I was doing this again I’d do exactly the same thing … it works perfectly well.

Calibrate the STC-1000

The STC-1000 is a widely used and inexpensive thermostatic controller. It has a power input, a temperature sensor (probe) and separate controllable heating and cooling circuits. Both 12 V and 240 V models are available. 

You set the control temperature on the STC-1000 and a delta (offset) temperature of, say, 0.3 °C. Every time temperature drops below the set temperature minus delta the heating circuit switches on. When the sensor reports the temperature exceeds the set temperature plus delta the cooling circuit switches on. In the narrow range of set temperature ± delta the STC-1000 just keeps track of the temperature. 

This project did not use the cooling circuit.

The STC-1000 temperature sensor is on a long piece of wire. It is almost certain that the displayed temperature is not the actual temperature.

Calibrating the STC-1000

I worked out the temperature difference by placing the sensor in a Thermos flask (no lid) of hot water (~50 °C), together with thermometer(s) I trusted. I then recorded the temperatures at 10 minute intervals as the water slowly cooled and plotted the results.

STC-1000 calibration

My STC-1000 consistently over-read by ~1 °C across the tested range (28 – 49 °C). The STC-1000 has a function (F4 in the menu) to calibrate the unit so that the display – and therefore the thermostat settings – reflect the accurate temperature.

It’s worth doing this before embarking on the build, though you will need to adjust it again later (see below).

The F2 function on the STC-1000 sets the temperature delta (offset) away from the set temperature. Set this to the minimum, which is 0.3 °C. You want the temperature to fluctuate over a limited range.

The heating element

This is the single most important and expensive component.

I used a 12 V 15 W 100 x 150 mm silicone heating mat from RS Components. 

WARNING – these heat pads MUST be thermostatically controlled. Without thermostatic control these pads can reach ~200°C. Not only will this cook your queens, it will probably also melt your car, burn your house down and run off with your spouse. You have been warned!

Of course, I immediately wired it up (without a thermostat) to a 12V source and determined that it didn’t reach anything like 200°C particularly fast … though I dare say it would reach it eventually.

It did get too hot to touch, but you have to try these things, don’t you? 10

Silicone heating pad, wooden insulation and aluminium plate

To avoid damaging the inner floor of the box 11 I placed it on top of a ~1.5cm thick offcut of wood laminate flooring. I stopped this moving about with some fillets of closed cell foam.

To help dissipate the heat more evenly I stuck the heating mat to the underside of a 6mm thick piece of aluminium. The heating mat I purchased had an adhesive pad on one side of it.

Make sure the heating mat is central and stuck down with no air bubbles. Protect the wiring from the sharp edges of the aluminium pad with some gaffer tape.

With hindsight, a larger heating mat may work better. RS Components do a 30W version which is A5-sized (approximately) and would fit in the insulated picnic box I used. It should heat the box faster and may provide a more evenly heated surface 12.

The box

I chose a small (5 litre) square-sided picnic box designed to take 6 x cans of beer (or Coke … or iced-tea or whatever). The sides and base are foam-filled. The lid appears to be just hollow plastic. 

The box has a carry handle 13. There is no lock or catch to keep the lid shut, but it is quite tight and should be secure enough.

The intention at the start was to mount the STC-1000 through the side-wall of the insulated box, hence the choice of a square-sided model. I quickly abandoned this idea when I realised the humidity level inside the box and just how limited in volume it was.

There are similar, and slightly bigger insulated sandwich/picnic boxes that might well be better insulated and/or a better choice 14.

The internal bits 15

I drilled a hole through the rear wall of the box to take the wiring for the STC-1000 temperature sensor, heating mat and fan. In addition, I drilled a hole for a thermometer for use when testing the unit (subsequently filled in with a bit of foam and taped over, but it’s there if I need it again).

The foam block to hold the Nicot cages needs to be supported ~1 cm above the aluminium sheet. I used an offcut of plastic queen excluder held in place with 6 ‘legs’ created from M4 roofing bolts. These are a reasonably good fit through the holes in the queen excluder, but require a nut and washer each side to hold them firm and square to the plastic.

Legs for the foam support

This support was placed ‘screwhead down’ on top of the aluminium sheet.

Queen excluder support for foam block

The foam block goes on top of the queen excluder. I had to cut small recesses in the underside of the block to accommodate the protruding ends of the M4 roofing bolts. This is important as it keeps the queen excluder and foam properly aligned and flush fitting.

The foam block must be carefully shaped … this needs:

  • the ability to visualise the finished item in 3D
  • a sharp breadknife
  • a steady hand … or Elastoplast

The idea is to maximise the area to accommodate the Nicot cages, but to allow good airflow around the four edges of the block. I achieved this by leaving protruding corners that fitted very snugly into the box, but cut ~1 cm ‘recesses’ in the block on all four sides.

Foam block corner detail

The foam block I started with was ~5 cm thick, but I thinned it to ~3.5 cm to provide space for the Nicot cages.

My greatest smallest fan

The fan is located centrally, supported at the corners on the queen excluder and attached to the underside of the foam block. I cut a 40 mm diameter central hole through the block using a holesaw and then, using a scalpel, cut a recess for the fan. The fan was just taped in place. The airflow is intended to push warmed air from the aluminium plate UP through the central hole, so make sure you get the fan in the correct orientation.

I discovered that it helps to cut away the queen excluder underneath the fan to maximise the airflow. These little fans are pretty puny … don’t obstruct them if you can avoid it. 

The fan I purchased had a speed controller/reader wire which wasn’t needed, so I just cut it off.

The fan fits centrally in a recess cut into the underside of the foam block

I cut eleven suitably-sized (~2 cm diameter) plugs out of the block using a holesaw for the Nicot cages. Rather than cut right through the foam I cut through partially (~2 cm deep) and then used a very thin and sharp scalpel through the side of the block to cut across the bottom of the plug, so releasing it.

The intention was to grip the Nicot cage, but to have the queen cells protruding into the airspace over the foam … where hopefully the temperature would be even and constant.

Almost finished …

Wiring it all up

I’m not going to embarrass myself or risk your electrocution by showing the gory details of the rats nest of wiring I ended up with.

What a mess … 12V makes this a whole lot easier and safer

Suffice to say that working with 12V probably saved my life more than once 😉

It’s worth remembering that the heating (and cooling) circuits on an STC-1000 are not powered but the temperature sensor is, so you need to take a spur off your power input to provide juice to the heating mat.

I based my wiring on the following diagram, ignoring both the yellow/green earth wires as I was using 12 V and the cooling terminals.

STC-1000 wiring diagram. For 12 V omit the yellow/green earth wires.

Actually, it was a little more complicated than that as I also wired the fan directly into the power so that it was always running. Preliminary tests showed that this gave reduced temperature fluctuations than when wired in parallel with the heating mat.

More ‘shockingly bad’ wiring

The temperature sensor and wires to the heating mat and fan are routed via a cable gland from the plastic box on the outside, through the hole in the sidewall of the picnic box. I sheathed the wires in some flexible cable sleeving I had from another project.

Cable gland and sleeve

The power supply feeds into the plastic ‘control box’ via a near-ubiquitous 5.5 x 2.1 mm socket (shown above). 

The temperature sensor needs to be fixed in a central location on the inside of the lid of the picnic box.

Temperature sensor

To ensure repeatable temperature control this sensor must be in a fixed location. Do not just leave it flapping around in the box 16. Make sure you have sufficient wire free to the sensor to allow the lid to open easily, without fouling anything in the box.

Ready for testing

With everything assembled the inside of the box should look something like this:

Almost ready to go

I still have a little more tidying to do with the wiring to the heating pad and the temperature sensor. They will both be held in place with zip ties and I’m intending to construct a smaller seal on the inner wall using Sugru mouldable silicone glue (which is extraordinary stuff).

The recesses to hold the Nicot queen cages are numbered.

Having put everything together I then tested it 17

Temperature testing

The temperature within the Nicot queen cages is not identical in every position in the box.

It varies, in a very reproducible manner, from position to position 18. The variation between positions is mostly with 1°C, so the aim was to adjust the thermostat so as many of the Nicot cages as possible were within the optimum part of the temperature range.

In the following graph the temperature was measured for 1-2 hours with the Nicot cage containing my testing thermometer in each location, with positions #5 (light bars) or #9 (dark bars) occupied by the water source to maintain humidity. Error bars indicate the standard deviation in each position.

Temperature testing

Red lines indicate the lowest (dashed) and highest (solid) temperatures acceptable for incubating queen cells. Blue lines indicate the low and high limits on the optimum range.

Positions #5 and #11 were consistently warmer. The heating mat must have a ‘hotspot’ in this central region. Position #9 was consistently cooler (and was the most variable position).

Using position #9 for the water source, 8 of the remaining 10 positions maintain the temperature within the optimum range of 34.4 °C to 35 °C. The two outside this range (positions #3 and #10) are only ~0.4 °C cooler.

Nice 🙂

Calibration of the STC-1000 … what, again?

But you will not achieve figures like those above without again calibrating the temperature offset in the STC-1000.

With the temperature sensor suspended from the lid of the box there is a temperature differential between the sensor and the location of the queen cell within the Nicot cage.

You therefore need to work out this difference and then recalibrate – via the F4 function – the offset on the STC-1000. 

Accurately measure the temperature where the queen cells will sit and then compare this temperature with that shown – once a steady temperature is reached – by the STC-1000. For example, if the STC-1000 is set at 34.5 °C, but your thermometer reads the Nicot cage temperature as only 33.5 °C, you need to adjust F4 by -1.0 °C.

This takes a little time, but the goal is to end up with the set temperature on the STC-1000 being the temperature at which you want to incubate your queen cells.

Frankly, I was delighted 19 I could get such accurate and reproducible temperatures 🙂

The ambient temperature in my workshop was 15-17 °C throughout these tests, but I also confirmed that the temperature did not fluctuate when the box was moved outdoors (8 °C).

Humidity

Queens need a humid environment. I used a folded up piece of kitchen towel fitted tightly into a Nicot cage and then soaked in water. This sits in position #9. Using this I could maintain humidity at a fraction over 90% as long as the lid of the box was closed.

Humidity measurements

From a ‘cold start’ humidity increases to ~91% after one hour and remains high. The humidity drops to ~70% when the box was briefly opened (after 2 hours 40 minutes, above) but quickly returned to over 90%.

That’s good enough for me and should be good enough for my queens 🙂

Heating and cooling

The graph above shows that the box takes about one hour to reach working temperature. In repeated tests this was very reproducible from an ambient (workshop) temperature of ~17 °C.

Heating and cooling

If the lid was kept closed the temperature drops from ~34 °C to ~25 °C in one hour when the power is turned off. The temperature drops much faster if the lid was left open 20.

All of the temperature measurements shown in the bar chart above involved repeated opening and closing the lid to move the test thermometer about. This is not dissimilar to the manipulations when introducing, checking or feeding queens. Under these conditions the temperature fluctuated by only 1-2 °C and returned to the set temperature within a few minutes.

Again, that’s more than good enough for me and my queens 🙂

What’s in a name?

There is a commercial portable queen cell incubator, the Carricell, made in New Zealand.

Carricell queen cell incubator

This is primarily designed to carry cells … hence the name. I don’t think it’s a queen cell incubator, despite what it says on the side of the unit. It keeps cells warm, but you couldn’t incubate sealed cells until they emerged … but what do I know, as I’ve never seen or used one?

