Category Archives: Beekeeping

A tale of two swarms

Or … why it’s good practice to clip the wing of the queen.

After a cool start to May it’s now (s)warmed up nicely. Colonies are piling in nectar, mainly from the OSR, and building up really strongly.

It’s at times like these that vigilance is needed. A skipped inspection, a missed queen cell, and the season can go from boom to bust as 75% of your workforce departs in a swarm.

Not the entire season … but certainly the first half of it.

All beekeepers lose swarms … but should try not to

Natural comb

Natural comb …

All beekeepers lose swarms.

At least, all honest ones do 😉

However, I can think of at least four reasons why it’s pretty shoddy beekeeping practice to repeatedly lose swarms 1.

  1. Beekeepers like bees, but some of the general public do not. Some are frightened of bees and a few risk a severe (or even fatal) anaphylactic reaction if stung. Beekeepers have a responsibility not to frighten or possibly endanger non-beekeepers.
  2. Most swarms do not survive. Studies of ‘wild’ bees have shown that swarming is an inherently risky business 2. The swarm needs to find a suitable new home and then collect sufficient nectar to draw enough comb to build up the colony and store food for the  winter. The vagaries of the weather, forage availability and disease ensure that most swarms do not overwinter successfully.
  3. Swarms have a high Varroa load. The mites transfer a heady mix of unpleasant viruses within the colony, shortening the lives of the overwintering bees. With high virus and mite loads the swarm colony is likely to be robbed by nearby strong colonies. This effectively transfers the mites and viruses to nearby managed colonies, so risking their survival.
  4. The swarmed colony is left with a new virgin queen. She has to mate successfully to ensure the continued survival of the colony. Again, the vagaries of the weather mean that this isn’t certain.

And you get less honey 🙁

Regular inspections help prevent the loss of swarms. But it’s good to get all the help you can.

Here’s a brief account of two recent events that illustrate the differences between swarms from colonies with clipped queens or unclipped queens.

Swarm in an out apiary

I have an out apiary in a reasonably remote spot containing half a dozen colonies. I keep my poorly behaved bees there 🙂 There are other apiaries in the area as the forage is good.

I went to inspect the hives at the end of April. This was only the second inspection of the year. On arriving I found most colonies were very active, but one was suspiciously quiet.

Thirty metres away there was a swirling mass of bees settling in the low branches of a conifer.

My three initial thoughts were “Aren’t swarms a great sight?”“Dammit, they shouldn’t have swarmed!” and “Perfect timing, where’s the skep?”.

Skep and swarm

Skep and swarm

The skep was in the car. It usually lives there during the swarming season. The bees were spread over two or three branches, all drooping under the weight. After a bit of gardening I managed to drop the majority of the bees into the upturned skep 3.

I inverted the skep over a white sheet laid out on the grass and propped one side up using a bit of wood.

The air was full of bees. While I busied myself inspecting the lively (in more ways than one 😉 ) colonies, the swarm gradually started to settle into the skep.

Skep and swarm

Skep and swarm

There were lots of bees exposing the Nasonov’s gland at the end of the abdomen, fanning frantically at the entrance to the upturned skep. This is a pretty certain indication that I’d managed to get the queen into the skep.

Fanning bees

Fanning bees

An hour later I’d finished all but one inspection – the quiet colony – it was beginning to get cool and the light was fading.

I could no longer see eggs, not because there weren’t any but because I’m not an owl.

The swarm still needed to be hived so I left the quiet colony until the following day, wrapped the skep in the sheet and took it to another apiary.

Brrrr!

And then the temperature plummeted. For the following week the daytime highs barely reached double figures. Nighttime temperatures were low single digit Centigrade.

The swarm would likely have perished and had a virgin queen emerged in the ‘quiet hive’ she’d have not got out to mate.

I didn’t look in another hive until the 7th, but when I did I got a surprise.

The ‘quiet hive’ contained a marked laying queen. I’d requeened this colony late in 2018 and my notes were a little, er, shambolic 🙁

I’d not recorded whether the queen was clipped and marked (the usual situation), marked only (not entirely unusual) or clipped only (not unknown!).

Whatever, they hadn’t swarmed after all 🙂

They were quiet because they had a high Varroa load with overt signs of DWV infection. Mite and virus levels in late September had been checked and confirmed to be very low. Presumably the mites had been acquired by drifting or robbing late in the season 4.

The hived swarm contained an unmarked laying queen and are lovely calm bees 🙂

A swarm in my home apiary

Fewer photos for this one as I didn’t have a camera with me …

I arrange my hives with the frames oriented ‘warm way’ 5 and inspect them standing behind the hive to avoid returning foragers.

Number 29, your time is up.

Number 29, your time is up.

Earlier this week I noticed a few bees flying under the DIY open mesh floor (OMF) from behind one hive. It’s not unusual to have bees at knee height during inspections but since all I was doing was dropping a nuc off in the apiary I didn’t give it much more thought.

Later in the week I returned to do the weekly inspection.

There were more bees going underneath the hive.

With a bit of effort I peered under the floor to find a 5cm deep slab of bees almost entirely filling the space under the OMF.

Better notes means you know what to expect

My notes were much more comprehensive this time 😉

I knew that the colony had a 2018 white marked and clipped queen.

I removed the supers (which were reassuringly heavy) and quickly inspected the brood box.

Lots of bees, lots of sealed brood, some late-stage larvae but no eggs.

In addition I could see two queen cells … one sealed and one about 3-4 days old, unsealed and with a fat larva sitting in a thick bed of Royal Jelly.

Don’t panic

It was pretty obvious what had happened.

The colony had swarmed 6 but the clipped queen, being unable to fly, had crashed to the ground in a very unregal manner, climbed back up the hive stand and sheltered under the OMF. The swarm had then clustered around her.

They had probably been there for a few days.

Another swarm hived

I placed a new floor and brood box next to the swarmed colony, with the entrance facing the ‘back’. I removed the swarmed brood box and, with a sharp shake, dumped the entire slab of swarmed bees from underneath the OMF into the new hive.

Before adding back all the brood frames I peered into the box as a tsunami of bees started moving from the floor up the side walls.

There! A white marked clipped queen 🙂

White clipped and marked queen returning to the colony

You’ll now have a better chance of finding and keeping her if they swarm.

It’s always reassuring to know where the queen is … and to have good enough notes to know what to look for 😉

I assembled and closed up the new hive and put the swarmed hive back in its place. I then carefully went through every frame checking for queen cells again.

There were only two. I destroyed the sealed cell. I didn’t know how old it was and couldn’t be certain it contained a developing queen.

In contrast, I could ‘age’ the unsealed cell (3-4 days) and knew it contained a larva and copious amounts of food.

I prefer to know when a queen emerges rather than save a few days by leaving the sealed cell. I only generally leave one cell to prevent casts being lost.

There were very young larvae in the colony. It is therefore possible the bees could generate more queen cells in the next day or so. Since I know when the queen will emerge I can check the colony before then and destroy any further cells they generate.

Two swarms, the same outcome … lessons learned

As far as this beekeeper (and I hope the bees 7) is concerned both swarms had a satisfactory outcome.

A number of lessons can be learned from events like these:

  • All beekeepers ‘lose’ swarms. Weather, work, emergencies and life generally can conspire to interrupt the 7 day inspection cycle. Sod’s Law dictates that when it does, the colony will swarm. I’m reasonably conscientious about inspections but I completely missed the signs the home apiary colony was about to swarm.
  • The weather can change suddenly. The swarm in the conifer would have probably perished from the cold in early May. If the weather had stayed warm the scout bees would have found a welcoming church tower or roof space to occupy in a day or so. In both cases the swarm would have been truly lost.
  • It’s always good to carry equipment to capture a swarm. A sheet and a skep, or a large nuc box. Secateurs make ‘gardening’ easier (mine are no longer AWOL). Spare equipment (hives) is essential during the swarm season.
  • An obviously smaller-than-expected colony and a nearby swarm may well be completely unrelated. Check why the colony is weak and take remedial action if needed (mine has Apivar strips in now).
  • Colonies near my out apiary appear to have high mite levels. Since that’s where the conifer swarm came from this also now has Apivar strips in.
  • When is a lost swarm not lost? When the queen is clipped. The queen cannot go far so neither can the swarm. If she returns to the hive stand or the underside of the floor, so will the swarm. If she perishes for some reason the swarm usually returns to the original hive.
  • You can keep bees without knowing where the queen is, but it’s easier if you do. Marking her helps find her, clipping her wing helps keep her there 8.
  • Similarly, knowing when the queen will emerge allows you to predict when she will be mated and start laying. You can avoid interrupting her returning from her mating flight and – before then – you can remove other queen cells to prevent the loss of a cast from a strong colony.
  • Good notes help. Keep them 😉

It’s relatively easy to find unmarked queens in smallish colonies early in the season. It’s a lot harder to find them in a strong colony in mid-May.

Mid-May ... 45,000 bees, 17 frames of brood, one queen ... now marked

Mid-May … 45,000 bees, 17 frames of brood, one queen … now marked and clipped

But it’s worth finding her, marking her and clipping one wing.

If you don’t the swarm you lose might really be lost 😉


 

 

Queen marking

You don’t need to see the queen during your weekly inspection of the colony. There are clues that are usually enough to tell you the colony is queenright. These include the general temper and demeanour of the colony, the presence of ‘polished’ cells ready for the queen to lay eggs in and, of course, the presence of eggs.

Of these, temper can be influenced by weather or forage availability 1 so might be less trustworthy.

Queenright?

Queenright?

And, of course, eggs only tell you the queen was present when they were laid … so sometime in the last three days.

Seeing is believing

If you really want to be certain there is a queen present – for example, because you need to put her in a specific place for swarm control using a Pagden artificial swarm or the nucleus method – then you need to find the queen.

I’ve discussed this before so won’t cover the subject again.

Having found her, how can you make it easier to find her again?

The obvious (pun intended) thing to do it to mark her in a way that makes her distinctive. She will therefore be easy to see amongst the thousands of her daughters running around the hive.

