Category Archives: Drones

Women without men

The title of the post last week was The end is nigh which, looking at the fate of drones this week, was prophetic.

Shallow depth of field

Watch your back mate … !

After the ‘June gap’ ended queens started laying again with gusto. However, there are differences in the pattern of egg laying when compared to the late spring and early summer.

Inspections in mid/late August 1 show clear signs of colonies making preparations for the winter ahead.

For at least a month the amount of drone brood in colonies has been reducing (though the proportions do not change dramatically). As drones emerge the cells are being back-filled with nectar.

Seasonal production of sealed brood in Aberdeen, Scotland.

The data in the graph above was collected over 50 years ago 2. It remains equally valid today with the usual caveats about year-to-year variation, the influence of latitude and local climate.

Drones are valuable …

Drones are vital to the health of the colony.

Honey bees are polyandrous, meaning the queen mates with multiple males so increasing the genetic diversity of the resulting workers.

There are well documented associations between colony fitness and polyandry, including improvements in population growth, weight gain (foraging efficiency) and disease resistance.

The average number of drones mating with a queen is probably somewhere between 12 and 15 under real world conditions. However studies have shown that hyperpolyandry further enhances the benefits of polyandry. Instrumentally inseminated queens “mated” with 30 or 60 drones show greater numbers of brood per bee and reduced levels of Varroa infestation.

Why don’t queens always mate with 30-60 drones then?

Presumably this is a balance between access, predation and availability of drones. For example, more mating would likely necessitate a longer visit to a drone congregation area so increasing the chance of predation.

In addition, increasing the numbers of matings might necessitate increasing the number of drones available for mating 3.

… and expensive

But there’s a cost to increasing the numbers of drones.

Colonies already invest a huge amount in drone rearing. If you consider that this investment is for colony reproduction it is possible to make comparisons with the investment made in workers for reproduction i.e. the swarm that represents the reproductive unit of the colony.

Comparison of the numbers of workers or drones alone is insufficient. As the graph above shows, workers clearly outnumber drones. Remember that drones are significantly bigger than workers. In addition, some workers are not part of the ‘reproductive unit’ (the swarm).

A better comparison is between the dry weight of workers in a swarm and the drones produced by a colony during the season.

It’s worth noting that these comparisons must be made on colonies that make as many drones as they want. Many beekeepers artificially reduce the drone population by only providing worker foundation or culling drone brood (which I will return to later).

In natural colonies the dry weight of workers and drones involved in colony reproduction is just about 1:1 4.

Smaller numbers of drones are produced, but they are individually larger, live a bit longer and need to be fed through this entire period. That is a big investment.

Your days are numbered

And it’s an investment that is no longer needed once the swarming season is over. All those extra mouths that need feeding are a drain on the colony.

Even though the majority of beekeepers see the occasional drone in an overwintering colony, the vast majority of drones are ejected from the hive in late summer or early autumn.

About now in Fife.

In the video above you can see two drones being harassed and evicted. One flies off, the second drops to the ground.

As do many others.

There’s a small, sad pile of dead and dying drones outside the hive entrance at this time of the season. All perfectly normal and not something to worry about 5.

Drones are big, strong bees. These evictions are only possible because the workers have stopped feeding them and they are starved and consequently weakened.

A drone’s life … going out with a bang … or a whimper.

An expense that should be afforded

Some of the original data on colony sex ratios (and absolute numbers) comes from work conducted by Delia Allen in the early 1960’s.

Other colonies in these studies were treated to minimise the numbers of drones reared. Perhaps unexpectedly these colonies did not use the resources (pollen, nectar, bee bread, nurse bee time etc) to rear more worker bees.

In fact, drone-free or low-drone colonies produced more bees overall, a greater weight of bees overall and collected a bit more honey. This strongly suggests that colonies prevented from rearing drones are not able to operate at their maximum potential.

This has interesting implications for our understanding of how resources are divided between drone and worker brood production. It’s obviously not a single ‘pot’ divided according to the numbers of mouths to feed. Rather it suggests that there are independent ‘pots’ dedicated to drone or worker production.