I’ve also never seen any data on the temperature stability of the Carricell. However I do know they cost an eye-watering €636 from Swienty (for the mid-sized 70 cell model).

The Carricell is for professional bee farmers who want to transport lots of cells at a time. 

My incubator is for a small number of cells only (but could be scaled up now the basic design problems are solved).

I need a name for the box I’ve described as ‘portable queen cell incubator’ is much too sensible and unwieldy. 

I currently favour the name PortaQueen 21 … can you think of anything better?

In use

Unless you’re in the fraction of a fraction of a small proportion of beekeepers who actually need one of these you might have read 22 the last 3700 words and be wondering “That’s all very well, but what the hell is it used for?”

Here are the three things I expect to use this for next season:

  1. Incubating queen cells started and capped in my cell rearing colonies. This frees up the cell rearing colony to rear a second batch of queens. A capped cell just needs to be kept warm. The queen emerges and is then introduced to a colony for subsequent mating. Alternatively, the queen cell can be used just prior to emergence to prime a newly made up nucleus colony.
  2. Keeping virgin or mated queens warm and safe during transport between apiaries 23. You can feed virgin queens with honey and water and keep them alive for several days prior to introducing them into a colony. It is always good to have a spare queen or two ‘on hand’ in case of emergencies, opportunities or stupidity.
  3. Transporting eggs or very young larvae for grafting in a distant apiary. I don’t have space to write about this more here, but may cover it in the future.

Here’s one I produced earlier

If you attempt to build one of these I’d be interested to hear how you got on.


Note

Almost forgot … this box needs a 12 V supply, but the heating pad and fan are about 16 W total (and the former is only on ~50% of the time). I calculate it could be powered by a 7 Ah sealed lead acid battery for a few hours if needed. Coincidentally (not) I’ve previously built solar powered battery boxes that house 7Ah SLA batteries to drive my trail cameras which could also be used with the PortaQueen.

Frames

How have I managed to write over 450 posts without having one specifically dedicated to the bane of every beekeeper’s life … frame building?

Actually, that’s not quite correct.

It’s sometimes the bane of my life 1.

Building frames in the height of the season can be a rather stressful process.

I belatedly realise I need 20 frames for swarm control, or making up new nucs, or simply to replace some grotty old ones.

I’m short of time.

I can’t find the hammer … or the nails … or the foundation 🙁

Perhaps it’s only me that’s so disorganised?

But frame building isn’t always like that, and it doesn’t have to be like that.

When there’s no rush, when you have the right tools for the job and the time to do it properly, it can be quite a pleasant way to spend half an afternoon.

And the winter is the time to build frames, so this seemed a logical time to write this post.

Single use or reuasble?

Frames are a semi-disposable 2 consumable for beekeeping.

At least brood frames are. You’ll need new ones during swarm control and when making increase. These brood frames should then be replaced every 3-4 years, depending upon how dark and manky 3 they are getting.

‘Semi-disposable’ because brood frames can be recycled a few times through the steam wax extractor, but eventually the joints get a bit rickety and they should be consigned to the stove.

Super frames are a bit different because they can be reused year after year. I still have some (frames with drawn comb) in use from my first summer of beekeeping.

However, whether I’m making brood or super frames, I build them in essentially the same way. I also build my foundationless frames in a broadly similar manner.

If you build them properly they will remain square and relatively rigid even after a couple of passes through the steam wax extractor. This makes financial sense as frame costs can quickly escalate if you are not careful.

If you build them the way I describe below, you can put them through the steam wax extractor, push off the ‘nailed only’ bottom bar, scrape back any remaining propolis and wax, add a fresh sheet of foundation and refit the bottom bar.

Tools of the trade

You need somewhere with a reasonable amount of space to work and just a few very unspecialised tools. I like building frames in the garden if it’s warm and dry. The banging 4 is less intrusive for those indoors.

Of course, if you’re (sensibly) building them in midwinter – when you have time and little else to do – then you need to plan things accordingly i.e. not late in the evening, or when the crochet/poker club are meeting downstairs.

Tools of the trade

A sharp knife, a pair of pliers and a small lightweight hammer are the essentials. I use a 110 g (4 oz) cross pein hammer, though anything similar is suitable. Even if you end up using a nail gun for most of the work (see below) you will still need a hammer.

You will be surprised (I was) how much easier it is to build frames with a small hammer like this.

You don’t need force …  you need accuracy.

Every frame requires 11 nails, so a brood box or super-full of frames will mean you’re going to be using it a minimum of 121 times.

So buy and use a lightweight hammer 🙂

And then, after a thousand frames, buy a nail gun and ask yourself “Why didn’t I do this years ago?”.

Tacwise nail gun

Tacwise nail gun …

The Tacwise model I use has worked well, but I know some prefer a compressed air (rather than ‘lecky) powered gun.

I wasn’t joking when I said make a thousand frames first. Frame building is a sort of rite of passage for a beekeeper. You won’t make better frames with a nail gun, but you will make them faster (and more noisily).

I also suggest you use some wood glue 5 such as the blue indoor/outdoor Evo Stick or the equivalent stuff from Gorilla.

Of the two, I prefer the Gorilla glue as the nozzle is more clog-free 6.

OK … any readers who have made a few hundred frames up already can skip ahead to some of the concluding comments. You will know all of the following … or you should.

Building frames

Get organised first.

Make sure everything is to hand and logically arranged.

Put a hundred or so gimp pins (frame nails) into a container that has low sides and a wide open top, ideally quite heavy. You want them to be easy to pick up, but not easy to vibrate off the worksurface with all the hammering.

Gimp pins

And, if they do fall off, you only want to pick up a few dozen, not a 500 g box full.

I strongly recommend a Charlie Bigham’s pie container 7 for this purpose 🙂

How many frames should you make at a time?

I do them in batches of 10 as that number fits on the top of my Black and Decker Workmate. It’s also the number of sheets of foundation in a packet. And it’s a convenient number to put in a brood box so you don’t trip over them when building the next 10.

I usually make 5-10 batches and then give up from boredom 8.

Seconds out

You can save a chunk of cash by purchasing second quality frames in the sales. Most of the major suppliers sell them in batches of 50.

You can expect that a small proportion of the frame bars will have defects – knots, shakes, splits or warps.

If any of these are significant, and particularly if there are defects near the frame lugs or warps or twists in the top bar, discard them. It will only be 1-2% of the frame bars and it will save you the hassle of a broken lug or an ill-fitting frame later in the season.

I learnt this the hard way, so you don’t have to 😉

Prepare the top bars

  • Use the knife to remove the foundation retaining wedge from the top bars. Don’t just pull the wedge off as they sometimes break.
  • Put the foundation wedges somewhere nearby but out of the way 9.
  • Tidy up the remaining sliver of wood that is attached to the top bar with another careful swipe of the knife.
  • Lie the top bars – all in the same orientation – upside down on a flat surface.

Top bars – lined up and ready to go

  • Add a small dab of wood glue to the recess cut into the top bar where the side bars attach. Do both sides at once.

Add the side bars

  • Working down one side, then the other, of the aligned top bars, push fit the side bars in place.
  • Make sure you orientate the side bars with foundation groove on the inside 10.
  • They will be a tight fit and don’t worry if they’re not all perfectly aligned or fully pushed down. They need to be a tight fit to ensure that the frames will be square once assembled.
  • Once all the side bars are in place, take each frame and turn it over, standing on a hard surface and use the hammer to tap down on the top bar to ‘seat’ the side bars properly. Don’t hit the lug, just aim for the narrowest part of the top bar.

Properly ‘seated’ side bar

  • Some frames won’t need this, others will need a couple of smart taps to ‘seat’ them properly.
  • Return the frames to the inverted position.

Add the bottom bars

  • Add a dab of glue to the recess in the side bars that will take the bottom bar above the ‘non wedge’ side of the top bar.

Glue for one of the bottom bars only – note the orientation of the top bar

  • Add one bottom bar to every frame in the glued recesses. If the bottom bar is a very tight fit then the frames are good quality. If it’s so tight that the side bar splits then they are not such good quality.
  • A sharp tap with the hammer at the ends of the bottom bar before offering it to the glued recess will make it slightly thinner and so it may be easier to fit.
  • It is important that the ends of the bottom bars are flush with the side bars. If they are not the frame will taper and you will struggle fitting the foundation.

Check frame alignment

  • Check the alignment of the frames. They should all be square, with equal gaps between the bottom bars as shown in the photo above.
  • If any are wonky give them a twist to straighten them up.

Nail the frames

  • I nail each frame in turn, rather than doing all bottom bar nails first, then all side bars. It involves less frame handling and so is faster.
  • Use two gimp pins, one each side, to attach the bottom bar to the side bar. Drive the pin in vertically through the bottom bar into the end grain of the side bar.

Bottom bar nailing

  • Use four pins, two each side, to attach the two side bars to the top bar. One pin goes through the flat edge of the side bar.

One of four pins attaching the side bars and the top bar

  • The other – assuming you are using Hoffman self-spacing frames – is driven through the angled wedge-shaped spacer. Alternatively, some drive it in to the apex of the wedge. Either way works.

And the other face of the frame

  • All of the nails should be driven in flush with the wood. You do not want the heads protruding to catch on the hive tool when (if) you scrape the frames of propolis.
  • Some gimp pins are poor quality and have ‘spade ends’. These tend to drive in at weird angles and are best avoided.

Some good and bad gimp pins – the four on the left might be tricky to drive in straight

  • If the gimp pin does go in at an angle then don’t worry … unless it protrudes through the side bar or into the foundation groove.

Wonky pin … rip it out and start again

  • In these cases replace the pin or you will inevitably catch it with the hive tool, or rip your vinyl glove on it.

Fitting the foundation

I only fit foundation shortly before I need to use the frames. Foundation is relatively fragile. It goes brittle in the cold and develops a white(ish) bloom on the surface which makes it less attractive to the bees.

If you are building frames in the winter 11 then wait until you need the frames before fitting the foundation.

I use diagonally wired foundation. If you remove a sheet from the packet you will see that there are small or large loops of wire on the long edge of the sheet. The large loop goes adjacent to the top bar of the frame, trapped under the foundation wedge.

  • Fold the three large loops at 90° to the sheet and slide the sheet down the foundation grooves in the side bar so that the the wire loops lay flat against the underside of the top bar.

Placement of the wire loop against the underside of the top bar

  • Refit the foundation wedge. You usually have to squeeze it into the gap between the side bars, trapping the wire loops underneath it.
  • Fix the foundation wedge in place with three gimp pins driven through the wedge and each of the trapped wire loops. This stops the foundation from slipping down in the frame.

Pin through the foundation wedge and the trapped wire loop

  • Add the second bottom bar to the frame. This should not be glued as you want to be able to remove it to replace the foundation. Just use one gimp pin at each end.
  • Take care adding this second bottom bar as there is (or at least I have) a tendency to crumple the lower edge of the sheet of foundation. Push fit one end of the bottom bar and then offer it into position by prising it apart from the already fitted bottom bar, so making space for the foundation to fit. You quickly get the hang of this after messing up a couple of sheets of premium quality foundation 🙁

Second bottom bar fitted … do not use glue.