Marked queen surrounded by a retinue of workers.

Her majesty …

There are additional advantages to marking the queen.

The presence of a blob of paint also provides some temporal information.

If you find an unmarked queen in a hive that you know was previously occupied by a marked queen then:

  • the colony has swarmed and requeened itself … and your inspections are too infrequent!
  • the marked queen has been superceded 2. It’s not unusual to find an unmarked queen in a hive at the first inspection of the season, suggesting that the colony superceded the queen late in the previous year, or …
  • the paint has worn away 😉

If you use different coloured markings for different years you can even determine the age of the queen.

Tipp-Ex, Humbrol or Posca

You mark the queen by placing a contrasting spot of coloured paint on the top of her thorax.

Tipp-Ex (typing correction fluid) works perfectly well though the usual applicator brush is a bit too broad. It dries rapidly and the aliphatic hydrocarbon solvents it contains do not appear to adversely affect the odour of the queen.

Tipp-Ex is only available in white. Contrasting certainly, but this gives no opportunity to indicate the year the queen was reared.

As an alternative you can use one of the ~180 Humbrol Enamel paints. These are used by model makers to paint their locomotives, toy soldiers or Airfix kits and so are available in a wide range of not very useful shades like Dark Camouflage Grey or RAF Blue.

Fortunately they are also sold in some rather strident yellows, reds and greens that should be visible in the hive.

Humbrol Enamel paints are sold in small, rather fiddly little tins. Not ideal when you’re wearing gloves and a beesuit. They need shaking/mixing before use, open easily with the thin blade of a hive tool and can be applied with the end of a matchstick.

Despite the solvent base of Humbrol Enamel paint, it doesn’t dry particularly fast. I’ve only used it a few times and abandoned it in favour of …

Posca are water-based art pens. Their model PC-5M has a bullet tip ~2.5mm in diameter and so combines paint and applicator in one easy-to-use package. These pens also come in a wide range of colours.

Shock news! Beekeepers in agreement.

Beekeepers use different colours to indicate the year a particular queen was reared. Since queens rarely live more than 3 years a total of 5 different colours are sufficient to age-mark queens without confusion.

Amazingly 3, as far as I’m aware all beekeepers use the same queen marking colour scheme.

Colour Use in Year ending
White 1 or 6
Yellow 2 or 7
Red 3 or 8
Green 4 or 9
Blue 5 or 0

Queens reared this year (2019) should therefore be marked green.

Any colour as long as it’s white

Or blue.

I’m red-green colourblind. This means I struggle to discriminate between some reds and greens. It also means that I ‘trust’ colours (or my ability to distinguish between them) less. Subtle differences are often ignored 4.

A bright yellow dot on the thorax of a queen is easy to see … except in a colony that is piling in lots of OSR pollen, when every fifth worker is loaded down with bright yellow corbiculae.

I therefore only mark my queens white or blue.

These are both colours that I find easy to see, that are rarely present in pollen baskets or elsewhere in the hive, and so are very distinctive.

I used to alternate odd and even years until my blue Posca pen stopped working 🙁

Failing Posca queen marking pen

My white Posca pen has just starting playing up. If you search you can find them for about £5 for three and they last for years.

Easier said than done

I started an earlier section with the words “You mark the queen by placing a contrasting spot of coloured paint on the top of her thorax”.

Beginners can find this a daunting task.

After all, isn’t the queen the most important and precious member of the hive?

What if you squash her by accident? Or the other bees don’t like the smell of the paint and attack her? What if she flies away?

OK, the first of these is a disaster 5, but is relatively easily avoided using one of the methods described below. The second is unlikely if you let the paint dry properly and very unlikely if you use a water-based Posca pen.

The third is also unlikely … (mated) queens are generally reluctant to fly and, if they do, they fly poorly. You can generally pick her up from the grass near your feet 6. If you lose sight of her, close up the hive and carefully leave the area (watch where you step). She will usually return to the hive.

So, although it is easier said than done, marking queens is not that difficult and is a very useful skill to become competent and confident at 7.

To mark the queen she must be immobilised. There are essentially three ways to do this:

  1. On the frame, using a press in cage. Also called a crown of thorns (or crown of thorne’s, depending where you purchased it 😉 ) cage.
  2. Off the frame in a handheld queen marking cage.
  3. Off the frame simply holding her between your thumb and forefinger.

Crown of thorns or press in cage

Press in cage

Press in cage

The press in cage is a wood, plastic or metal ring with spikes protruding from one side. Over the top is a thread (or plastic in cheaper versions) mesh. You find the queen on the frame, place the press in cage over her without spearing her, or her retinue, push down gently to immobilise her and then apply a dab of paint to her thorax.

This is easier said than done.

Firstly, there are usually lots of bees on the frame the queen is on. Isolating her from her daughters can be tricky. The more you chase her around the frame the faster she runs … and then she disappears around the side bar and you have to start all over again.

You need three hands. You cannot hold the frame, the cage and the pen. The cage needs to be held when you use the pen. You therefore must place the frame down horizontally (usually on the top bars of the other frames) and the bees on the underside may not appreciate this.

As soon as you’ve isolated her the workers clamber on top of the press in cage, obscuring your view of the queen.

Your view isn’t good anyhow as you are hunched over the frame, almost certainly blocking the light and making everything more difficult to see.

Is it obvious I’m not a big fan of the press in cage?

I know I still carry one as I periodically stick the spikes through my fingers when rummaging around in my bee bag. However, I’ve not used it for years and far prefer to use a handheld queen marking cage.

Handheld queen marking cage

The simplest of these consist of a cylinder with one end covered in a thin open mesh made of thread and a foam-topped plunger.

Alternatively, and my favourite, the thread mesh is replaced with a series of horizontal plastic bars that are too narrow for the queen to crawl between.

Handheld queen marking cage

Handheld queen marking cage

You pick the queen off the frame, drop her into the cylinder, insert the plunger, immobilise her gently against the mesh/bars and apply the paint to her thorax.

Hold on.

Wait a minute.

You pick the queen off the frame?

That’s the easy part. Queen bees are naturally equipped with two convenient handles.

The wings.

The thumb and forefinger of an ungloved or thinly gloved hand are fabulously dextrous. It is easy to pick up the queen by one or both wings, move her away from the frame, put the frame down, pick up the queen marking cage and drop her in.

From frame to cage in a few seconds

I’m right-handed and this description is for right-handers.

Hold the frame (usually by the lug) with the queen on it in your left hand. Gently rotate the frame so the face is well-lit 8. Wait for the queen to be away from the edge of the frame. Wait until she’s walking towards you. Gently clench your third, fourth and fifth fingers, extending you ‘pincer-like’ thumb and forefinger. Slowly approach the queen from behind with this hand as she calmly walks across the frame 9.

Without grabbing or snatching calmly grasp her by the wing (or wings) and lift her from the frame. If you miss and just nudge her or she turns away at the last moment don’t harry her across the frame trying repeatedly.

Let her calm down.

Get your breath back.

Try again.

Gently put the frame down. Ideally, place it protruding at an angle in between the frames of the brood box. Take your time. Don’t drop the frame or allow it to tip over. If you balance it nicely with the lug wedged inside the box edge and the bottom bar balanced on the runner you’ll easily be able to reintroduce the queen after marking her.

Once your left hand is free pick up the cylinder of the queen marking cage. Drop the queen in. Cover it with two fingers (holding it between your thumb and fourth and fifth fingers). Pick up the plunger with your right hand and, after gently shaking the queen to the bottom of the cage, insert the plunger. Invert the cage, gently push the plunger up to trap the queen – thorax uppermost – and hold the plunger in place between your fourth and fifth fingers and palm, while holding the cage cylinder between thumb and forefinger (see the image further up the page).

There she goes ...

There she goes …

You can then use your right hand to apply the paint.

Handheld

Once you have learnt to pick the queen off the frame it’s an easy transition to do away with the queen marking cage and simply hold her on the back of your left forefinger, trapping her legs – so immobilising her – with your thumb and third finger. Ted Hooper’s book Guide to Bees and Honey has a good description of this 10.

This is easier without gloves. Even very thin nitrile gloves makes holding the queen immobile more difficult 11. Since I always wear gloves to reduce propolis staining and potential pathogen transmission I use a handheld queen marking cage.

Final comments on handling the queen

Picking the queen up with gloves on is straightforward if the gloves are thin enough. It’s easy with nitrile gloves and possible with Marigold-type washing up gloves.

Don’t try it with the large leather ‘beekeeping gauntlets’ as they give you hands like feet as a PhD student once said of the dexterity of my laboratory skills 🙁

If you hold the queen by both wings she will wave her legs in the air and curl her abdomen, but be unable to do much else.

If you pick her up by one wing she usually manages to swivel round and grab your thumb with her feet. Don’t worry, you won’t pull her wing off.

But thinking that will might make you lessen your grip … at which point she will calmly (or not so calmly) walk up your thumb. Don’t panic. She won’t sting and is very unlikely to take flight.

Queen marking

However you immobilise her the actual marking is straightforward. The goal is to place a small dab of paint on the top of her thorax.

Not on her head, her abdomen or her wings.

Small means 2-3 mm across. Don’t overload whatever you are using to apply the paint.

If it’s a matchstick just touch the surface of the paint (or Tipp-Ex).

If it’s a Posca pen, press the nib a couple of times against a firm surface (hive lid, thumb etc) to load the pen, check that it delivers the right amount with a light touch and then mark the queen.

I like to step away from the hive to mark the queen, perhaps to a corner of the apiary in light shade. This separates me from the flying bees and so I can focus on the job, literally, in hand 12.

Releasing the queen

Allow the paint to dry for a few minutes before releasing the queen.

If you’re holding the queen you’ll have to stay holding her while this happens (or put her in a matchbox). Enjoy your time with her … she’s going to be working hard for you 🙂

With a handheld queen marking cage I move the plunger down an inch or so and place her in the shade while I get on with something else for a couple of minutes.