Late season mating and preparations for winter

The summer honey is off and safely in buckets. Colonies are light and a bit lethargic. With little forage about (a bit of balsam and some fireweed perhaps) colonies now need some TLC to prepare them for the winter.

If there’s any reason to delay feeding it’s important that colonies are not allowed to starve. We had a week of bad weather in mid-August. One or two colonies became dangerously light and were given a kilogram of fondant to tide them over until the supers were off all colonies and feeding and treating could begin. I’ll deal with these important activities next week.

In the meantime there are still sufficient drones about to mate with late season queens. The artificial swarm from strong colony in the bee shed was left with a charged, sealed queen cell.

Going by the amount of pollen going in and the fanning workers at the entrance – see the slo-mo movie above – the queen is now mated and the colony will build up sufficiently to overwinter successfully.


Colophon

Men without Women

Men without women was the title of Ernest Hemingway’s second published collection of short stories. They are written in the characteristically pared back, slightly macho and bleak style that Hemingway was famous for.

Many of these stories have a rather unsatisfactory ending.

Not unlike the fate of many of the drones in our colonies.

Women without men is obviously a reworking of the Hemingway title which seemed appropriate considering the gender-balance of colonies going into the winter.

If I’d been restricted to writing using the title Men without Women I’d probably have discussed the wasps that plague our picnics and hives at this time of the year. These are largely males, indulging in an orgy of late-season carbohydrate bingeing.

It doesn’t do them any good … they perish and the hibernating overwintering mated queens single-handedly start a new colony the following spring.

Sphere of influence

How far do honey bees fly? An easy enough question, but one that is not straightforward to answer.

The flight range of the honeybee ...

The flight range of the honeybee …

Does the question mean any honey bee i.e. workers, drones or the queen? As individuals, or as a swarm?

Is the question how far can they fly? Or how far do they usually fly?

Why does any of this matter anyway?

Ladies first …

Workers

The first definitive experiments were done by John Eckert in the 1930’s. He located apiaries in the Wyoming badlands at increasing distances from natural or artificial forage 1. Essentially the bees were forced to fly over a moonscape of rocks, sand, sagebrush and cacti to reach an irrigated area with good forage. He then recorded weight gain or loss of the hives located at various distances from the forage.

Wyoming badlands

Wyoming badlands …

The original paper can be found online here (PDF). The experiments are thorough, explained well and make entertaining reading. They involved multiple colonies and were conducted in three successive years.

Surprisingly, Eckert showed that bees would forage up to 8.5 miles from the colony. This means they’d be making a round trip of at least 17 miles – and probably significantly more – to collect pollen and nectar.

However, although colonies situated within 2 miles of the nectar source gained weight, those situated more than 5 miles away lost weight during the experiments.

Gain or loss in hive weight ...

Gain or loss in hive weight …

Therefore, bees can forage over surprisingly long distances, but in doing so they use more resources than they gain.

John Eckert was the co-author (with Harry Laidlaw) of one of the classic books on queen rearing 2. His studies were probably the first thorough analysis of the abilities of worker bees to forage over long distances. Much more recently, Beekman and Ratnieks interpreted the waggle dance (PDF) of bees to calculate foraging distances to heather. In these studies, only 10% of the bees foraged ~6 miles from the hive, although over 50% travelled over 3.5 miles.

Queens

Queens don’t get to do a lot of flying. They go on one or two matings flights, perhaps preceded by shorter orientation flights, and they might swarm.

Heading for a DCA near you ...

Heading for a DCA near you …

I’ll deal with swarms separately. I’ll also assume that the orientation flights are no greater than those of workers (I don’t think there’s any data on queen orientation flight distance or duration) at no more than ~300 metres 3.

On mating flights the queen flies to a drone congregation area (DCA), mates with multiple drones and returns to the colony. DCA’s justify a complete post of their own, but are geographically-defined features, often used year after year.