  • Some sheets of foundation are fractionally too wide for the frames. I’ve only ever used Thorne’s DN/SN4’s and DN/SN5’s – both first and second quality – and their premium foundation, and still they are sometimes too wide. In that case lay the foundation on a flat surface and cut ~1mm off one of the shorter edges.

Trimming super foundation to fit the frame

  • I suspect this poor fit is because the sheets of foundation ‘stretch’ slightly during storage 12. Since I usually need to trim down every sheet in a packet I find I can do 3-4 sheets at a time.

Foundationless frames

I’ve discussed these in detail before. I use a lot of them. I don’t have time or space or energy to justify their use again here … I’ve written lots about their construction and use previously which I hope should answer any questions you have.

I make these frames in the same way except for the addition of a couple of vertical bamboo supports. These are added after I fit both bottom bars. I then add back the foundation wedge to leave a narrow slot into which I glue a simple wooden ‘tongue depressor’ starter strip.

Why wood?

Why not a strip of commercial foundation?

Or a hand crafted wax starter strip?

Or at least a wax-painted wooden strip?

Because a plain wooden strip made from a tongue depressor works better and is less effort than any of the other ‘solutions’ 13 above.

Take your pick ...

Take your pick …

And I know this because I’ve done a side-by-side comparison (see above) to determine which the bees preferentially use … and they simply do not care.

I made a dozen or so frames up like those above and added them to hives and observed which of the options the bees ‘chose’ to draw comb from.

They chose the plain wood as frequently as any others … and since that’s the easiest to prepare, that’s what I do.

Let the bees tell you … 😉

Storing frames

If you’re paying full price for the frames and foundation (rather than buying in bulk, or buying second quality) a frame will cost about £3.30.

Look after them!

Storing 10-20 frames is easy … just put them in empty brood boxes. Except these might get pressed into service during swarm control, or to make bait hives, so then where do you store the frames?

Foundationless frames are relatively easy as they are more robust than frames with foundation. Just stack them up in a pile and use as needed.

Bamboo foundationless frames

Bamboo foundationless frames

Ideally do the same with the built frames before you add the foundation.

However, with a little ingenuity you can devise a solution … here’s mine.

Frame storage

I can store a couple of hundred frames hanging from the shed roof. This has worked well, but needs a reasonable amount of ‘head space’ – either a high roof, or something underneath them (like a bench, or in my case a canoe) that stops you from walking/standing directly below them.

Here are some I made earlier

I’m sure there are lots of other equally good solutions …

Final thoughts

If you use a nail gun to assemble frames do not use it for the second of the bottom bars (other than for foundationless frames). The gun drives the nails in deep and they are very difficult to remove. Attach the unglued second bottom bar with gimp pins as described above.

Nailed

Nailed …

I use 20 mm 18g nails for the nail gun.

The nail gun speeds up frame building.

It can get quite competitive … can I build the next 10 frames in less time than it took the last 10?

Come on .. give me a break. It’s the winter and I need some sort of entertainment to get me through the dark days until I’m beekeeping again 😉


 

Measure twice, cut once

Swear often 😉

I’ll return to cursing shortly … bear with me.

The autumn solstice is long gone and we’re fast approaching the end of British Summer Time 1. For most northern hemisphere beekeepers this means that there may be five months of ‘not beekeeping’ before we start all over again.

Of course, there are things we have to do with the bees in the intervening period.

The hive entrances must be kept clear so they can get out on the inoffensively named ‘cleansing flights’ when needed. There will be a winter miticide treatment to apply … probably long before midwinter. It is also important to keep an eye on the weight of the hive – particularly as brood rearing starts in earnest in late January and February – to ensure the bees do not starve.

But those three things aren’t going to fill anything like five months, so there is bound to be some time ‘spare’ over the coming months.

The elasticity of time

Although the year contains twelve about equal length months, those of us who keep bees in temperate northern countries experience a strangely warped calendar.

This is what it feels like … the beekeepers year

Apparently the months only vary in length by ±3 days. May and December contain the same number of days, but May disappears in the blink of an eye, whereas December can drag on interminably.

Weirdly there appears to be an inverse relationship between the available daylight to work in, and the amount of time it feels as though you have available to actually get the various beekeeping tasks completed.

This surely defies the laws of physics?

All of which means that beekeepers often have little free time in the summer and ample free time in the winter.

Some wise beekeepers have a busman’s holiday and go to New Zealand to tour apiaries (and – more to the point – vineyards).

Others catch up with all of the non-beekeeping activities that apparently ‘normal’ people do … like the decorating, or building model railways, or flamenco dancing 2.

Getting creative

But if you still want to dabble with a bit of beekeeping – in the broadest sense of the word –  through the cold, dark days of December and January 3 there are all sorts of things you can do. 

Many years ago I wrote an irregular column for my then beekeeping association on do-it-yourself (DIY) for beekeepers.

It was irregular because my use of punctuation has always, been suspect, and because it didn’t appear each month. 

That column eventually morphed into this website 4.

In fact, some of the very earliest articles were almost lifted verbatim from the beekeeping monthly newsletter.

I wrote about DIY because it was something that:

  • brought me a lot of satisfaction
  • saved me a few quid
  • improved my beekeeping

Now, a decade or more later, I still use the winter months to do the majority of my beekeeping-related DIY 5.

It’s only in the winter that I have the time to think things through properly before rummaging through the wood offcuts box and actually building something.

Measure twice, cut once

Which brings me back to the start of this post.

The motto for beekeeping DIY could be something like:

Measure twice, cut once, swear often 6

However, having identified a problem, there’s almost as much enjoyment to be gained from thinking it through to a workable solution than there is from the actual woodwork.

But Think lots, measure twice, cut once etc. doesn’t have quite the same flow.

And, as we’ll see below, it doesn’t have to be woodwork.

So I can happily fill a few hours on a dark November evening thinking about improvements to a hive stand that could cope with 1500 mm of rain a year and very uneven ground 7, or how to best construct the removable slides for a Morris board.

And by best here, I mean for a lot less than the £30 charged for the commercial ones 8.

Morris board … that’s £8.25 please

Part of the thinking involves how to tackle the project with the limited range of tools I have. I don’t have the space or the skill 9 to own a bandsaw, or a thicknesser 10, or a router.

Almost everything I build uses a combination of Gorilla glue, Correx, hand tools, blood 11, wood offcuts and some really rich Anglo-Saxon phrases.

My DIY skills are legendary, and not in a good way, but the great thing is that the bees could not care less

Fat dummies

Most of the various things I build develop from ideas that occur during the ‘active’ beekeeping season.

If it’s needed urgently I’ll cobble something crudely together and use it there and then. However, it’s unlikely to have received much thought (or care in construction) and so I’m more than likely to ponder how it could be improved once I have a bit more time.

I learnt the basics of queen rearing from the late Terry Clare at a BBKA Annual Convention and couldn’t wait to have a go myself.

Fat dummies – mark 1

I used the Ben Harden queenright queen rearing approach. This needs an upper brood box with most of the space ‘dummied down’ to concentrate the bees on the grafted larvae. For this you need a couple of ‘fat dummies’ 12. I built my first fat dummies one afternoon using gaffer tape and Correx (see above) and later that April reared my first queens.

But that winter I had time to do a bit more research. Dave Cushman’s website described fat dummies with integral feeders.

Clever.

These would clearly be an improvement – unless there’s a strong nectar flow you often have to feed the colony – so I built some. 

Fat dummy with integral feeder

Fat dummy mark 2 … with integral feeder and insulation

Mine are still in use … and not just for queen rearing. They are packed with polystyrene insulation … an embellishment I thought up 13. I can use them to reduce ’empty’ space in a brood box occupied by an undersized colony. In fact, with two of them, I can overwinter a four-frame nuc over a strong colony to provide warmth from below.

Problem solving

As I said earlier, the problem solving is part of the fun. 

I use a lot of Correx. That’s the fluted polypropylene board that is used for political posters and For Sale signs.

Sourcing it is often not a problem if you’re prepared to do some homework.

It’s lightweight, strong, available in a range of cheery colours … but most importantly it is used for political posters and For Sale signs.

So, it’s often free.

And that’s a word all beekeepers like 😉

Wait for a general election and seek out a candidate who has suffered an ignominious and humiliating defeat. Ideally one in which they have both lost their deposit and and any remnants of support from the political party they were standing for … and ask politely.

And For Sale signs are even more easily obtained. Always ask … and remember that it’s bad form to remove them if the house has yet to be sold.

But there’s a problem with Correx. You cannot glue it with any normal glues. It’s got some sort of surface coating that prevents glue from adhering properly. 

Believe me, I’ve tried.

There are special glues, but at special prices 🙁

Roofs

I wanted to build some hive roofs from Correx but had to solve how to fold it ‘across’ the longitudinal flutes, and then how to stick it together in a way that would be weatherproof.

Pizza cutter

Pizza cutter … take care scoring the Correx

The folding bit was easy … it turns out that people who keep guinea pigs use this stuff to make the cages and runs for their cavies. And after an hour or two reading about someone else’s (weird) obsession I discovered that a pizza cutter was ideal for scoring Correx prior to folding it.

The glue I worked out for myself. I built a couple of dummy roofs and held the folded corners together with zip ties or regular gaffer tape, zip ties and regular gaffer tape, or some (claimed) waterproof tape.

Of these, the waterproof tape – specifically Unibond Extra Strong Power tape – worked really well. 

Sticky stuff ...

Sticky stuff …

And remains the only one I’ve found to work.

You need to lightly sand the surface of the Correx and ideally degrease it with some solvent. I still have roofs built 8 years ago with the original tape holding them together. They cost me £1.50 each to build as I had to buy 14 the Correx as the only For Sale signs I had were too small.

Here’s one I made earlier

Most of the things I’ve made have been through one or two iterations of ‘improvement’ before I’ve ended up with something I’m satisfied with.

The Kewl floors I almost exclusively use these days were an improvement of the original design I built, but have also had a couple of additional modifications

My honey warming cabinet – one of the first things I ever built – was modified after a few years by the addition of a fan to better circulate the warmed air. This significantly improved it.

The things I’ve discussed above are all good examples of why it’s worth spending some time in the winter doing some creative thinking and DIY 15 :

  • commercial Morris boards are expensive and (I think) have entrances that are too large
  • I’m not aware of any commercially available fat dummies … please correct me if I’m wrong
  • no one sells hive roofs (or super carrying trays) for £1.50
  • my floors are ideal for the beekeeping I do and significantly less expensive than anything similar available commercially
  • my honey warming cabinet is used to warm supers before extraction, to melt set honey and – because the temperature control and heat distribution is good enough – has even been used as a queen cell incubator

Electrickery

This winter I have three projects to entertain me.

The first project is the second iteration of my DIY portable queen cell incubator. The first of these was cobbled together earlier this year. Although it worked – more or less – it was far from satisfactory.

Mark 2 is currently being stress tested.

It is being tested.

I am getting stressed.

Queen cell incubator – mark 2 … a work in progress

I’ve managed to achieve really good temperature control. However, I’m currently struggling with uneven temperatures at different areas within the box. They barely fluctuate, but they’re not the same.

Great temperature control at a range of (different) temperatures

Grrrr.

I’m pretty sure this is solvable 16 and that it will be possible to build something better than is available commercially for about 10-15% of the price 17.