With a press in cage just leave it a couple of minutes before gently lifting it off. This is the easiest and least traumatic way to release the queen (and one of the only advantages of this marking method). The queen is already on the frame and surrounded by bees, so there are no shocks or surprises.

The important thing to avoid when releasing the queen is to suddenly drop her onto the top bars or into the hive. There’s a possibility the the workers will ball and kill her.

Gently offer her to a gap between the top bars, or to the face of the frame you left protruding from the top of the hive. With the handheld cage it’s easy to just rest it on the top bars and watch.

She will usually calmly walk in and disappear from sight.

Calmly walks in …

Job done.


 

 

Equipment for beginners

As a new beekeeping season gears up we’re approaching the time of year when beginners will start acquiring nucs or swarms to start their own colonies.

Beekeeping is an excellent hobby. It involves physical work outdoors. It is cerebral, requiring good observation, thought and interpretation. You produce delicious honey for your breakfast, your family and friends.

Honey

Honey

You can even recoup your – not inconsiderable – costs by selling products from the hive.

Beekeeping is not an inexpensive hobby and it’s not one you can dependably make money from. Dependably is the important word here. You can certainly make money, by selling honey, bees, wax or propolis, but doing so needs a combination of a good season and the beekeeping expertise to exploit it.

The former is out of your control whereas the latter takes a combination of luck and practise.

You also need the time to develop the customers to sell your products (and not give everything away to friends and family 😉 ).

Hobbies and investments

If you’re interested in starting beekeeping to make money, think again. Instead, buy a 50:50 combination of index-linked gilts and global equity tracker funds. Leave this invested for 20 to 30 years and you’ll make money.

But if you’re starting beekeeping as a hobby (which might make you money in the dim and distant future) then it is worth investing in a minimum amount of good quality equipment.

If beekeeping is for you then you’ll continue using it.

If beekeeping isn’t for you 1 then you’ll be able to sell the equipment without too great a loss.

Buy cheap, buy twice … but this doesn’t mean you have to buy the most expensive either.

Hives

There are two main decisions to be made here. The material the hive is made from and the type of hive.

The material is immaterial 😉  The main choice is between polystyrene or cedar. Both have advantages and disadvantages. The bees will do fine in either if prepared properly for the winter.

In my view cedar is nicer to handle and a bit more robust. It looks and ‘feels’ more traditional. Poly might be better if you have very harsh winters. I use both more or less interchangeably.

Thorne's budget hive ...

Thorne’s budget hive …

There are some really lovely cedar hives made, but for starters you cannot go far wrong with the Thorne’s ‘Bees on a Budget‘ hive. I bought my first one (second hand from a beginner who was giving up) and it’s still going strong. I have had hundreds of pounds of honey from that hive over the years.

The best of the poly hives that I’ve used is from Abelo. However, it’s an evolving market and there are lots of poly hives I’ve neither used or even seen.

Abelo poly hives

Abelo poly hives

The type of hive – National, Langstroth, Smiths etc. – is one of the most important beekeeping decisions you will make … and one of the first. It doesn’t really matter what type of hive you use 2, but the investment involved commits you to either continuing with that hive type, buying everything again or a lifetime of compatibility problems and frustration 😉

Use what the beekeepers around you use. You should be getting your bees locally and compatibility with them makes buying (and selling in due course) bees easier. It also makes cadging a frame of eggs to ‘rescue’ a queenless hive – or improve your stock – straightforward as the frame will fit into your hive.

Finally, it makes borrowing equipment e.g. spare supers to cope with a phenomenal nectar flow, possible … which brings me on to the an important point …

More hives

You will need some or all of an additional hive the first time you do swarm control. Vertical splits only need an additional brood body, but the classic Pagden artificial swarm requires an additional hive (floor, brood body, crownboard and roof).

In a good year you will also need more than the standard two supers that most ‘complete’ hives are sold with.

Two are better than one …

So … right at the outset it probably makes sense to purchase two complete hives.

Kerching!

Frames

You will need frames of the right size for all boxes you’ve bought. Super frames can be used year after year. Brood frames need replacing about every three years (or the comb does, the frame can be re-used).

Capped honey super frame ...

Capped honey super frame …

Helpfully frames are sold in tens, whereas many boxes require eleven frames. D’oh! At least you’ll have some spares.

You will also need foundation for the frames. Buy the best quality you can get. The bees are going to ‘live’ in it and store your honey in it. There have been problems with poor quality foundation which may contain lots of impurities or chemicals.

In due course, but not right from the start 3, consider using foundationless frames. You will save money and have confidence that the wax is the best possible quality as the bees made it all themselves.

I emboldened all in the opening paragraph of this section deliberately.

There are few things more frustrating than grabbing an empty brood box (expecting a full one) when you’re in the middle of the swarming season.

Another one of those Don’t do as I do, do as I say statements 😉

Miscellaneous hive parts and other equipment

Some ‘complete’ hives (like the Abelo) are sold without a queen excluder.

So, not complete then 😉

The cheapo plastic queen excluders are OK, but a wood-framed metal excluder is easier to use, squashes far fewer bees and is much easier to clean.

You will also need a way to clear the supers of bees before the honey harvest. The Thorne’s Bees on a Budget hive comes with a couple of porter bee escapes and a suitable crownboard, but you’ll need to beg, steal or build something suitable if you buy the Abelo.

Hive tools are a very personal item. There are dozens of different designs and it will take some time to decide which best suits your beekeeping and your hands. Some are big and heavy, some are small and light. Choose a simple medium sized inexpensive one for starters.

Take your pick ...

Take your pick …

And then buy another as you’ll probably lose it in the long grass 😉

Buy a honey bucket and keep your hive tools, together with a small serrated knife and a pair of scissors, in strong washing soda. You can leave this in the apiary. The tools will stay pathogen-free and be nice and clean when you next use them.

I’ve owned three smokers since starting. The first was small, a nightmare to start and worse to keep alight. The other two are the little and large Dadant smokers. These aren’t inexpensive, but they are easy to use and last forever.

Smoker still life

Smoker still life

Unless you reverse your car over it 🙁

Get another honey bucket to keep your smoker fuel in – once you’ve spent months deciding what works best.

That’s it … no bee brush, frame stand, powdered sugar shaker, queen clip or the 1001 ‘essentials‘ you find listed in the catalogues.

The sting and confidence

Bees sting and you will get stung. When you do  get stung it generally means you’ve done something wrong or you have temperamental bees. The latter can be due to the weather, the forage (or lack of it) or bad genes.

Working confidently with bees comes with practice and with the knowledge that you are wearing sufficient protection to keep the bees away from the most sensitive spots.

A good bee suit costs about as much as a complete hive and should last as long. BBwear and BJ Sherriff bee suits are high quality, well made, repairable and come in a myriad of colours. I’d recommend their basic models in a full suit style … as you gain experience you might progress to a jacket or even just a veil.

I still use the first BBwear suit I bought. It’s been washed hundreds of times and is a bit tatty but it has at least another decade of use in it.

Paradoxically, the gloves that give me the most confidence when working with bees are the thinnest I own. These are long-cuff blue nitrile gloves. They are thin enough to feel a bee if you’ve trapped it, rather than just squishing it as you would wearing thick gauntlets.

BBwear used to offer ‘free’ gauntlets with their suits. They were like welders mittens! Ask for a discount instead and use standard Marigold-type washing up gloves to start with. Stings can just about penetrate, but are attenuated. You’ll be reminded when you’re doing something wrong, but they enable far more dexterity than the sting-pheremone-accumulating leather gauntlets.

Winnie the Pooh

Winnie the Pooh

Don’t, whatever you do, buy heavy duty, black, long cuff household gloves.

Why not?

Remember that most bears don’t look (or behave) like Winnie the Pooh … 😉

Is that it?

More or less. I reckon everything above is essential for beginners (including a duplicate hive). I’ve only included the specialist beekeeping equipment and have excluded items you should borrow from your local association (or mentor … you do have a mentor?) such as an extractor. I’ve also excluded Varroa treatments, sugar/fondant for winter stores and the non-specialist stuff like a notepad, wellington boots or a bag to carry everything to the apiary.

There won’t be much change out of £500, but there should be some.

And you still have to get some bees 🙁

As I said, not inexpensive. I’ve got a half-written post on the economics of hobby beekeeping, including indications of where you can save money (and where you can make money).

Remember also that keeping two colonies is highly recommended, so doubling the equipment needed. Perhaps not in your first year, but – perhaps after a successful artificial swarm – something to plan for your second full season.

Luxury item

If this was Desert Island Discs you’d be allowed one luxury item. Although not a luxury as such, the one nearly invaluable additional item I’d add to the list above is a poly nucleus box.

Nuc boxes are probably the most useful pieces of equipment in beekeeping. You can overwinter colonies in them, catch swarms, keep the queen safe and use them for a very effective form of swarm control.

Again, like the poly hives there are lots of makes, all with their own particular quirks. You need one that takes the same frame size as the hives. However, unlike full size hives I’d only recommend polystyrene, not cedar. They are lighter and much better insulated.

Paynes nuc box ...

Paynes nuc box …

They are also more reasonably priced, so drop some hints before Christmas after your first full season of beekeeping.


 

 

 

 

And they’re off …

I posted last week on the relative lateness of the start of the beekeeping season here in Scotland 1. Having been away for a few days I was both surprised and disconcerted to find this waiting for me when I arrived at the apiary to conduct the first inspections of the year.

When is a swarm not a swarm?

When is a swarm not a swarm?

Surprised because I’d missed all the seasonal clues that indicated swarming might be imminent.

Disconcerted because, in the interests of full disclosure, I’d have to admit to it 😉

The colony behind the near-invisible one inch entrance hole through the bee shed wall is a double brood colony in an Abelo poly hive. It was headed by a 2018 queen (or had been 🙁 ) and had a nice temperament and good manners.

The queen was marked blue and one wing was clipped to prevent her flying off.

But it wouldn’t have stopped her trying to fly off. Instead she would have ignominiously spiralled to the ground 2.