There are a number of studies on queen mating range using genetically-distinguishable virgin queens and drones in isolated or semi-isolated locations. They ‘do what they say on the tin’, drone congregate there and wait for a virgin queen

In the 1930’s Klatt conducted studies using colonies on an isolated peninsula and observed successful mating at distances up to 6.3 miles

Studies in the 1950’s by Peer demonstrated that matings could occur between queens and drones originally separated by 10.1 miles 4. These studies showed an inverse relationship between distance and successful mating.

More recently, Jensen et al., produced data that was in agreement with this, with drone and queen colonies separated by 9.3 miles still successfully mating 5.

However, this more recent study also demonstrated that more than 50% of matings occurred within 1.5 miles and 90% occurring within 4.6 miles.

Just because they can, doesn’t mean they do 🙂

Drones … it takes 17 to tango …

Seventeen of course, because that’s one queen and an average of 16 drones 😉

There’s a problem with the queen mating flight distances listed above. Did the queen fly 9 miles and the drone fly just a short distance to the DCA?

Or vice versa?

10 miles ... you must be joking!

10 miles … you must be joking!

Or do they meet in the middle?

Do queens choose 6 to fly shorter distances because it minimises the risk of predation and because they are less muscle-bound and presumably less strong flyers than drones?

Alternatively, perhaps drones have evolved to visit local DCAs to maximise the time they have aloft without exhausting themselves flying miles first?

Or getting eaten.

It turns out that – at least in these long-distance liaisons – it’s the queen that probably flies further. Drones do prefer local DCAs 7 and most DCAs are located less than 3 miles from the ‘drone’ apiary 8.

Swarms

I’ve discussed the relocation of swarms recently. Perhaps surprisingly (at least in terms of forage competition), swarms prefer to relocate relatively near the originating hive. Metres rather than miles.

The sphere of influence

Effective foraging – in terms of honey production (or, for that matter, brood rearing) – occurs within 2-3 miles of the hive. This distance is also the furthest that drones usually fly to occupy DCAs for mating.

Queens can fly further, but it’s the law of diminishing returns. Literally. The vast majority of matings occur within 5 miles of the hive.

In fact, other than under exceptional circumstances, a radius of 5 miles from a colony probably represents its ‘sphere of influence’ … either things that can influence the colony, or that the colony can influence.

Why does this matter?

Worker flight distances are relevant if you want to know the nectar sources your bees are able to exploit, or the pollination services they can provide. In both cases, closer is better. It used to also be relevant in trying to track down the source of pesticide kills, though fortunately these are very much rarer these days.

Closer is better ...

Closer is better …

Workers not only fly to forage on plants and trees. They also fly to rob other colonies. I don’t think there are any studies on the distances over which robbing can occur, but I’ve followed bees the best part of a mile across fields from my apiary to find the source of the robbing 9.

All of these movements can also transport diseases about, either in the form of phoretic Varroa mites piggybacking and carrying a toxic viral payload, or as spores from the foulbroods.

Drone and queen flight distances are important if you’re interested in establishing isolated mating sites to maintain particular strains of bees. My friends in the Scottish Native Honey Bee Society have recently described their efforts to establish an isolated queen mating site in the Ochil Hills.

And I’m interested as I now have access to a site over 6 miles from the nearest honey bees in an area largely free of Varroa.

It’s not the Wyoming badlands, but it’s very remote 🙂


 

Last of the drones

At the inspections last weekend there was only one colony with obvious numbers of drones present. We’ve had nearly a full month with no appreciable nectar flow and the colonies have almost all ejected the drones. Here’s one of the few that were left:

Last of the drones

Last of the drones

 

Not long mate until you too are chucked out during the autumn purge. Watch your back!

This colony was a swarm that was attracted to a bait hive in early June. I don’t know whether bee genetics influences the time when drones are ejected from the hive, but it’s notable that almost all the other queens in the apiary are half sisters (unrelated to the queen from the swarm) and there wasn’t a drone to be seen in half a dozen hives. The other notable thing about this colony is that the Varroa levels remain stubbornly high despite three treatments by sublimation. I’m just starting a second series of treatments to get the numbers down to a more acceptable level.