But, almost more important than that, it will be a problem I’ve solved 18 that suits me, my bees and my beekeeping … which will be very satisfying.

The second project is a set of hive scales. Lots of others have tackled this problem and there are some really clever and complicated solutions out there.

The plan is for mine to be the exact opposite.

Simple, and not very clever at all.

Testing is ongoing 😉

Software, not hardware

And the final project is software, not hardware.

All my honey jars have unique batch numbers. These allow the individual apiary (and bucket) to be identified. The batch number is generated by some PHP or perl scripts and used to print a QR code onto a Dymo label affixed to the back of the jar.

QR code containing a batch number

But that monochrome pointillist pattern contains a hidden web address as well. The purchaser will be able to point a mobile phone at the code and get more information about the honey 19

Having sold honey ‘from the door’ for years I’m unsurprised when buyers want to know more about local bees and the available forage … and with these labels they can (and do).

I’ve written the scripts to handle label creation and logging/redirecting ‘views’. I now have to write the programs that create the customised web pages with the local information lifted from the backend database.

And, with only ~165 days until I next expect to open a hive, I think I’m going to have my work cut out to complete any of these projects.


 

Autumn cleaning

Over the last fortnight, despite some occasional warm and sunny days, the autumn has made its presence known. 

Flaming autumn aspen

The aspen down the road are a stunning colour at this time of the year. Although I’ve planted a couple of dozen, they’re still not more than thigh-high and it will be quite a few years until they can match the display shown above.

Almost overnight hundreds of redwing have arrived from Scandinavia and many of the rowan have already been stripped bare 1.

In Fife, the leaden skies are filled with skeins of geese forming raggedy V’s as they fly in from the North Sea. It’s an evocative sight … it reminds me of my first weeks as an undergraduate student at Dundee University half a lifetime ago

And it also emphasises that the beekeeping season is over.

Of course, there will be jobs to do in the winter, but the bees are pretty much on their own for at least the next five months.

Apivar

The final essential task of the season for me is to remove the Apivar strips that went into the hives in August. Initially the strips were placed on either side of the – still large – brood nest. A few weeks ago I removed the strips, scraped them free of propolis and wax and re-inserted them around the, now shrunken, brood nest.

Mid-autumn and time for the Apivar strips to be removed

You can just about see them in the photo above, flanking the four central frames.

It is important to remove the strips. Although Apivar has a relatively short half-life, some residual activity will remain. If you leave them in the hive any surviving Varroa – and there will be survivors 2 – will continue to reproduce in the presence of trace levels of amitraz, the active ingredient in Apivar. 

With reduced – and possibly borderline for killing – levels of amitraz present, these are ideal conditions in which resistance may develop. Although this has been reported it does not appear to be widespread. 

Therefore, to ensure that Apivar remains an effective miticide it is important to remove any remaining strips before the winter.

Your next adventure in Glenrothes awaits!

Tragic isn’t it?

That’s the subject line on the emails I receive from Travelodge where I stay when I’m doing my beekeeping in Fife. 

Have you ever been to Glenrothes?

‘Adventure’ isn’t the word most people associate with Glenrothes. 

Good morning Glenrothes

GetMeOuttaHere is. 

This is a town where every third car being driven late at night has a raucous exhaust, lowered shocks, tinted windows and a spoiler. The drive-in queue for McDonald’s sounds like the pit lane at the Indianapolis 500 and there are more donuts in the car park than in the fast food outlets 3.

But none of that usually bothers me as, by the time I get to the hotel, I’ll have been driving for 5 hours and will have spent about the same amount of time inspecting colonies or lifting cleared supers. I may also have squeezed in a couple of hours of meetings at work.

The environment might be noisy, but the beds are comfortable. 

But visits in late autumn are a bit different.

No colonies to inspect, no grafting to do, no nucs to check for mated queens and no supers to remove.

All I need to do is gently lift a few crownboards and pull out the Apivar strips now that treatment is complete.

So, what do I do for the rest of the day?

Long range weather forecasting

Is that an oxymoron?

I book my trips to Fife to fit in with what the bees need. To make the hotel affordable I book many weeks in advance.

I therefore put up with whatever the weather throws at me. Usually it works out OK.

Furthermore, as regular reader know, several hives are in a bee shed, so the weather is largely irrelevant.

But ~60% of them are outside.

And Monday was really wet. 

Having driven for four hours through increasingly heavy rain – stopping en route to make a honey delivery – I fortified myself with a cappuccino and excellent almond croissant from Taste, the best independent coffee shop in St Andrews 4.

Essential fortifications

I then sat in the shed enjoying my late breakfast listening to the rain hammering on the roof.

I needed something to occupy me until either:

  • the rain stopped
  • it got so late in the day that I’d just have to open the hives and remove the strips anyway

And the obvious thing to do was a bit of spring autumn cleaning. 

During the season the bee shed is used on a daily or weekly basis depending upon the experiments underway. In addition, we have a storage shed on the same site and a number of additional hives in the same apiary. I also do most of my queen rearing in this apiary (the bee shed provides a near-perfect environment for grafting), distributing the nucs to other apiaries for mating.

And all that beekeeping tends to leave a bit of a mess. At least, it does where I’m involved.

Super job

For the last couple of years I’ve not bothered returning the extracted supers to the hives for the bees to recover the last of the honey.

Instead I’ve just stacked them ‘wet’ in the shed, protected from wasps, mice and robbing bees, by covering the top of the stack with a well-fitting roof.

Or a snug-fitting crownboard and a badly fitting roof.

Stacked ‘wet’ supers

Experience has taught me that the floor of the shed isn’t level and/or has gaps between the planking. Rather than seal all these gaps I simply stand the stack of boxes on the sort of closed cell foam sheeting used for packing furniture, or – when I run out – on double thicknesses of cardboard 5. This stops the wasps, ants and bees from getting access. 

So I started by tidying the stacks of supers. Inevitably this necessitated moving them first, sweeping the floor clean, laying out the foam/cardboard and then restacking them. There’s not enough space in the shed to move ~60 supers so they went out in the rain.

So I got wet 🙁

Floors, roofs, boards, unidentifiable objects and wax moth

Once they were back I could turn my attention to the other side of the storage shed which houses spare roofs, nuc feeders, floors, boards (split, crown, surf, Morris, Snelgrove etc. 6 ), a breeding colony of queen excluders 7 and a motley collection of other items that:

  • might come in useful
  • don’t logically belong anywhere else
  • appear valuable and/or difficult to make … but I don’t know what they are
  • are essential and were needed several times in the season … but I’d lost them 🙁

Sorting this lot out took another hour or two, and involved a further soaking as I needed to clear the space before I could refill the space.

Early on in the process … 

Is beekeeping the largest volume hobby?

… and when at least partial order had been restored …

Floors from Abelo, Pete Little and some homemade abominations

I also found several brood boxes full of drawn comb or sealed stores.

Excellent 🙂

And I found a nuc box lurking in the far corner containing comb riddled with wax moth 🙁

Wax moth larvae and damage

Aargh!

DiPel DF

Wax moth are something I’ve largely avoided or ignored for most of the last decade. The cold winters in Scotland seem to keep their numbers down.

Not this time … 

All of the infested frames were bagged up for burning at the earliest opportunity. The remaining brood frames were treated with DiPel DF, a suspension of Bacillus thuringiensis kustaki spores and toxins. If ingested by the larvae of wax moths, the δ-endotoxin component dissolves in the alkaline environment of the gut, is activated following cleavage by gut proteases and then ‘punches’ a hole through the gut wall.

Ouch.

And the spores germinate, allowing the bacteria to grow inside the larva.

As I wrote in a post several years ago about this treatment:

This isn’t good for the moth larva. Not good at all. Actually, it’s probably a rather grisly end for the moth but, having seen the damage they can do to stored comb, my sympathy is rather limited.

DiPel DF is non-toxic for bees.

DiPel DF

I’ve not had problems with wax moth infesting supers stored ‘wet’ … they’re after the old cocoons and other rubbish that accumulates in brood frames.

Vita used to sell a product called B401 – also a suspension of Bacillus thuringiensis spores and proteins – which was withdrawn from sale in 2019. Despite assurances that a replacement – imaginatively labelled B402 – would be available ‘soon’ it appears to only currently be sold in the US.

Out with the old … and the not fit for purpose

I was on a roll … 

All this organisation meant I discovered things that I’d lost … like a small stack of contact feeders hiding in the corner that had not been used this season as I hadn’t done any shook swarms.

There they are! Contact feeders lurking shyly in the furthest corner (unlike those brazen frame feeders at the front)

I also found some mini-nucs I’d built for queen mating almost 10 years ago. They were made of ply and housed a tri-fold full-size brood frame (you can now buy these, but couldn’t when I built them). 

Tri-fold brood frame

However, the ply was starting to delaminate and it was pretty clear that they wouldn’t survive a Scottish summer season so they were unceremoniously binned.

And I finally bit the bullet and got rid of all my XP Plus queen excluders. These were bought from Thorne’s a few years ago and had been used only when I ran out of everything else.

In principle they are a good idea. A white plastic queen excluder with bee space on the underside provided by a raised rim and a series of small X-shaped spacers that stand on the top bars.

XP Plus queen excluder (the plus must mean ‘plus warp’)

However, in practice, they’re rubbish. They were the ‘ugly’ in my 2017 description of queen excluders that included the phrase ‘the good, the bad and the ugly’.  

They warp really badly. The photo above – if anything – obscures the warp because the QE is not being held flat. When you place them under a super the centre bows up and contacts the underside of the super frames.

Rubbish. 

Out they went.

The little things

There’s something rather poignant about the death throes of the beekeeping season. It can end with a bang as autumn storms roll in, or it can end in a protracted stutter as intermittent good days allow the bees to forage late into October. 

Of course, it’s au revoir 8 and not a final goodbye

It forms such a large part of my life for six months of the year that little things found during the clear-out bring back a flood of memories …

Nicot cup and (partly squidged) queen cell amongst the debris on the shed floor

A Nicot cup and vacated queen cell reminded me what a good queen rearing season we’d had on the east coast. Although the first round of grafting was a near-total failure, successive rounds were excellent, and queen mating was very successful. One of the best seasons in memory 9.

Coffee stirrer … or AFB test kit

Not all the memories were good ones though. I received one of the dreaded ‘AFB alert’ warnings for the apiary and spent a very long couple of days checking every cell on every brood frame in every colony, and testing any that looked suspicious.

I don’t take sugar, and the coffee stirrer shown above is provided in the AFB LFD kit to lift the dodgy-looking larva into a tube for analysis. Everything looked clear, but it gave me a few very stressful days.

And … after all that tidying, and repeated trips to the industrial-scale bins, it finally stopped raining.

Finally … some practical beekeeping

I fired up the smoker and quickly, but gently, removed all the Apivar strips. The crownboards on all the hives were very firmly stuck down with propolis and the bees, although calm, weren’t exactly overjoyed to see me.

Autumn still life – smoker, hive tool, Varroa trays and Apivar strips

I still had another apiary to visit. With rain threatening there wasn’t time to monitor the level of brood present so I slipped cleaned Varroa trays under the hives. This will allow me to inspect both residual mite drop and look for the presence of the characteristic biscuit-coloured cappings when brood is uncapped.