Usually what then happens is she attempts to climb back up and the swarm gathers around her. In a standard hive this is often this is underneath the hive stand.

My guess was that she’d made it up to the landing board and stopped or got stuck there.

I had a gentle prod about in the beard of well-tempered bees but could see no sign of her.

With about 20 more hives to inspect I quickly decided to walk them into a fresh hive … I’d let them do this while I got on with other colonies in the apiary.

Don’t think, do

Walk this way

Walk this way

I put together a new floor and a brood box of mostly foundationless frames. I put one or two frames of drawn comb in and gently dislodged a couple of clumps of bees into the box.

Within a very short time more bees were marching down the wall of the shed and clustering between the frames of drawn comb in the brood box.

What started as a trickle became – if not a torrent – then certainly a determined stream of bees taking up residence in the new box.

To encourage them I balanced a split board across the tops of the frames to provide a welcoming dark ‘cavity’ for them to occupy. Very soon you could see bees fanning strongly at the opening between the split board and the shed wall.

Fanning workers

Fanning workers

I interpreted this as meaning the queen had entered the box and the workers were encouraging others to join her.

After an hour or so I moved the hive a few inches away from the shed wall, placed a crownboard and roof on and carried on inspecting other hives in the apiary. By this time about 75% of the bees had left the ‘swarm’ and entered the brood box.

Not so fast

And that’s when everything ground to a halt.

There were no bees fanning at the hive entrance. No more bees entered the box through the entrance. Instead they started leaving in dribs and drabs.

I’ve hived swarms like this before, or done the classic ‘walk them up a sheet’ having dumped them from a skep outside a hive. Other than this being a real spectacle, one of the striking features is that what starts as a mass of bees ends being an absence of bees … they all enter the hive.

'Walking' a swarm into a hive

‘Walking’ a swarm into a hive

Clearly something was wrong and I was beginning to suspect that there wasn’t a queen in the ‘swarm’ at all.

So I did what I should have done in the first place. I had a look in the original hive.

Hello there!

Blue skinny queen

Blue skinny queen

I smoked the double brood box gently from the bottom, intending to encourage the queen (if she was there) into the upper box.

The box was busy but not packed with bees 3, there were good amounts of sealed brood (and a really nice tight laying pattern on many frames).

There were quite a few ‘play cups’ and a few had eggs in them. This is one of the early signs of swarming.

I found the queen on the 19th of 22 frames.

Perhaps I was too gentle with the smoke 🙄

She was the queen I was expecting. Marked blue, though the paint was beginning to rub off a bit, and with the left wing clipped.

She looked like she had lost a bit of weight.

Big fat queens in full laying mode (which they should be getting to by late April) aren’t very aerodynamic so workers slim the queen down before swarming to improve her flying ability.

This queen looked to me like she’d been on the F-plan diet (but remember I’d not seen her since last August). In addition, the number of eggs in the colony was relatively low. This would also be expected if the colony had been preparing to swarm as queens reduce their laying rate in the few days before swarming.

What else could be seen?

Stores and pollen levels were good.

The notable absence from the hive was of well developed, sealed or unsealed queen cells.

A colony will normally swarm once developing queen cells are capped. A colony with a clipped queen often delays swarming for a few more days. It’s therefore usual to find sealed queen cells in a swarmed colony. There may also be unsealed cells as well.

~3 day old queen cell ...

~3 day old queen cell …

There wasn’t anything close to a sealed queen cell in the colony 4. The best developed were, at the very most, a couple of days old.

So what happened?

Other than the absence of well developed queen cells the colony looked as though it had swarmed.

If it walks like a duck etc.

Since the queen was clipped she had eventually clambered back to the hive and re-entered, leaving many of the workers who had left with her clustered around the hive entrance.

That’s currently my best guess 5.

If that was the case, notwithstanding the current lack of well-developed queen cells, they’d be trying again as soon as the weather was good enough. I therefore decided to preempt them by doing a classic artificial swarm.

I moved the queen on a frame with a small patch of brood into the box I’d used to try and ‘walk’ the swarm into. I then moved the – now queenless – double brood box a couple of metres off to one side in the shed. Finally I placed the queenright box in the place the original colony had occupied.

And what will happen?

Full details are in the description of Pagden’s artificial swarm. The flying bees from the double brood box will return to the box with the queen. The hive bees in the double brood box will start to rear one or more new queens.

And at that point I’ll intervene.

The double brood box has lots of brood and stores spread across 21 frames. The bees are well tempered, stable on the comb and have no significant signs of chalkbrood or other diseases (and Varroa and virus levels are exceptionally low – I’d measured both 6).

They are a good stock to make increase from.

I’ll check them in a  few days and see how queen cells are developing. Once there are good sealed cells I’ll split the colony into several 3-5 frame nucleus colonies. The final number will depend upon the number of good queen cells and the number of bees left in the colony.

It should be possible to generate half a dozen good nucleus colonies from a suitable double brood colony without too much of a problem.

First inspection summary

I got through all my colonies (eventually). With a reasonable number to compare it’s easy to define the good, the bad and the indifferent ones.

It’s much easier to do this once the season is properly underway, which is a good reason not to inspect too soon in the year. Some colonies are very early-starters, others lag bit. If you inspect too early you might consider the slow ones are dud or failed queens.

I was pleased to see that most were good or at least indifferent, with only a couple clearly exhibiting undesirable personality traits – aggression, laziness, running, following – or, in one case, disease (rather too much chalkbrood). These will be destined for prompt requeening and drone brood will be removed to reduce their contribution to the gene pool.

My overwintered 5 frame nucs looked excellent, with a couple needing re-hiving immediately.

Here's one I prepared earlier

Here’s one I prepared earlier

The first inspection is really little more than a check that things are all OK. It doesn’t matter whether I see the queen. If there are eggs present I’m happy.

Eggs? Overt disease? Stores? Brood? Space? … next please!

Overwintering losses

I lost 10% of my colonies this winter – two from 20. This includes both full colonies and overwintered 5 frame nucs.

One colony drowned. The lid and crownboard blew away in a severe storm and they were subjected to a three-day deluge over a long weekend when I was away.

Mea culpa. I should have had more bricks on the roof.

Spot the drone laying queen

Spot the drone laying queen

In the second colony the queen failed and turned into a drone laying queen (DLQ). This had been my worst-tempered colony last year and was scheduled for requeening. However, the queen I found wasn’t the clipped and marked one I’d left there in August. Clearly there had been a late-season supercedure and the replacement queen was poorly mated.

Although she was a bee I didn’t keep it is great to be beekeeping again 🙂


Colophon

And they’re off! is the phrase used by horse racing commentators at the start of a race. It is also the title of a song composed by William Finn from the musical A New Brain. The song is about the damage gambling does to families. There’s a good cover version by Philip Quast on YouTube.

Ready, Steady … Wait

Since you are reading an internet beekeeping site you are probably aware of the discussion fora like Beesource, BBKA, the Beekeeping Forum and Beemaster Forum.

Several of these have a section for beginners. The idea is that the beginner posts a simple beekeeping question and, hey presto, gets a helpful answer.

Of course, the reality is somewhat different 😉

The question might seem simple (“Should I start colony inspections this week?”), but the answers might well not be.

If there’s more than one answer they will, of course, be contradictory. The standard rule applies …

Opinions expressed = n + 1 (where n is the number of respondents 1)

… but these opinions will be interspersed with petty squabbles, rhetorical questions in return, veiled threats, comments about climate or location, blatant trolling and a long discourse on the benefits of native black bees/Buckfast/Carniolans or Osmia bicornis 2

Finally the thread will peter out and the respondents move to another question … “When should I put the first super on my hive?”

Climate and weather

Although it might not seem helpful at the time, the comment about climate and location refers to an important aspect of beekeeping often overlooked by beginners 3.

Climate and weather are related by time. Weather refers to the short term atmospheric conditions, whereas climate is the average of that weather.

Climate is what you expect, weather is what you get.

Climate and weather have a profound influence on our beekeeping.

We live on a small island bathed in warm water originating from the Gulf Stream. In addition, we are adjacent to a large land mass. The continent and the sea influence both our weather and climate.

For simplicity I’m going to only consider temperature and rainfall. The former influences the flowering period of plants and trees upon which the bees forage.

Mean annual temperature average 1981-2010

Mean annual temperature average 1981-2010

Both temperature and rainfall determine whether the bees can forage – if it’s too cold or wet they stay in the hive.

And adverse weather (strong winds, heavy rain) can make inspections an unpleasant experience for the bees … and the beekeeper 4.

Mean annual average rainfall 1981-2010

Mean annual average rainfall 1981-2010

The North – South divide (and the East – West divide)

Compare the mean temperature in Fife (marked with the red star) with Plymouth (blue star). The average annual temperature is 8-9°C in Fife and 10-11°C in Plymouth. Although this seems to be a very minor temperature difference it makes a huge difference to the beekeeping season 5.

As I write this (mid-April) I’ve yet to fully inspect a hive but colonies are swarming in the south of England, and have been for at least a week.

When I lived in the Midlands I would often start queen rearing in mid/late April 6 whereas here inspections might not begin until May in some years.

The 6° of latitude difference between Plymouth and Fife (~415 miles) is probably equivalent to 3-4 weeks in beekeeping terms.

In contrast to the oft-quoted view that ‘Scotland is wet’, Fife only gets about 66% of the rainfall of Plymouth (800-1000 mm for Fife vs. 1250-1500 mm for Plymouth).

However, there is an East – West divide for rainfall in parts of the country. I’m writing this in Ardnamurchan, the most westerly point of mainland Britain (yellow arrow), where we get about three times the annual rainfall as the arid East coast of Fife.

The rhythm of the seasons

The seasonal duties of the beekeeper are dependent on the weather and the climate. This is because the development of the colony is influenced by how early and how warm the Spring was, how many good foraging days there were in summer, the availability of sunny 20°C days for queen mating and the warmth of the autumn for late brood rearing.

And a host of other weather-related things.

All of which vary depending where your bees live.

And vary from year to year.

Which is why it’s impossible to answer the apparently simple question When should I put the first super on my hive?” using a calendar.

“Beekeeping by numbers (or dates)” doesn’t work.

You have to learn the rhythm of the seasons.

Make a note of when early pollen (snowdrop, crocus, hazel, willow) becomes available, when the OSR and rosebay willowherb flowers and when migratory birds return 7. The obvious ones to record are flowers or trees that generate most honey for you, but early- and late-season cues are also useful.

Most useful are the seasonal occurrences that precede key events in the beekeeping year.

Link these together with the recent weather and the development of your colonies. By doing this you will begin to know what to expect and can prepare accordingly. 

If the OSR is just breaking bud 8 start piling the supers on. If cuckoos are first heard a month before the peak of the swarming period in your area make sure you prepare enough new frames for your preferred swarm control method.

And preparation is pretty-much all I’ve been doing so far this year … though I expect to conduct my first full inspections over the Easter weekend.

Degree days

While doing some background reading on climate when preparing this post I came across the concept of heating and cooling degree days. These are used by engineers involved in calculating the energy costs of heating or cooling buildings.

Heating degree days are a measure of how much (in degrees), and for how long (in days), the outside air temperature was below a certain level. 

Conversely, cooling degree days are a measure of how much (in degrees), and for how long (in days), the outside air temperature was above a certain level.

You can read lots more about degree days on the logically-named degreedays.net , which is where the definitions above originated.

From a beekeeping point of view you can use this sort of data to compare seasons or locations.

Most ‘degree days’ calculations use 15.5°C as the certain level in the definitions above. This isn’t particularly relevant to beekeeping (but is if you are heating a building). However, degreedays.net (which have a bee on their BizEE Software Ltd. logo 🙂 ) can generate custom degree day information for any location with suitable weather data and you can define the level above or below which the calculation is based.

For convenience I chose 10°C. Much lower than this and foraging is limited.

The North – South divide (again)

So, let’s return to swarms in Plymouth and the absence of inspections in Fife … how can we explain this if the average annual temperate is only a couple of degrees different?

Heating and cooling degree days for Plymouth and Fife, April 2018 to March 2019

Heating and cooling degree days for Plymouth and Fife, April 2018 to March 2019

Focus on the dashed lines for the moment. September to November (months 9, 10 and 11) were very similar for both Plymouth (blue) and Fife (red). After that – unsurprisingly – the Fife winter is both colder and longer. From December through to March the Plymouth line rises later, rises less far and falls faster. In Plymouth the winter is less cold, is shorter and – as far as the bees are concerned – the season starts about a month earlier 9.

2018 in Fife was an excellent year for honey. After a cold winter (and the Beast from the East) colonies built up well and I harvested record amounts (for me) of both spring honey (in early June) and summer honey (in late July/early August).

I’ve no idea what 2018 was like for honey yields in Plymouth, but the cooling degree days (solid lines) show that it was warmer earlier, hotter overall and that the season lasted perhaps a month longer (though this tells us nothing about forage availability).

Of course it’s the longer, hotter summers and cooler, shorter winters that – averaged out – mean the average annual temperature difference between Plymouth and Fife is only a couple of degrees Centigrade.

Good years and bad years

As far as honey is concerned the last two years in Fife have been, respectively, sublime and ridiculous.

2018 was great and 2017 was catastrophic.

How do these look when plotted?

The 2017 and 2018 beekeeping season in Fife.

The 2017 and 2018 beekeeping season in Fife.

The onset of summer (solid lines – the cooling degree days – months 4-6) and the preceding winter (dashed lines – the heating degree days – months 9-11) were similar – the lines are nearly superimposed.

The 2016-17 winter was milder and shorter than 2017-18. The latter was extended by arrival of the Beast from the East and Storm Emma which brought blizzards in late February and continued unseasonably cold through March.

However, the harsh 2017-18 winter didn’t hold the bees back and the 2018 season brought bumper honey harvests.

In contrast, the 2017 season was hopeless. It was cooler overall, but the duration of the season was similar to the following year 10. Supers remained resolutely empty and my entire honey crop shared a single batch number 🙁

However, it wasn’t the temperature that was the main problem. It was the abnormally high rainfall during June.

June 2017 rainfall anomaly from 1981-2010

June 2017 rainfall anomaly from 1981-2010 …

Colonies were unable to forage. Some needed feeding. Queen mating was very patchy, with several turning out as drone laying queens later in the season.

Early June 2017 ...

Early June 2017 …

The spring nectar flows were a washout and the colonies weren’t at full strength to exploit the July flows.

Let’s see what 2019 brings …


 

Natural vs. artificial swarms

I’ve now covered four of the most frequently used swarm control strategies. These are:

  • Pagden’s artificial swarm – the horizontal splitting of the colony
  • The vertical split – an equipment-frugal variant of the above involving a vertical separation of the colony
  • The nucleus method – in which the queen is removed with sufficient workers to make up a small (nuc) colony, leaving the original colony to rear another queen
  • The Demaree method – which, at its simplest, relocates the queen from the brood and associated nurse bees, but does not physically split the colony

If conducted correctly all should prevent loss of a swarm. However, the individual methods – even the first three which involve the physical separation of the bees in the hive – are not the same.

In addition, these swarm control methods do not recapitulate the separation of bees that occurs when a hive naturally swarms.

The purpose of this post is to contrast the original and new colony composition of the split-based methods of swarm control (i.e. Pagden and vertical) with natural swarms.

Temporal polyethism

I introduced this term when discussing the honey bee colony as a superorganism. It means that adult worker bees have different roles depending upon their age. For the first two and a bit weeks they have duties inside the hive such as cell cleaning, brood rearing and wax production.

They then transition through a period of being guard bees before becoming foragers, flying from the hive and collecting water, nectar and pollen.

For convenience I’ll refer to these two groups of bees as young, nurse or hive bees and flying bees.

Vertical and horizontal splits

The classic Pagden artificial swarm and the vertical split are fundamentally the same process.

If unsealed queen cells are found during a colony inspection the queen, with a frame of emerging brood, is moved to a new box. This box is placed on the site of the original hive.

The remaining bees and brood are moved, either to one side in the case of the Pagden or on top of the queen-containing box (separated by a split board) in a vertical split.

Split board ...

Split board …

Critically, the new box with the brood and bees is provided with a new hive entrance, located off to one side or on the opposite side of the original hive 1.

Flying home

Over the following day or two the flying bees leave the relocated brood box with the new entrance and return to the queen-containing brood box in the original location.

As a consequence of their excellent homing navigational skill, the hive manipulation results in the separation of the bees into two populations:

  1. The flying bees i.e. those over ~3 weeks of age that had orientated to the original hive location, which are now located with the queen.
  2. The nurse bees i.e. those less than 3 weeks old, which remain in the relocated brood box, together with the brood in all stages (eggs, larvae and pupae).
Artificial swarm separation of the colony

Artificial swarm separation of the colony

How does the artificial swarm compare with the age distribution of bees in a real swarm?

Real swarms

I’ve previously discussed prime swarms and casts. The former contain a mated queen. In contrast, casts are produced from very strong colonies after the prime swarm has left. Casts are headed by a virgin queen. These are sometimes called after swarms and are usually smaller than prime swarms.

What about the workers in the swarm? What might be expected?

Perhaps they’re primarily the older flying bees? After all, these are the bees that have finished their hive duties and are now routinely foraging outside the hive. It’s the natural place for them.

Swarm of bees

Swarm of bees

Alternatively, remember that swarms have no ‘homing’ instinct for a day or two after emerging. They can be readily moved and you can safely ignore the less than three feet or more than three miles rule. Perhaps this means that they’re primarily young bees that have yet to go on their orientation flights?

Real experiments and contradictory results

Enough speculation … how do you determine this experimentally?

There have been numerous studies of the age distribution of bees in natural swarms. However, the data tends to be rather contradictory though the methods used are often broadly similar.

How do you determine the age composition of workers in a swarm?

Essentially you ‘spike’ the colony with a set number of marked bees of a known age over about 8 weeks. This is easy to do, but tedious.

Workers are allowed to emerge in an incubator. On the day of emergence (0 days old) they are marked with a colour that distinguishes them from older or younger bees. Every three days 100 identically marked i.e. same age, bees are added to the study hive(s). Over the period May to July this will accumulate red, then yellow, then blue, then mauve, then cyan, then pink etc. cohorts of workers, each representing a known age class.

It must be a nightmare spotting the queen in these hives 😉

The colony is allowed to swarm, the swarm collected and the number of bees of the different age cohorts in the swarm counted.

I missed a step out there. Have you ever tried counting the bees in a swarm? It’s much easier if they don’t move.

1002, 1003, 1004, 1005, er, where was I? Damn!

1002, 1003, 1004, 1005, er, where was I? Damn!

Perhaps it’s best that I missed that step out 🙁

What you end up with is a count of the total number of bees in the swarm and the numbers of bees of each 3 day cohort over the last several weeks. You can therefore determine the age distribution of the workers in the swarm.

Is it as simple as that?

I’ve actually oversimplified things a bit. There’s a possibility that different age cohorts of bees die within the hive at different rates, perhaps depending upon forage availability or weather or something else.

Think about it. Assume there was a dearth of nectar in late May and the blue and red labelled cohorts added during that period were underfed and died prematurely.

If there were very low numbers of blue and red bees in the swarm you might assume that these ages were ‘left behind’ by the swarm … when actually they weren’t able to swarm at all.

The real question is therefore whether the age distribution of bees in the swarm is similar to that in the parental hive.

OK, OK … is it?

No.

Swarms do contain bees of all ages.

However there are significantly more young bees and many fewer old bees than would be expected from the age distribution of workers in the parental colony.

Age distribution of bees in swarms

Age distribution of bees in swarms

The o and e in the graph above represents the position of the observed and expected median age class for the expected distributions. So, in swarm C the observed median age is ~10 days old, whereas the originating hive median age was ~19 days.