And then, after about half an hour of practical beekeeping, I set off back to the west coast as the rain started again.

The Moidart hills – An Stac, Rois-Bheinn and Sgùrr na Ba Glaise

Two days later the Moidart hills had their first dusting of snow.

It’s official, autumn is here and the beekeeping season is over.


 

Beekeeping fantasy vs. reality

There have been a couple of stories in the press recently that have made me think about the idealised version of beekeeping that is often promoted … with the reality of a lot of amateur beekeeping 1.

Most recently was the announcement of the new CBBC show titled Show Me the Honey! which will be available at the end of this month on iPlayer.

Information is a bit limited at the moment. It’s clearly a programme featuring and for children. According the The Guardian it “features five children and their families taking part in a series of weekly challenges to create the best hive and tastiest honey, with the winner taking home the beekeeper of the year trophy”.

Undoubtedly this will increase interest in beekeeping. This isn’t in itself a bad thing, though the timing is a bit off. The seven week series will end with much of the winter left to run.

Not the best time to start beekeeping

Will those watching who are captivated by the thought of keeping bees go for the ‘quick fix’ of an expensive mid-March nuc thinking “What can be so difficult? One of those kids became the ‘Beekeeper of the Year’ in just seven weeks”.

Or, will they do their homework, attend a Start beekeeping course with a local association, go to a couple of ‘bee handling’ sessions in the association apiary, find a mentor … and only then order a locally sourced nuc?

I’m pretty sure I know which route is more likely to produce a future ‘beekeeper of the year’ 😉

Competitive beekeeping

Just like Show Me the Honey!, my beekeeping often involves a set of ‘weekly challenges’.

  • Where is my bloody hive tool?
  • Your mission, should you choose to accept it, is “To find, mark and clip the queen in this double brood monster of a hive, bulging with psychopathic bees … before the rain starts”.
  • Can I lift these three full supers together without causing permanent damage? 

The concept of competitive beekeeping grated a bit when I first read about it, but the reality is that beekeeping can be competitive.

Think about the annual honey shows.

A bit of lighthearted entertainment for the end of the season?

Or a cutthroat affair, with lashings of deviousness and skulduggery to produce the best 1 oz wax blocks?

That sort of competition I can cope with, although I no longer partake as I’m a very bad loser.

And I lost … a lot 🙁

But think about what’s happened to climbing, and the huge success it was at the Olympics. The speed climbing event is probably now the fastest non-gravity-assisted 2 Olympic sport. 

Perhaps the inevitable adult or celebrity spin-offs of Show Me the Honey! will involve speed inspections?

3 … 2 … 1 … GO!

With Martha Kearney doing the commentary … 3

The best hive

So let’s return to that quote from The Guardian … ‘the best hive’.

Are they going to start with a Thorne’s Bees on a Budget flatpack cedar hive, a mismatched pile of nails, a hammer and a set of IKEA-ish hieroglyphic 4 instructions?

Is the winner the one who gets everything square and true? Does beespace matter? What about injuries? 5

Or perhaps it will be to dream up ‘the best’ new hive design … and there’s lots of competition for that.

How about the urban-friendly 6 B-Box the first ever beehive designed for home beekeeping’.

The B-BOX

Hang on a sec … I’m currently at home.

Let me just check what’s in that blue and yellow box by the shed.

Don’t do this at home … this beehive is designed for other locations

Yep … just as I thought. Bees. It’s a beehive. 

Am I doing something wrong? Have I got a hive designed for beekeeping somewhere other than home? 

There are some grand claims made for the B-BOX and the website is awash with buzzwords 7. I’m not sure the 16 small honey ‘supers’ would be sufficient during a strong nectar flow from the lime trees found in many cities.

These hives are about €480 (plus an extra €580 or so if you want a ‘swarm’ of bees with it … and I think they probably do mean swarm from the description. Yikes!).

Or what about this Philips design – another Urban beehive – that “consists of two parts, a tinted glass shell that houses the honeycomb frames and a flower pot with an entry passage to the glass vessel. You can then harvest the honey produced, simply pull on the smoke actuator chain to calm the bees before it is opened”

Philips Urban beehive

Wow. 

I was sure that bees draw comb in a vertical plane? 

This one is a ‘concept’ hive, so is effectively priceless. 

Which would also be my reaction if I had to do a shook swarm on it 😉

Smart hives

I’m not sure that last hive is entirely practical. 

Instead, how about this ‘robotic’ hive – or Beehome as they call it – from Israeli startup Beewise? This is a container 8 housing 24 colonies which are constantly monitored.

The Beewise ‘Beehome’ robotic beehive

The technology is clearly pretty clever as they appear to be able (or claim) to:

  • provide climate and humidity control
  • monitor brood development on every frame of every hive
  • apply pest control (non-chemical, but it’s not clear what) to control Varroa
  • deliver swarm prevention by ‘changing the conditions in the hive’
  • automatically harvest honey … when the 100 gallon tank is full the Beehome calls you to come and collect

When you think of some of the manipulations needed for successful swarm control you wonder – well, I wonder – how on earth a robot could do it by simply ‘changing the conditions in the hive’

Their website shows a screenshot of an app displaying digital images of frames, together with schematics of the distribution of the various types of brood (capped/uncapped) and stores within the hive.

Very clever … though I do wonder whether the robot takes quite as much care as I do returning frames to the hive without crushing or rolling bees in the process.

What?

I thought you’d never ask … $400.

A month.

At least, that’s the price quoted on the website. I’ve no idea if that’s ‘all in’, or if there are hidden costs involved, like custom frames, software licenses. If it is ‘all in’ and every hive generates a good crop of honey each season it seems very reasonable.

But, and this is a biggy as far as I’m concerned, it seems to to rip the soul out of all that is special about keeping bees.

It’s more like factory farming.

Save the bees

But, inevitably, it ‘saves the bees’ … so that’s OK then 🙁  9

Hives in reality

So those are the fantasy hives that the public read about in the newspapers and that adorn press releases.

Super-clean and shiny and described in glowing terms as bee friendly, bee-centric, sustainable, healthier or a nature-based solution.

In many ways these are what shape their expectation and understanding of beekeeping.

The reality is that bees do just fine in almost any relatively secure container.

Like a hollow tree.

Or a dustbin.

Or a variety of beehive types …

Gaffer tape apiary

Gaffer tape apiary …

… including some that appear to consist mainly of gaffer tape.

Aesthetically perhaps less attractive, but perfectly functional.

I’ve discussed the concept of the ‘the best’ hive previously 10.

The 12-13 pages of different hive types in the Thorne’s catalogue describe a plethora of different sizes and designs. As long as they have the correct bee space and the boxes are broadly compatible – which really means flat interfaces – I’d be happy to keep bees in any of them.

Sure, some might suit my beekeeping a little better than others, but I reckon I’d do OK with them all. 

But, of course, I’d want more than one … which is where the compatibility becomes critical. I’d inevitably end up mixing ‘n’ matching different boxes during swarm control, autumn uniting or simply when running out of equipment.

Uniting with newspaper ...

Uniting with newspaper …

And it’s this reality that never appears in that glossy advertising on promotional websites. The ‘cobbling stuff together’ to make something that’ll do. In the picture above I’m uniting a queenless double hive with a queenright poly hive.

The poly hive is actually a bait hive built from two stacked supers. They are the Paradise/ModernBeekeeping design with an overhanging lip on the lower face, hence the thin, wide, wooden shim between the boxes.

And the crownboard is a piece of thick polythene.

All perfectly functional, but not quite as glossy, organised and coordinated as is often displayed in print or online 11.

But this neat, clean and pristine presentation doesn’t stop with the hives … 

Suits you Sir!

What about the protective clothing?

If you look at the photos above you’d think you could harvest honey (from the B-BOX) wearing a T-shirt and jeans, or inspect your Philips urban hive in a slinky Christian Dior LBD.

The reality is a little less flattering. 

Bees can sting, and agitated bees – with dodgy parentage or through sloppy handling 12 – can sting quite a lot. 

As a quick aside, I note that one of the presenters of Show Me the Honey! has apparently been ‘keeping bees for 15 years and has never been stung’.

And now back to reality 😉

Beesuits aren’t particularly flattering.

Does my bum look big in this? … doesn’t even come close. 

Everything … looks big in a beesuit.

And usually the beesuits are completely pristine, not stained with propolis, held together with gaffer tape or with pockets hanging off from hive tool damage 13.

Angelina Jolie and some slightly grubbier beekeepers

The beesuit Angelina Jolie is wearing is what they typically look like in ‘fantasy beekeeping world’. No broken zips, no propolis staining, no pockets bulging with emptied queen cages and old gloves.

Those worn by the beekeepers around her are probably a bit more normal, though I also have a sneaking suspicion they’ve worn their ‘Sunday best’ beesuits for the photo op.

As another aside, Angelia Jolie is promoting the UNESCO programme ‘Women for Bees’. This teaches beekeeping and entrepreneurship to women in UNESCO designated biosphere reserves around the world. Further details also in National Geographic.

And it doesn’t stop there

I’ve had a great beekeeping year.

There have been some notable successes – in queen rearing and mating, in preparing nucs and in a really excellent honey crop.

Show me the Honey!

However, it wasn’t all the clean, neat and tidy affair depicted in the press.

And, to be honest, parts of it could best be described as an omnishambles.

I’m being polite there.

Here are just a few examples where my beekeeping reality didn’t quite match the glossy, propolis-free, beautifully ordered and presented world of beekeeping fantasy.

  • Wrenching my back during the spring honey harvest by trying to carry too many supers. I walked hunched over for a month and spent quite a lot of time lying flat on my back.
  • Glenrothes – my base when beekeeping on the east coast. Underwhelming 14

Good morning Glenrothes

  • Installing a ‘lively’ nuc in a full hive before securing my veil. No stings, but a pretty close call with several bees agitatedly struggling to escape the space they’d seemingly so easily entered.
  • Lifting three supers off a hive in late July and carelessly 15 tripping over a hive roof. I dropped the lot and fell flat on my face. A very sticky mess but the bees were extraordinarily tolerant of my clumsiness.
  • Sweating so much during July inspections that my gloves filled with perspiration and my wrinkly fingers stopped ‘unlocking’ the phone.

Ewwww

  • Consequently dropping more queens in the grass than ever before. I was so cackhanded that it became unusual not to drop them on the ground before getting them into the marking cage.
  • Watching a much-needed virgin queen fly off out of sight while – stupidly – trying to get her into an introduction cage with the shed door open. D’oh!
  • Chasing another virgin queen around the shed – after closing the door 16 – for five minutes before getting her into a cage. 
  • Going half crazy trying to keep wasps out of cleared supers before stacking them in the car.
  • The hole in the hive pocket and no trousers debacle. Enough said 🙁
  • More lifting, more sweating, more wasps …
  • The long evening drive back to the west coast, tired, dehydrated and smelling of smoke and propolis 17.

Go west young man …

That’s the reality of a beekeeping season.

It’s been fantastic.

I wouldn’t have it any other way 🙂


 

Cut more losses

This is a follow-on to the post last week, this time focusing on feeding and a few ‘odds and sods’ that failed to make it into the first 3000 words on reducing overwintering colony losses.

Both posts should be read in conjunction with one (or more 1 ) of my earlier posts on disease management for winter. Primarily this involves hammering down the mite levels before the winter bees are produced, so ensuring their longevity.