The graph above comes from a 1998 study by David Gilley 2 and supports earlier work 3 by Colin Butler 4 which is often cited as one of the definitive studies on the ages of bees in a swarm.

Additional considerations

Is it surprising that young bees predominate in natural swarms?

Swarms usually emerge from the hive late morning or early afternoon on warm, sunny days. In fact, at exactly the time most older bees aren’t in the hive anyway because they’re out and about foraging.

Remember also that swarming is a precarious activity for the colony. Most swarms do not survive 5. Natural selection will have resulted in swarm populations that maximise their chance of survival.

Once bees start foraging their life expectancy is pretty short. It has been estimated that they experience about 10% mortality per day. If only old bees left in the swarm with the queen the newly established colony would very rapidly dwindle in size, perhaps before significant numbers of new brood emerged (which takes 21 days from the first egg being laid). This would likely limit the chances of survival of the new colony.

What has this got to do with artificial swarms?

As beekeepers (or at least as responsible beekeepers) we spend May and June rushing about like headless chickens trying to control swarming in our bees.

Many of us achieve this using a variety of methods which are generically referred to as artificial swarms. I suspect that many beekeepers think that the artificiality is because of our interventions.

Where have all my young girls gone?

Where have all my young girls gone?

It is … but it’s worth remembering that the artificial swarms we generate are very different in composition to natural swarms. Our artificial swarms predominantly leave the older bees associating with the queen, with the young bees remaining with the brood.

These old bees have to draw new comb and rear the new brood. These are activities they last did weeks ago (a long time in the life of a bee).

Final thoughts

There are artificial swarm control methods that were developed to better replicate the age distribution of bees in a natural swarm. One example of these is use of a Taranov board. I’ll cover this in a future post.

It’s also worth noting that the bees of different ages in a natural swarm have different roles even before they occupy a new location. The older bees form a mantle around the bivouacked swarm that protects it from inclement weather (amongst other things) and the oldest bees are the scouts responsible for finding a new nest site.

Again, both topics for another post … I’ve got bait hives to set out 🙂


 

Demaree swarm control

I’ve covered three swarm control methods in previous posts. These are the classic Pagden artificial swarm, the vertical split that is directly comparable but requires less equipment and more lifting, and the nucleus method.

As described on this site, if successful, all achieve the same two things:

  • They prevent a swarm being lost. Don’t underestimate how important this is in terms of not irritating your neighbours, in helping your honey production and in giving you a quiet sense of satisfaction 🙂
  • They result in the generation of a second colony headed by a newly mated queen.

This doubling in colony number, or – more generally – the managed reproduction of colony numbers, is termed making increase.

Managed reproduction

Making increase is of fundamental importance in beekeeping.

Without deliberately splitting colonies, unless you buy in nucs every year (kerrching!), collect swarms or steal hives 1 your colony numbers would never increase.

Making increase is therefore critical if you want more colonies. However, it’s just as important (and a darn sight less expensive than buying nucs) if you want to make up any overwintering colony losses, thereby keeping the same number of colonies overall 2.

Not making increase

Once you’ve got bees, with good management, you can always have bees. However, at some point you reach that sweet spot where you have enough bees and don’t want more colonies.

The Goldilocks Principle is the concept of having just the right amount. Not so few colonies that a really harsh winter causes problems, and not so many that you cannot enjoy your beekeeping at the peak of the season.

When you reach that point you no longer need to make increase, you just want to keep the same number of colonies.

Which means that the swarm control methods that essentially reproduce the colony may not be ideal.

Of course, you can unite colonies having removed the unwanted queen from one of them, but this is additional work. Not a huge amount of work admittedly, but work nevertheless 3.

This is where the Demaree method of swarm control comes in useful. As practised, Demaree swarm control prevents the loss of the swarm without increasing colony numbers.

It has the additional significant advantages of keeping the entire foraging force of the colony together (even better for honey production than not losing a swarm) and needing no specialised equipment.

Demaree swarm control – in principle

George Demaree

George Demaree

The principle of the method is very straightforward.

When queen cells are found during an inspection you conduct a form of a vertical split, separating the original queen and flying bees from the nurse bees and sealed brood. You place the latter above a queen excluder.

A few days later you return and remove any new queen cells from the top box, so preventing swarming. Finally you leave all the brood to emerge from the top box.

Demaree swarm control – in practice

A cartoon diagram of the process is shown below. The only additional equipment required is a brood box with 11 frames of drawn comb or foundation and a queen excluder.

That’s it.

Demaree swarm control

Demaree swarm control

Here’s a bit more detail:

  1. If you find queen cells during an inspection gently remove the brood box and place it on an upturned roof off to one side 4.
  2. Place the new brood box on the original floor. Add 9 frames of drawn comb or foundation, leaving a gap in the middle of the box.
  3. Using minimal smoke, go through the original box and find the queen.
  4. Place the frame with the queen in the middle of the new brood box on the original floor. This frame must contain no queen cells.
  5. Push the frames in the new brood box together and add in the eleventh frame.
  6. Add a queen excluder.
  7. Add the supers above the queen excluder. If there were no supers on the original hive then it’s worth adding a couple of supers now. It will provide better separation of the new and old brood boxes and it will encourage the bees to store nectar in supers rather than the top brood box.
  8. Add a second queen excluder.
  9. Place the original brood box on top of the queen excluder.
  10. Go through the upper brood box and remove every queen cell. Shake the bees off the frames to do this. Push the frames together and add one additional frame. Add the crownboard and roof.

Leave the colony for one week. At the next inspection you should only need to check the top brood box (i.e. the original one).

  1. Carefully inspect every frame and remove every queen cell. Again, you should shake the bees off the frames to do this. If you miss any queen cells there’s a good chance the colony will swarm.
  2. Close up the hive and leave the brood in the top box to emerge.
  3. About 25 days after conducting the first inspection (1 above, where you first found QC’s) you can remove the upper brood box from which all brood will have now emerged.

Explanatory notes

If you have a reasonable understanding of the development cycle of queen and worker bees you will understand how the Demaree Method simultaneously prevents swarming and keeps the entire colony together.

Honey bee development

Honey bee development

  • By splitting the colony you separate the queen and the flying bees from the nurse bees and the brood. The queen in the new (now bottom) box has ample space to lay, particularly if you provide her with some drawn comb to use.
  • The bottom box will now be less crowded and the swarming urge will therefore be much reduced.
  • You destroy all of the queen cells in the original (now top) box when you rearrange the hive. This is to stop any new queens emerging in this box in the following week.
  • However, this top box still contains eggs and young larvae. Since it is now located a long way from the queenright box the level of queen pheromone is very low. Consequently, in the week following the hive rearrangement, the bees will create new emergency queen cells in the top box.
  • When you return a week later all the eggs in the top box will have hatched and the youngest larvae left will be about four days old i.e. too old to be reared as new queens. Therefore, when you destroy all the new queen cells in the top box, you prevent the colony swarming.
  • You can remove the top brood box as soon as all the brood has emerged i.e. 25 days after first rearranging the hive 5.

Demaree pros and cons

Pros

  • An effective method of swarm control
  • Relatively simple procedure to implement and understand
  • Only requires a single brood box, frames and a queen excluder
  • Generates big, strong colonies and keeps the entire foraging force together
  • Modifications of the process can be used for queen rearing 6

Cons

  • Necessary to find the queen
  • Critical to remove all queen cells at the start and after one week
  • Generates tall stacked boxes, so some heavy lifting may be involved
  • Drones in the top box get trapped by the queen excluder 7
  • In a strong flow the bees can backfill the top box with nectar. Add sufficient supers when you first rearrange the hive
Framed wire QE ...

Framed wire QE …

Historical notes

George Whitfield Demaree (1832–1915) was a lawyer in Kentucky, USA, and a pioneer in swarm control methods. His eponymous method was published in the American Bee Journal in 1892. The original method was subtly different from that described above:

Demaree method

Demaree method

In his description he emphasises the need to keep the colony together to maximise honey production.

I suspect Demaree used a single sized box (as broods and supers) as he describes placing brood frames above the queen excluder in the centre of the super flanked by empty frames. As described, he doesn’t mention returning after one week to destroy queen cells above the queen excluder. Don’t forget to do this!

I particularly like Demaree’s comment that any swarm prevention method that “require a divided condition of the colony, using two or more hives, is not worthy of a thought”.


 

Bait hive guide

Spring this year is developing well. Even here on the chilly east coast of Scotland colonies are looking good and flying strongly when the sun is out. Large amounts of pollen are being taken in and there’s every sign that the hives are queenright and rearing lots of brood 1.

It’s too soon 2 to open the colonies but it’s not too soon to be thinking about the consequences of the inevitable continued expansion over the next few weeks.

Most healthy colonies will make preparations to swarm, often between late April and mid-June. The timing varies depending upon a host of factors including colony strength, climate, weather, forage, build up and beekeeper interventions.

Swarm prevention and control

You, like all responsible beekeepers, will use appropriate swarm prevention methods. Supers added early, ensure the brood box has space for laying etc.

In due course, once the colony gets bigger and stronger, you’ll notice queen cells and immediately deploy your chosen swarm control method e.g. the classic Pagden artificial swarm, the nucleus method I described last week, Demaree, vertical splits or – if you’re feeling ambitious – a Taranov board 3.

Which will of course be totally successful 😉

But just in case it isn’t …

… and just in case the beekeeper a couple of fields away is forgetful, unobservant, clumsy, on holiday, in prison or has some other half-baked excuse, be prepared for swarms.

As an aside, other than just walking around the fields, you can easily find hives near you by searching on Google maps and you can get an idea of the local beekeeper density 4 using the National Bee Unit’s Beebase.

You might think you know all the local beekeepers through your association, but it’s surprising the number who just ‘do their own thing’.

Swarms

This isn’t the place to discuss swarms in much detail. Here’s a quick reminder:

  1. The colony ‘decides’ to swarm and starts to make queen cells.
  2. Almost certainly, scout bees start to check out likely sites the swarm could occupy in the future 5.
  3. The swarm leaves the hive on the first calm, warm, sunny day, usually early in the afternoon, once the queen cells are capped. The prime swarm contains the mated, laying queen and about 75% of the worker bees 6.
  4. The swarm gathers around the queen and sets up a bivouac hanging from a convenient spot (tree, gatepost, bush, fence etc.) near to the hive. They rarely move more than 50 metres. It’s worth emphasising here that the spot they choose is convenient to the bees, but may be at the top of a 60 foot cypress. It may not be particularly convenient for the beekeeper 😉
  5. Scout bees continue to check out likely final sites to establish the new colony, returning to the swarm and ‘persuading’ other scouts (by doing a version of the waggle dance) so that, finally, a consensus is reached. This consensus is essentially based upon the suitability of the sites being surveyed.
  6. The scout bees lead the swarm to the new location, they move in and establish a new colony.

If you’re lucky you will be able to recapture the swarm if the spot they choose for their bivouac is within reach, not above a stream, in a huge thorny bush or on an electricity pylon.

A small swarm ...

A small swarm …

I say ‘recapture’ because, since the bivouac is usually near the issuing hive, it’s probably come from one of your own hives (unless you are snooping around your neighbouring apiaries 7).

But what if you miss the bivouacked swarm? Or if your neighbour misses it?

Those bees are going to look for a suitable location to set up home.

If you provide a suitable location, you can get them to hive themselves without the grief of falling off a ladder, toppling into a stream, getting lacerated with thorns or electrocution

This is where the bait hive comes in. Leave a couple in suitable locations and you can lure your own and other swarms to them.

Freebees 🙂

What do scouts look for?

The scout bees look for the following:

  1. A dark empty void with a volume of about 40 litres.
  2. Ideally located reasonably high up.
  3. A solid floor.
  4. A small entrance of about 10cm2, at the bottom of the void, ideally south facing.
  5. Something that ‘smells’ of bees.

What I’ve just described is … a used beehive 8.

More specifically, it’s a single National brood box (or two stacked supers) with a solid floor and a roof, containing one old dark frame of drawn comb pushed up against the back wall.

No stores, no pollen 9, just a manky old dark comb. The sort of thing you should be turning into firelighters.

That’s all you need.

However, you can improve things by giving the bees somewhere to start drawing comb and siting the hive in a location that makes your beekeeping easier.

Des Res

The first thing swarms do when they move in is start drawing comb. You can populate the bait hive with a few foundationless frames so they’ve got somewhere to start.

Bait hive ...

Bait hive …

In my view foundationless frames are much better than frames with foundation for bait hives. The scout bees measure the size of the void by flying around randomly inside 10. If you have sheets of foundation they’ll crash into it frequently, effectively giving them the impression that the void is smaller than it really is. And therefore making it less attractive to the scouts.

You can improve the smell of the hive by adding a little lemongrass oil to the top bar of one of the frames. Don’t overdo it. A drop or two every 7-10 days is more than ample.

If you do use foundationless frames make sure the hive is level. If you don’t the comb will be drawn at an angle to the frames which makes everything harder work later in the season. Your smartphone probably contains a spirit level function that makes levelling the bait hive very easy.

Location

But not if it’s above head height, or you’re teetering on top of a ladder …

It was Tom Seeley who worked out most things about scout bees and swarms (see his excellent book Honeybee Democracy). This included the observations that they favoured bait hives situated high up.

Believe me, it’s a whole lot easier if the bait hive is on a standard hive stand. It’s easier to level, it’s easier to check and it’s easier – in due course – to retrieve.

Bait hive

Bait hive

I’ve previously discussed how far swarms prefer to move from their original hive. Contrary to popular opinion (and perhaps illogically) they tend to prefer to move shorter distances i.e. 20m >> 200m >> 400m. However, there are also studies that show swarms moving a kilometre or more.

Don’t get hung up on this detail. Stick out a bait hive or two and, if there are swarming colonies in range, they’ll find it.

I always leave a bait hive in my apiaries and one or two in odd corners of the garden. In the last few years I’ve never failed to attract swarms to the bait hives, and know for certain that some have moved in from over a mile away as the bee flies (thanks Emma 😉 ).

Mites and swarms

Assuming you don’t have the luxury of living in Varroa-free areas of the UK (or anywhere in Australia) then the incoming swarm will contain mites. Studies have shown that ~35% of the mite population of a colony leaves with the swarm.

But, for about the first week after the swarm sets up home in your bait hive, what’s missing from the new arrivals is sealed brood. Therefore the mites are all phoretic.

Do not delay. Treat the swarm with an appropriate miticide to knock back the mite population by ~95%. An oxalic acid-containing treatment is ideal. Single dose, relatively inexpensive, easy to administer (trickled or vaporised) and well tolerated by the bees.

Varroa treatment ...

Varroa treatment …

You have eight days from the swarm arriving to there being sealed brood in the colony

Far better to slaughter the mites now. In a few months their numbers will have increased exponentially and the majority will be in capped cells and more difficult to treat.


 

The nucleus method

Almost all beekeeping associations – and most books – teach Pagdens’ artificial swarm as the recommended method of swarm control. It is tried and tested and reasonably dependable. However it can be a bit tricky to grasp for inexperienced beekeepers.

At least part of the problem is you have two hives that look the same, one on the original site, one adjacent. Conducted properly, the adjacent hive is moved to the other side of the original a week or so into the process.

Teaching this in a poorly lit, draughty church hall in late January, facing the audience with the inevitable confusion over left and right, and getting ‘new’ and ‘old’ hives mixed up, often bamboozles the beginner 1. Or the instructor 😉

Here’s an alternative … the nucleus method of swarm control.

There she goes ...

There she goes …

General principles

This method is simplicity itself. When the colony looks as though it’s preparing to swarm you remove the queen, some stores and some bees into a nucleus hive.

This keeps the queen safe in case things go awry with the original colony.

You then return a week later and remove all but one queen cell in the original colony. The virgin queen emerges, mates, returns and starts laying.

A month or so after starting the original colony is headed by a new queen and you have a ‘spare’ building up in the nucleus box. You can overwinter this, sell it, give it away or – after removing the queen – unite it back with the original hive.

And that’s it … I said it was simple 🙂

Here is a more complete account.

Equipment needed

It goes without saying that the nucleus method of swarm control needs a nucleus (nuc) hive 2. Any sort of 5 frame nuc is suitable. Nucs are incredibly useful, so they are a good investment. If you’re buying one for the first time get polystyrene as they’re lighter, better insulated and much better for overwintering bees in. I’ve reviewed poly nucs a few years ago. There are even more makes to choose from now.

I’d recommend not using a two frame nuc as there’s not really enough room for stores and colony expansion 3.

Two frame nuc box

Two frame nuc box … a bit too small for the nucleus method of swarm control (but usable at a pinch)

In addition to the nuc you’ll need five frames that are compatible with your nuc and hive. Ideally, one or two of these should be drawn comb, but don’t worry if you just have foundation. A dummy board can also be useful. Like nucs, you can almost never have too many dummy boards.

Honey bee development

To properly understand honey bee swarm control you really need to understand the timing of the development cycle of queen bees.

Honey bee development

Honey bee development

Queen cells have a characteristic appearance. Unlike the horizontally-oriented worker cells, larvae destined to become queens hatch from eggs laid in vertically-oriented queen cells. After three days as eggs and a further five days of larval development the queen cell is sealed.

A colony will usually swarm on or soon after 4 the queen cells are sealed.

~3 day old queen cell ...

~3 day old queen cell …

This is why it is recommended that colony inspections are conducted at seven day intervals. If the colony is thinking of swarming you’ll find an unsealed cell (because there were none last week when you inspected and they take 8 days to be sealed) and you can immediately start swarm control.

Day 1 – Making up the queenright nucleus colony

If you find one or more unsealed queen cells at a routine inspection … don’t panic. You’re prepared, you’ve done your homework and you have the necessary equipment.

  1. Stuff the entrance of a nucleus hive with grass and place it near the colony 5.
  2. Remove one of the outer frames from the colony (you’ve probably already done this to give yourself room for the inspection) as this should have a good amounts of sealed and unsealed stores.
  3. Check again that the queen isn’t on this frame of stores (unlikely) and that it doesn’t contain any queen cells (again unlikely).
  4. Gently transfer the frame of stores plus all the adhering bees to the nucleus box.
  5. Continue the inspection and find the queen. Be gentle, don’t rush, don’t use too much smoke.
  6. Ideally you want the queen on a frame with some sealed and emerging brood. If you are lucky you’ll find her on a suitable frame.
  7. Gently transfer the queen and the frame she is on to the nucleus box. It is very important that this frame has no queen cells on it. Check very carefully. Destroy any you find.
  8. Your nuc colony is now queenright and has two frames of bees. Push the frames against the side wall of the nuc box, leaving a wide gap.
  9. Into this gap shake a further two frames of bees. Foragers are likely to leave the nuc and return to the original hive. You do not want the box to be short of young bees. If in doubt shake a further frame of bees into the gap in the nuc 6.
  10. Add a frame of drawn comb if you have it then fill the box with foundation. Add a dummy board if needed. Gently place the crownboard and roof on the nuc, secure everything with a strap and turn your attention to the colony.

Notes

  • The purpose of this exercise is to establish a small colony with stores, a laying queen, space to lay and sufficient bees to support her and the brood being reared. Remember stores, queen, bees, space and no queen cells you won’t go wrong.
  • You will usually find the queen on a frame with eggs and young larvae. It’s very important that this frame does not have any queen cells on it.
  • Ideally you want the queen on a frame of emerging brood. This offers a number of advantages
    • The young bees will immediately strengthen the population supporting the queen
    • The vacated cells can be used by the queen to lay eggs (so reducing the need for drawn comb, or for the bees to build new comb)
    • The nuc colony will go through a period with no sealed brood and you can take advantage of this for Varroa management if needed (I’ll deal with this in another post)
    • It’s unlikely (due to the age of the other brood) to have a queen cell on it
  • One of the most common problems encountered with this method of swarm control is making up (or ending up) with a nuc that is not strong enough. A weak nuc will be unable to defend itself against robbing or wasps. There’s very little chance of weakening the original hive too much.
  • One way to avoid losing foragers from the nuc is to move it to an out apiary more than 3 miles from the original hive.
  • If you do leave the nuc in the same apiary check it a couple of days later. The bees should have chewed their way out through the dried grass. If they haven’t, pull a bit out at the corner of the entrance to encourage them to fly.