But also don’t forget to treat your colonies during a broodless period in midwinter to mop up mites that survived the autumn treatment, or have reproduced since then.

Why feed colonies?

All colonies need sufficient stores to get the colony through the winter until suitable nectar sources and good enough weather make foraging profitable the following spring.

How much the colony needs depends upon the bees themselves – some strains are more frugal than others – and the duration of the winter. If there is no forage available, or the weather is too poor for the bees to fly, then they will be dependent upon stores in the hive.

A reasonable estimate would probably be somewhere around 20 kg of stores, but this isn’t a precise science.

It’s better for the colony to have too much than too little. 

If the colony has stores left over at winter’s end you can always remove them and use them when you make up nucs later in the season. Just pull out the frames and store them safely until needed.

Unused winter stores

In contrast, if the colony starts the winter with too few stores there are only two possible outcomes:

  • the colony will starve to death, usually in late winter/early spring (see below)
  • you will spend your winter having to regularly check the colony weight and opening the hive to add “emergency rations” to get them through the winter

Neither of these is desirable, though you should expect to have to check the colony periodically in winter anyway.

Feeding honey for the winter … and meaningless anecdotes

By the end of the summer the queen has reduced her laying rate and the bees should be backfilling brood comb with honey stores. If you assume there’s about 5 kg of stores 2 in the brood box then they’ll need about another 15 kg. 

15 kg is about the amount of honey you can extract from a well-filled super. 

Convenient 😉

Some beekeepers leave a full super of honey on the hive, claiming the “it’s better for the bees than syrup”

Of course, it’s a free world, but there are two things wrong with doing this:

  • where is the evidence that demonstrates that honey is better than sugar-based stores?
  • it’s an eye-wateringly expensive way to feed your colonies

By evidence, I mean statistically-valid studies that show improved overwintering on honey rather than sugar.

Not ‘my hive with a honey super was strong in spring but I heard that Fred lost his colony that was fed syrup’ 3.

That’s not evidence, that’s anecdote.

If you want to get this sort of evidence you’d need to start with a lot of hives, all headed by queens of a similar age and provenance, all with balanced numbers of brood frames/strength, all with similar mite levels and other pathogens.

For starters I’d suggest 200 hives; feed 50% with honey, 50% with sugar … and then repeat the study for the two following winters.

Then do the stats 4.

The economics of feeding honey

If I were a rich man …

The 300 supers of honey used for that experiment would contain honey valued at about £80,000.

That’s profit, not sale price (though it doesn’t include labour costs as I – and many amateur beekeepers – work for free).

The honey in a single full super has a value of £250-275 … that’s an expensive way to feed your bees 5.

Particularly when it’s not demonstrably better than a tenner or so of granulated sugar 🙁

But there are more costs to consider

The economic arguments made above are simplistic in the extreme. However, there are other costs to consider when feeding colonies.

  • time taken to prepare and store whatever you will be feeding them with 6
  • feeders needed to dispense the food (and storage of these when not in use)
  • energetic costs for the colony in converting the food to stores

Years ago I stopped worrying (or even thinking much) about any of this and settled on feeding colonies fondant in the autumn.

Fondant mountain ...

Fondant mountain …

Fondant is ~78% sugar, so a 12.5 kg block contains about 9.75 kg of sugar.

This year I’m paying £11.75 for fondant which equates to ~£1.20 / kg for the sugar it contains.

In contrast, granulated sugar is currently about £0.63 / kg at Tesco.

The benefits of fondant

Although my sugar costs are about double this is a relatively small price I’m (more than) prepared to accept when you take into account the additional benefits.

  • zero preparation time and no container costs. Fondant comes ready-wrapped and stores for years in the box it is purchased in
  • no need for jerry cans, plastic buckets or anything to prepare or store it in before use
  • no need for expensive Ashforth-type feeders that sit around for 95% of the year unused When I last checked an Ashforth feeder cost £66 😯 
  • it takes less than 2 minutes to add fondant to a colony
  • no risk of spillages – in the kitchen, the car or the apiary 7.
  • fondant is taken down more slowly than syrup, so providing more space for the queen to continue laying. In addition, in the event of an early cold snap, fondant remains accessible whereas bees often stop taking syrup down

Regarding the energetic costs for the colony in storing fondant rather than syrup … I assume this is the case based upon the similarity of the water content of fondant to capped stores (22% vs. 18%), whereas syrup contains much more water and so needs to be ripened before capping to avoid fermentation.

Fondant block under inverted perspex crownboard – insulation to be added on top.

Whether this is correct or not 8, the colony has no problem taking down the fondant over a 2-4 week period and storing it.

What are the disadvantages of using fondant? 

The only one I’m really aware of is that the colony will not draw fresh comb when feeding on fondant (or at least, not enthusiastically). In contrast, bees fed syrup in the autumn and provided with fresh foundation will draw lovely worker brood comb. 

Do not underestimate this benefit.

They fancied that fondant

Brood frames of drawn comb are a very valuable resource. Every time you make up a nuc, or shift a nuc to a full-sized box, providing drawn comb significantly speeds up the expansion of the resulting colony.

Nevertheless, for me, the advantages of fondant far outweigh the disadvantages …

Finally, in closing, I’ve not purchased or used invert syrup for feeding colonies. Other than no prep time this has the same drawbacks as syrup made from granulated sugar. Having learnt to use fondant a decade or so ago from Peter Edwards (Stratford BKA) I’ve never felt the need to look at other options.

Let’s move on …

Ventilation and insulation

Bees can withstand very cold temperatures if healthy and provided with sufficient stores. In northern Canada bees may experience only 120 frost-free days a year, and cope with 3-4 week periods in winter when the temperature is -25°C (and colder if you consider the wind chill).

That makes anywhere in the UK look positively balmy.

Margate vs. the Maldives … a similar temperature difference to Margate vs. Manitoba in the winter

I’ve overwintered colonies in cedar or poly boxes for a decade and not noticed a difference in survival rates. Like the honey vs. sugar argument above, if there is a difference it is probably minor. 

However, colony expansion in poly boxes in the spring is usually better in my experience, and they often fill the outer frames with brood well before cedar boxes in the same apiary get there.

Whether cedar or poly I take care with three aspects of their insulation/ventilation:

  • the colonies have open mesh floors and the Varroa tray is only in place when I’m actively monitoring mite drop
  • all have insulation above the crownboard in the form of a 50 mm thick block of Kingspan (or Recticel, or Celotex), either integrated into the crownboard itself, placed above it or built into the roof
  • I ensure there is no upper ventilation – no matchsticks under the crownboard, no holes etc.
  • excess empty space in the brood box is reduced to minimise the dead air space the bees might lose heat to

In my experience bees actively dislike ventilation in the crownboard. They fill mesh with propolis …

Exhibit A … are you getting the message?

… and block up the holes in those over-engineered Abelo crownboards …

Exhibit B … ventilated hole in an Abelo crownboard

Take notice of what the bees are telling you … 😉

Insulation over the colony

I’ve described my insulated perspex crownboards before. They work well and – when inverted – can just about accomodate a flattened 9, halved block of fondant.

Perspex crownboard with integrated insulation

Finally, if it’s a small colony in a brood box 10 then I reduce the dead space in the brood box using a fat dummy

Fat dummy with integral feeder

Fat dummy …

I build these filled with polystyrene chips.

You don’t need this sort of high-tech solution … some polystyrene wrapped tightly in a thick plastic bag and sealed up with gaffer tape works just as well.

Insulation ...

Insulation …

I’ve even used bubblewrap or that air-filled plastic packaging to fill the space around a top up block of fondant in a super ‘eke’ before now.

However, remember that a small weak colony in autumn is unlikely to overwinter as well as a strong colony. Why is it weak? Would you be better uniting it before winter starts?

Nucleus colonies

Everything written above applies equally well to nucleus colonies.

A strong, healthy nuc should overwinter well and be ready in the spring for sale or promoting to a full colony.

Here's one I prepared earlier

Here’s one I prepared earlier … an overcrowded overwintered nuc in April

Although I have overwintered nucs in cedar boxes I now almost exclusively use polystyrene. This is another economic decision … a well made cedar nuc costs about double the price of the best poly nucs

I feed my nucs fondant in preparation for the winter, typically by adding 1-2 kg blocks to the integral feeder.

Everynuc fondant topup

Everynuc fondant topup

Because of the absence of storage space in the nuc brood box it’s not unusual to have to supplement this several times during the autumn and winter.

You can even overwinter queens in mini-mating nucs like Apidea’s and Kieler’s.

Kieler mini-nuc with overwintering queen

This deserves a post of its own. Briefly, the mini-nuc needs to be very strong and usually double- or triple- height. I build fondant frame feeders for Kieler’s that can be quickly swapped in/out to compensate for the limited amounts of stores present in the brood box.

Kieler mini-nuc frame feeders

My greatest success in overwintering these was in winters when I provided additional shelter by placing the nucs in an unheated greenhouse. A tunnel provided access to the outside. However, I know several beekeepers who overwinter them without this sort of additional protection (and have done so myself).

Just because this can be done doesn’t mean it’s the best thing to do.

I’d always prefer to overwinter a colony as a 5 frame nuc. The survival rates are much better, their resilience to long periods of adverse weather is significantly greater, and they are generally much more useful in the spring.

Miscellaneous musings

Hive weight

A colony starting the winter with ample stores can still starve if the bees are particularly extravagant, or if they rear lots of brood but cannot forage.

The rate at which stores are used is slow late in the year and speeds up once brood rearing starts again in earnest early the following spring (though actually in late winter).

Colony weight in early spring

As should be obvious, this is a Craptastic™ sketch simply to illustrate a point 😉

The inflection point might be mid-December or even early February.

The important message is that, once brood rearing starts, consumption of stores increases. Keep checking the colony weight overwinter and supplement with fondant as needed.

I’m going to return to overwinter colony weights sometime this winter as I’m dabbling with a weather station and set of hive scales … watch this space.

An empty super cuts down draughts

Periodically it’s suggested that an empty super under the (open mesh) floor of the hive ‘cuts down draughts’, and is therefore beneficial for the colony.

It might be.

But like the ‘overwintering on honey’ (and being a pedant scientist) I’d always want to see the evidence.

There are two claims being made here:

  • a super under the floor cuts down draughts
  • fewer draughts benefits the colony which consequently overwinters better

Really?

There are ways to measure draughts but has anyone ever done so? Remember, the key point is that the airflow around the winter cluster would be reduced if there are fewer draughts. 

Does a super reduce this airflow significantly over and above that already caused by the sidewalls of the floor?

And, even if it does, perhaps the colony ‘reshapes’ itself to accommodate the draught from an open mesh floor.

What shape is the winter cluster?

For example, in an uninsulated hive (including no insulation over the cluster) with a solid floor the cluster is likely to be roughly spherical. They minimise the surface area.

With an open mesh floor are they more ellipsoid, so avoiding draughts from below? If so, is this improved much by an empty super below the open mesh floor? Does the cluster change shape or position? I don’t know as I’ve not compared cluster shapes in solid vs. open mesh floors plus/minus a super underneath.

And anyway, an open mesh floor looks very like a baffle to me … how much better can it get? How draughty is it in the first place?

Is this example 8,639 for my ‘Beekeeping Myths’ book?

I do know that top insulation tends to flatten the cluster against the warm underside of the crownboard.

Midwinter cluster

A strong colony in midwinter

Having worked out that draughts are (or are not) reduced … you still need another couple of hundred hives to test whether overwintering success rates are improved!

More winter bees

Finally, always remember that the survival of the colony is dependent upon the winter bees. All other things being equal (stores, disease etc.), a colony with lots of winter bees will overwinter better than one with fewer.

This is one of the reasons I stopped using Apiguard for mite control in autumn. Apiguard contains thymol and quite regularly (30-50% of the time in my experience) stopped the queen from laying, particularly in warmer weather. 

Apiguard works well for mite control, but I became wary that I was potentially stopping the queen at a time critical for late-season colony development. I worried that, once treatment was finished, a cold snap would shut down brood rearing leaving it with suboptimal numbers of winter bees.

I never checked to see whether the queen ‘made good’ any shortfall after removal of the treatment … instead I moved to Scotland where it’s too cold to use Apiguard effectively 🙁


 

Less is more

The season here started late after a a long, cold spring, and it’s giving every impression of ending early. A couple of low pressure systems have slowly drifted in from the west, replacing the settled calm weather with something a lot more changeable.

On the west coast of Scotland the heather has still to really get started. That is if it’s going to get started at all 🙁

It was so dry earlier in the summer that the recent rain may be too little, too late. I’m not unduly worried as I’m busy making bees rather than making honey this year.

Although the temperature hasn’t dropped much 1 it’s starting to feel quite autumnal. 

Siskin

The mixed woodland around us is now quiet most of the time, with very few small birds about. When you do see them, siskin and goldfinch are starting to form large jittery flocks, bounding away at the slightest provocation. The longer nights 2 are busy with the calls of tawny owls as the young leave the nest.

My infrequent visits to the east coast are short and packed with beekeeping and work commitments so I see much less wildlife. However, it’s very clear that the season is ‘all over bar the shouting’. The bees are getting defensive, there are lots of wasps about and the nectar flow is finished.

Let the heavy lifting begin … and Correx

On my last visit to Fife I cleared the supers and removed them for extraction.

I’ve described my clearer boards before 3. They have no moving parts, a deep lower rim providing space for the bees to clear to, and two well-separated exits.

Clearer boards

Clearer boards …

I usually try and clear all the hives in a single apiary at once. It increases the workload, but it saves making more than two visits. This of course means that I need sufficient clearer boards for every hive in the apiary … and on this trip I didn’t 4.

At the last minute I therefore built a few extra using Correx, some butchered rhombus escapes, spare ekes and gaffer tape. 

Quick fix clearer board – hive side

If you’re going to do this here are a couple of tips:

  1. Do not use standard 3M gaffer tape as sold in the ‘Middle of Lidl’ and elsewhere. It can’t cope with the warmth and humidity of the hive – at least when stuck to Correx – and the escape usually detaches within 24 hours. Unsurprisingly these things work a whole lot less well (i.e. not at all) without the rhombus escape. The best gaffer tape I’ve found for Correx is Unibond Power Tape (which is waterproof and very long lasting).
  2. Don’t try and save time/save rhombus escapes/cut corners by using only one exit hole and half a rhombus escape. The hives I tried this with still had hundreds of bees in the supers. Don’t say I didn’t warn you 😉

I have to transport all my supers to the west coast for extraction. Emptying them of bees, keeping the wasps away and loading them into my little car was a fraught and exhausting process.

More Correx

Whatever the opposite of a hot hatchback is … is what I drive.

It’s a great little car and very economical 5.  However, it’s not really ideal as a beemobile. I can only get a maximum of about 16 supers in it whilst still being able to see out of at least some of the windows.

To save the already filthy upholstery from contaminating all that lovely honey in the supers I use more Correx …

The multi-purpose Correx hive roof

… in this case an upturned Correx hive roof.

These are simplicity itself to construct using Correx and more Unibond Power Tape. Correx is remarkably UV resistant and I have roofs originally built in 2013/14 still going strong. A single 1.2 x 2.4 m sheet of Correx will yield half a dozen roofs and cost you the grand sum of about £1.70 each 6.

When you’re clearing and transporting supers these lightweight roofs/trays are invaluable. They keep the wasps out of the top of the stack and stop the honey dripping out of the bottom.

And a bit more Correx

It’s much easier to extract honey if it’s warm. I therefore stack the supers on top of my honey warming cabinet until I’m ready to do the extracting … or until my back recovers after lifting all those supers off the hives and into the car.

Honey supers waiting to be extracted

I built my honey warming cabinet several years ago. It is probably one of the most useful (and used) pieces of beekeeping ‘stuff’ I’ve got. It’s got excellent temperature control and I’ve even used it to incubate queen cells. However, it is primarily used for honey and every bucket I process and jar goes through it, often more than once 7.

Because of the size of available plywood sheet, the depth needed to house the element and insulation, coupled with a generous helping of my incompetence, I built the cabinet slightly too small. 

This resulted in the classic ‘good news and bad news’.

The good news is that I don’t need to be absolutely precise in terms of positioning the edge of the supers on the thin upper edges of the cabinet. Any mistakes here would result in the insulation getting crushed. 

The bad news is that some supers can leave a slight gap at the bottom through which heat escapes. This depends upon the particular design of the supers. Paradise/Denrosa poly supers and Abelo supers are reasonably flat on the underside, but red cedar boxes leave lots of unwanted gaps.

Correx gap-filler on the honey warming cabinet

A simple shim of Correx is an easy solution to this issue. As an added benefit, this also stops the upper edges of the cabinet from getting sticky.

A wheely useful trolley

A honey warming cabinet takes up quite a bit of space when not in use. Mine conveniently fits onto a robust ‘trolley’ that allows me to easily wheel it out of the way when needed.

Wheely useful trolley under the honey warming cabinet

When pre-warming supers for extraction it has to be moved off this onto the floor. The 18 supers in the picture above probably weigh over 300 kg. Neither the tiled floor nor the castors would be able to support this.

However, when just warming a couple of buckets of OSR honey prior to creaming this allows me to tuck the cabinet out of the way until needed.

I’ve got a couple of these trolleys. I stack the empty supers on them after extraction and so can move them about without excess bending and lifting.

Extracting

I uncap supers using a hot air gun. This is fast and efficient. The cappings melt almost instantaneously but can generate wax ‘shrapnel’ which tends to fly off in all directions. I strongly recommend wearing an apron to avoid getting peppered with tiny specs of molten wax.

A 10 frame super … but I actually squeezed the bottom one in from another box.

Almost all my supers are arranged to contain 9 frames. I start them with 11, reduce them to 10 once the comb is drawn, and take one more frame out once they start fattening up. Drawn super comb is reused year after year and it’s always nice to see a frame dated a decade or more ago going though the extractor. 

The 9 frames in a super conveniently fills my 9 frame extractor (funny that). Of course, sometimes the bees fail to completely fill the outer frames, so there may be a little juggling to try and get the machine reasonably well balanced before starting the run.

It’s surprising how quickly you learn to judge the weight of a filled frame and to calculate where it should be placed in the extractor to achieve the best balance.

‘Best’ as in ‘best that can be achieved with these 9 frames without spending an interminable amount of time shifting the frames about’.

Thank goodness for extractors on castors 🙂

Rubber-wheeled castor with brake

An unbalanced extractor on castors gently wiggles back and forth, rather than walking boldly across the room. Leave the castors unbraked during use.

My extractor is pretty basic. On/off and speed control. No timed runs or other snazzy settings. Because some honey extracts more easily (perhaps because it was lower down in the stack of warming supers?) I use an LED headtorch 8 to look down the inner sidewall of the machine to judge when I should stop the run.

Extractor and headtorch

You can see the drops of honey hitting the sidewall as tiny pinpricks of reflected light. Once they’ve reduced to almost nothing I reverse the machine for a minute or two, or remove the frames and reload it.

Why is less more?

As I suggested in the opening paragraph, this has felt like a very short season. Because of my move to the west coast I’ve also got far fewer honey production colonies this year than any time in the last decade.

Nevertheless, it’s been an outstanding year for honey 🙂

My total crop is the best I’ve had since returning to Scotland in 2015, though this was largely due to a fantastic spring harvest. I’m also hopeful there may be a little bit of heather honey before the end of the season … we’ll see.

The priority now is to ensure that the bees are given sufficient fondant to store for the winter ahead, and that the mites are treated promptly and effectively. I’ll write about these important aspects of preparing for winter in the next week or three.

But before I go …

With all those winter bees to rear over the next couple of months the colony will need lots of pollen. 

The United colours of Benetton pollen in one of my hives

This frame made me smile. I counted just 20 developing larvae in the centre, surrounded by a pointillist sea of different pollen types. These will be well-nourished bees 🙂

Although not absolute, the bees tend to store similar pollens in individual cells. Since it takes many corbiculae-full to fill one cell this must involve a degree of ‘sorting’ by the bees during pollen storage. This all happens in the dark, so presumably is based upon a characteristic other than the colour of the pollen.

Pollen close up

I don’t know how they do this but will read a bit more during the winter and report back. This was one of the outer frames in the colony. Most of the rest are still packed with brood, ensuring the colonies will be strong going into the winter.

Wasps are starting to pester the hives. On the west coast I have several colonies recently promoted from nucs to a full hive. Most are in hives with kewl floors 9 which have an L-shaped tunnel entrance, making them easier to defend.

However, to improve things further I often add an entrance reducer. The ‘roof’ of the horizontal part of the L-shaped entrance has two small screws set into it 10 which act as ‘stops’ for the entrance reducer which I build out of the bottom bar of a frame.

A case of misdirection …

My quality control is a bit shonky and these reducers sometimes fit rather poorly. To make them a better fit I added a few wraps of gaffer tape. Initially I used black tape. However, it was clear that this looked sufficiently like the dark entrance to the hive that the bees were getting ‘misdirected’ away from the real entrance to the black tape.

That’s better …

To avoid further confusion I added an overwrap of a lighter coloured tape. All of which resulted in me revisiting some of the scientific literature on bee vision … which I’ll save for another day.


 

DIY queen cell incubator

NOTE: This post is now redundant as I have designed, built and tested version 2 of my portable queen cell incubator. I’m leaving this post here for those who wanted to read some of the background information.


You can please some of the people all of the time, you can please all of the people some of the time, but you can’t please all of the people all of the time … so said John Lydgate (1370-1450).

And he wasn’t wrong.

This is something I’m particularly aware of writing a weekly post on beekeeping. Much like my talks to beekeeping associations, the ‘audience’ (in this case the readership) ranges from the outright beginner to those with way more experience than me.

An article, like the one last week, on transporting your first nuc home and transferring it to a new hive, is unlikely to be of much interest to an experienced beekeeper.

Conversely, a post on something esoteric – like Royal patrilines and hyperpolyandry – is probably going to be given a wide berth by someone who has recently started beekeeping 1.

There’s no way I can write something relevant, interesting and topical for the entire breadth of experience of the readers 2

Going by the popularity of certain posts it’s clear that many readers are relatively inexperienced beekeepers.

The post entitled Queen cells … don’t panic! contains little someone who has kept bees for five years doesn’t or shouldn’t already know 3. Nevertheless, it is one of the most popular pages over the last couple of years. It has already been read more times this year than all previous years 4.

I suspect the majority of these thousands of viewings are from new(ish) beekeepers.

If you’re in this group then I suggest you look away now 😉 5

I’m going to discuss a pretty focused and specialised topic of relevance to perhaps a fraction of 10% of all beekeepers

The 10%

When I started beekeeping I was certain I would never be interested in queen rearing.

In fact I was so certain that, when repeatedly re-reading Ted Hooper’s book Bees and Honey, I’d skip the chapter on queen rearing all together. 

By ‘queen rearing’ I mean larval selection, grafting, cell raisers, cell finishers, mini-nucs, drone flooding etc. 

Queen cells from grafted larvae … what a palaver!

What a palaver!

All I wanted was a few jars of honey.

Oh yes, and slightly better tempered bees.

And perhaps a nuc to overwinter ‘just in case’.

What about a queen or two ‘spare’ for those swarms I miss?

A year or two later I had the opportunity – through the generosity of the late Terry Clare – to learn the basics of queen rearing and grafting

A week later I had a go on my own.

Amazingly (though not if you consider the tuition) it worked 🙂 . I successfully reared queens from larvae I’d selected, transferred, produced as capped cells and eventually got mated.

It was probably the single most significant event in my experience as a beekeeper. I got my nuc to overwinter and I’ve gradually improved my bees through selecting from the best and requeening the worst. I know how to produce ‘spare’ queens, though need them less frequently as my swarm control has also improved 😉  6

I don’t know what proportion of beekeepers ‘actively’ rear their own queens. I suspect it’s 10% or less.

But even that select group aren’t the target audience for this post.

The target audience are queen rearers who need to incubate queens or queen cells for protracted periods (hours to days) without constant access to mains electricity.

Let me explain

The peripatetic beekeeper

I live on the remote west coast of Scotland 7 but keep the majority of my bees in Fife. 

My apiaries in Fife are 30-40 minutes apart, and I drive past one on my way to my main apiary (in St Andrews). If I need a ‘spare’ queen in an out apiary (and have one in St Andrews) it adds over an hour to what is already a four hour beekeeping commute.

That’s an hour of my life I’ll never get back and something I’d really like to avoid 8.

On the west coast beekeepers and bees are very thin on the ground. I’ve just started queen rearing here and (again) have a 45 minute commute between apiaries 9. I’m working with another beekeeper and larvae are sourced from one and the cells are raised in another.

You can move frames of larvae about if you keep them warm and humid – a damp tea towel works well – at least if the times/distances are not too great.

But there’s an added complication … this area is Varroa free and I don’t want to be moving potentially mite-infested frames into the area. Nor do I want to deplete any of the donor colonies of brood frames.

All I want to move are a few larvae … but they’re a lot more fragile and sensitive.

So … two slightly unusual situations.

It seemed to me that my life would be a lot easier if I had some sort of portable queen and queen cell incubator.

My trusty honey warming cabinet

More than most events in beekeeping, the timing of the various stages of queen rearing is very clearly defined. You graft day old larvae and use the cells 10 days later. This timing currently defines the dates of my trips … except that sometimes there are diary clashes.

If my apiary with the cell raising colony was a mile away I could just go later in the day. 

But it’s not … 🙁

Before I started this (temporary) life as a travelling beekeeper I’d sometimes needed to incubate queen cells that were near to emergence. Once the cell is capped you can put it in an incubator, either until you use it as a capped cell, or until the virgin queen emerges. You then requeen a colony using the recently emerged virgin queen.

This was clearly another option to make the diary clashes less of an issue – raise the cells and then incubate them (outside the hive) until emergence, and then use the queens.

I’d already used my trusty honey warming cabinet to incubate queen cells. When I built this I used an Ecostat chicken egg incubator element rather than a 100 W incandescent bulb. The Ecostat heaters are thermostatically controlled and do a pretty good job of maintaining a stable temperature, anywhere between the high 20’s (°C) and about 55°C.

A day in the life of my honey warming cabinet (click for explanation of fluctuations)

There were two minor issues … the incubator needed a 240 V mains supply and was about the size of my car 10.

Honey warming cabinet. The Apiarist

Honey warming cabinet …

However, it’s perfect if you need to incubate 800 queen cells at once 😉

What I needed was a smaller, more portable, ‘battery’ – or at least 12V – powered version … 11

Beekeepers have short arms and deep pockets

One obvious solutions was to use a commercially available hen egg incubator. Brinsea are one of the market leaders and I know several beekeepers who use them as queen cell incubators. 

Although they are usually mains powered, they actually have an integral transformer and run at 12V, so could be powered from a car cigarette lighter socket. Temperature and humidity are controlled. They start at about £80 and would need modifying to accommodate queen cells, or Nicot cages containing queens.

The beekeeping-specific commercial solution is the Carricell.

Carricell queen cell incubator

These are manufactured in New Zealand in three sizes – for 40, 70 or 144 queen cells. Swienty (and presumably others) sell the 70 cell variant 12 over here for €636 13.

Excluding VAT 🙁

Beekeepers are notoriously commendably parsimonious. Since I have an alter ego named Dr. Bodgit, it seemed logical to try and build my own.

For a little less that €636 …

And ideally less than £80 😉

But first I needed to know more about the influence of temperature on queen cell development.

Temperature and development

The usual temperature quoted for the broodnest is about 35°C. Numerous studies have shown that, although the temperature is never constant, it is always in the range 33-36°C 14

It is reasonably well known that temperature can influence the development time of honey bees. At lower temperatures, development takes a little bit longer.

More significantly, Jürgen Tautz and colleagues showed almost two decades ago that honey bee workers reared (as pupae) at low temperatures have behavioural deficiencies 15.

For example, workers reared at 32°C showed reduced waggle dance activity when compared to bees reared at 36°C. Not only were they less likely to dance to advertise a particular nectar source, but they would dance less enthusiastically, performing fewer dance circuits.

In tests of learning and memory – for example associating smells with syrup rewards – bees reared as pupae at 32°C were also impaired when compared to bees reared at 36°C.

Tautz also demonstrated that bees reared at the lower temperature were more likely to go ‘missing in action’. They disappeared at a faster rate from the hive than the bees reared at the higher temperature. This strongly suggests their compromised memory or learning also had a negative influence on their survival. For example, in predator evasion, flight duration or the ability to find the hive.

OK … so temperature is really rather important for worker development.

Perhaps very accurate thermostatic control will be needed?

But what about queens?

There are good reasons to think that queen development might not be quite as sensitive to lower temperatures.

Queen cells are relatively rarely found in the centre of the broodnest. Those that are are often considered to be ‘supersedure cells‘, though location alone is probably not definitive.

Where are queen cells more usually found?

At the periphery of the broodnest, decorating the lower edges of the frame and even protruding down into the space below the bottom of the comb.

Queen cells

Queen cells …

Logic suggests that these might well experience lower temperatures simply by being at or near the edge of the mass of bees in the cluster. 

Perhaps queen development is less temperature sensitive?

Fortunately, I don’t need to rely on (my usually deeply flawed) logic or informed guesses … the experiment has been done 16.

Chuda-Mickiewicz and Samborski incubated queen cells at 32°C and 34.5°C. Those incubated at the lower temperature took ~27 hours longer to emerge than those at 34.5°C (which emerged at 16 days and 1 hour after egg laying).

However, of the variables measured, this was the only significant difference observed between the two groups. Body weights at emergence were similar, as were the spermathecal volume and ovariole number.

In both temperature groups ~90% of (instrumentally) inseminated queens started laying eggs.

So perhaps development temperature is not so critical (for queens after all).

The cheque queen is in the post

Finally, I expected my bodged incubator would also be used to transport mated queens. There’s good evidence that these are very robust 17. After all, you can get them sent in the post 18

Again, the experiment has been done 🙂

Survival of adult drones, queens and workers at 25°C, 38°C and 42°C

Jeff Pettis and colleagues investigated the influence of temperature on queen fertility 19 and concluded that incubation within the range 15-38°C are safe with a tolerance threshold of 11.5% loss of sperm viability 20

In addition, Pettis looked at the influence of high or low temperatures on adult viability (see graph above). Queens and workers survived for at least 6 hours at 25°C or 42°C. In contrast drones, particularly at high temperatures, ‘dropped like flies’ 21.

Stand back … inventor at work

Version 1 of the incubator was built and has been used successfully.

Queen cell incubator – exterior view (nothing to see here)

It consists of a polystyrene box housing a USB-powered vivarium heating mat. This claims to offer three heating levels – 20-25°C, 25-30°C and 30-35°C – though these are not when confined in a well-insulated box where it can reach higher temperatures. I’m not sure I believe the amperage/wattage information provided and don’t have the equipment to check it.

I run it from a 2.1A car USB socket, or a similar one that plugs into the mains.

The battery pack in the picture above runs the Raspberry Pi computer that is monitoring the temperature 22. It’s important to have accurate temperature monitoring and to do some trial runs to understand how quickly the box warms/cools. In due course all this wiring can either be omitted or built in … but it wouldn’t be a proper invention unless it looked cobbled together 😉

Not a lot to see here either …

Inside the box is a lot of closed cell foam – some crudely butchered to accommodate Nicot queen cages – sitting on top of a large ‘freezer block’. This acts as a hot water bottle. There’s also a plastic tray holding some soggy kitchen towel to raise the humidity.

Define ‘success’

The box has been used for the following:

  • transfer grafted larvae from an out apiary to a cell raising colony an hour away. Success defined by getting the grafted larvae accepted by the cell raiser.
  • transport queen cells up to 7 hours by car 23. Success defined by requeening colonies with the cells.
  • transport and maintain virgin queens for 7-10 days. These emerged in the incubator and then accompanied me back and forth before being used. All are now in hives and out for mating.

While powered – either in the house or the car – the box is easy to maintain at an acceptable temperature for extended periods, though it takes some time to reach the operating temperature.

An afternoon collecting and distributing queen cells to an out apiary

Even when opening the lid as queen cells are added/removed the temperature fluctuates by no more than 2-3°C. The graph above was generated from temperature readings taking queen cells from one apiary to another.

I’ll describe maintaining queens for extended periods in an incubator (with no attendant bees) in a future post.

The future

This really is a bodged solution.

At the moment the temperature has to be changed manually to keep it within the 32-35°C range. This might only be every few hours, depending upon how frequently the box is opened.

The combination of the insulation and the ‘hot water bottle’ freezer block means it can be left unattended overnight.

However, it really needs to have automatic temperature control. This should be trivial to add but will require more time than I have at the moment and for the box to be empty. It’s accompanying me on an exotic holiday to Glenrothes for the next three days 24 and will be in use for much of July as I start to make up nucs for overwintering.

So … as promised, an inelegant but working solution for a fraction of the 10% of beekeepers who rear queens. 

At a fraction of the price of a commercial one 🙂


STOP PRESS – update 7th September ’21

I now have a working solution with proper thermostatic temperature control. It’s currently going through a final series of tests. I strongly suggest you don’t follow the botch-up design described above, but wait for another post on this subject sometime this winter. It’s possibly to build a queen cell incubator with fully automatic temperature control of ±0.5°C that will work at home or in a vehicle for about £60.

STOP PRESS – update 26th November ’21

Full details of version 2 have now been published and this page is left here for historical reasons only …