Day 1 – Preparing with the queenless colony

  1. Inspect every frame in the colony. Destroy all large queen cells 7. Anything that looks like the queen cell in the picture above should be destroyed. The idea here is to only leave queen cells containing very small larvae.
  2. Mark the frames containing these remaining selected queen cells using a drawing pin or pen.
  3. Push the frames together, add two frames of foundation, add the crownboard and close up the colony.
Here's one I prepared earlier

Here’s one I prepared earlier

One week later – Ensuring the queenless colony does not swarm

The timing and thoroughness of this inspection is important. Don’t do it earlier. Or later. Don’t rush it and don’t leave more than one queen cell.

  1. Inspect the colony and look for queen cells on the frames you marked a week earlier. These had very young larvae in them then and so will now be sealed 8.
  2. Select one queen cell to keep. Just one. Which one? Choose one that is large, well-shaped and has a sculptured exterior.
  3. Destroy all the other queen cells on this frame. All of them! If you need to remove the bees to see the frame better either brush them off gently or blow gently on them. Do not shake the bees off the frame as this might damage the developing queen.
  4. Gently return the frame with the selected queen cell to the box.
  5. Inspect all other frames in the colony (not just the ones you marked last week) and destroy all of the queen cells you find.
  6. You can shake the bees off these other frames to be sure of finding all other queen cells.
  7. Remember that some queen cells will be unsealed 9 … destroy them all.
  8. Return all the frames to the colony. Close it up and leave it for at least two weeks before inspecting again (see below).
Sealed queen cell ...

Sealed queen cell …

Notes

  • The purpose of this return visit is to leave the colony with only a single queen cell.
  • Because you removed the queen a week ago there are no other suitably aged young larvae or eggs for the colony to rear queens from. Therefore, the colony cannot produce multiple casts (swarms headed by virgin queens).
  • The nucleus method of swarm control often leaves the queenless colony very strong 10, if you leave more than one queen cell the colony may produce casts.
  • What if the queen gets lost on a mating flight? Shouldn’t I leave two queen cells? Just to be on the safe side? No. If there’s a problem with the queen getting mated you’ve still got the old queen tucked away safely in the nuc box.
  • Queen cells that are large, well shaped and sculptured have received a lot of attention from the workers and so presumably contain a well-fed and good quality queen 11.
  • Don’t be tempted to inspect the colony in less than two weeks. Ideally leave them for three weeks. If you inspect too early there’s a chance that the queen may not have had a chance to mate and start laying (so the point of inspecting is missed) or – worse – that she returns from her mating flight as you have the box open and is then confused or lost.
  • Don’t meddle! Look for pollen being taken into the colony.
  • Have patience. Bees have been around for a few million years. They would not be this successful if they weren’t pretty good at getting queens mated …
  • Finally, particularly if the weather is poor, check the nuc as well. Ensure that it has sufficient stores. With reduced numbers of bees there’s a chance they could starve if the bees cannot forage (in which case the queen in the main colony is going to struggle to get out and mate as well).
Everynuc

Everynuc …

Pros and cons of the nucleus method of swarm control

With the exception of vertical splits almost all of my swarm control uses this nucleus method 12. I particularly like the nucleus method because I have lots of nuc boxes ( 🙂 ) and because it leaves manageable single-entrance hives rather than double height, multiple entrance stacks.

Almost all of the foraging bees are left with the original colony so the nectar-gathering capacity is not significantly reduced.

I almost never use the Pagden artificial swarm, largely because it ties up too much equipment.

Pros

  1. Limited amount of extra equipment needed – five frames and a nuc box … both of which are useful anyway.
  2. The old queen is kept safe and out of the way.
  3. Simple to implement, with just two visits at fixed times.
  4. Reasonably easy to understand the manipulations involved.
  5. No heavy lifting.
  6. You generate a nucleus colony to give away or to build up for overwintering.

Cons

  1. You need to find the queen.
  2. You need to find all the queen cells and use your judgement as to their age and quality.
  3. Unless you remove the nuc to an out apiary there’s a good chance lots of the bees will return to the original hive. Make sure you add enough at the start and be prepared to add more if you check the nuc after a day or two and find it heavily depleted.
  4. If you don’t want to make increase the nuc is a little more difficult to unite back with the original colony 13.

Give it a go … what could possibly go wrong?


 

Superorganism potential

The term superorganism can be used to refer to a colony of honey bees. The term gained prominence in the mid/late noughties having been reintroduced by the world-renowned myrmecologist 1 E.O. Wilson.

Bees, like ants (myrmex, “ant”, from the Greek μύρμηξ), are social insects in which there are divisions of labour. Different individuals within the colony perform different tasks. Some of these roles are defined by the castes in the colony – queen, worker and drone in a colony of honey bees for example – and some are defined by physiological differences between individual members of the same caste.

The term superorganism describes the entirety of the colony and is defined as a group or association of organisms which behaves in some respect like a single organism.

Essentially, a superorganism has characteristics and behaviours that the individuals within the colony – due to caste or physiological specialisation – do not exhibit.

The superorganism operates as a unified entity, collectively working together to maintain and reproduce the colony.

Division of labour and temporal polyethism

Drones and queens have relatively straightforward roles in the colony. Drones, like teenage boys, lounge around eating and thinking about sex. The queens are egg-laying machines.

An egg laying machine

An egg laying machine

Although there’s undoubtedly work involved in laying your bodyweight in eggs at the height of the season, the real work in the colony is – appropriately – done by the workers.

Worker bees exhibit temporal polyethism i.e. they display different patterns of behaviour depending upon their age. They have a maturational schedule in which they sequentially undertake age-correlated roles in the colony:

  • Young bees work in the hive in a series of roles starting with cell cleaning (days 1-2), nursing developing larvae (nurse bees; days 3-11) and wax production (days 12-17).
  • After two to three weeks the workers undergo significant physiological changes (weight loss, changes in immune function, reduced stress resistance) which prepare them for a productive life outside the hive. During this period the bees transition through a period when they act as guard bees.
  • Older bees (the ‘flying’ bees) perform a range of foraging activities including water carrying, pollen collection and nectar gathering.

And then they die in the field 🙁

Behavioural plasticity

This behavioural maturation is controlled by a so-called negative feedback loop between vitellogenin (Vg 2) and juvenile hormone (JH).

Nurse bees have high Vg levels which are reduced at the transition to foraging. Conversely JH levels increase with the onset of foraging (I know this sounds counterintuitive). These changes are responsible for a range of physiological changes in the worker bee.

Behavioural maturation in worker bees

Behavioural maturation in worker bees

But it’s not as simple as that. High Vg levels can block JH synthesis, so delaying maturation and foraging. Similarly, JH may reciprocally inhibit Vg synthesis and induce early foraging.

Clearly that last couple of sentences indicates that worker maturation is not an invariant process. It doesn’t always occur after 2-3 weeks.

In fact, the maturation or ageing process in honey bees is a very interesting phenomenon.

Ageing exhibits seasonal variability and remarkable plasticity.

Nurse bees can survive for at least 130 days and overwintering bees may survive up to 280 days. Clearly ageing in bees is a remarkably variable process. Overwintering bees ‘mature’ into either nurse bees or foragers. Presumably this has evolved as an effective mechanism of allowing spring colony build up (by having sufficient bees for the different roles) once environmental conditions improve.

In addition, there is another striking feature of the maturation process of honey bees.

Under certain social environmental conditions maturation is reversible.

This reversible maturation can be demonstrated by removing the nurse bees from the hive. Under these conditions some of the younger foragers revert, both behaviourally and physiologically, to nursing tasks. JH levels drop and Vg levels increase.

Old foragers are unable to undergo this rejuvenation.

Reversible maturation in worker bees

Reversible maturation in worker bees

Which finally and in a round the houses way gets me to the subject I meant to cover in the first place this week …

Brood and the superorganism

The honey bee colony superorganism not only contains a queen, workers and drones. It also contains brood. In the following text I’ll use the term brood as a collective noun meaning all the eggs, unsealed larvae and sealed pupae in the colony (unless otherwise specified).

Is the brood a component of the superorganism?

It certainly is.

Laying workers ...

Laying workers …

Remember previous discussion of laying workers. These are workers that lay unfertilised eggs which develop into drones. Egg laying by workers is suppressed by pheromones produced from unsealed brood 3. Therefore brood does influence the behaviour of the colony 4.

If the complete colony – brood, workers, drones and a queen – is a superorganism, which components of the colony, individually or together, have the potential to form the superorganism?

And why should this matter?

Swarming and the superorganism

During swarming, either naturally during colony reproduction, or during manipulation by the beekeeper, the ‘superorganism’ is broken up.

During natural swarming the (old) mated queen leaves the colony with 60-75% of the workers to establish a new colony. By the time the swarm leaves, the original colony – which has all the eggs, larvae and brood (obviously) – is usually already well on the way to rearing a new queen. The (new) virgin queen emerges, gets mated, and the colony has successfully reproduced.

Many of the colony manipulation methods that are used to prevent the loss of natural swarms exploit the potential of the components in the colony to form a complete new colony.

Most ‘artificial swarms’ work by breaking the colony – the superorganism – into two parts:

  1. The queen and the ‘flying’ bees. Even young bees can fly, so the term ‘flying’ bees refers to the older bees from the colony that have matured sufficiently to leave the hive.
  2. The nurse bees and all the brood.
Swarms, splits and superorganisms

Swarms, splits and superorganisms

These two parts both have the potential to create a new colony.

The queen and the flying bees that form the swarm (or the queenright part of an artificial swarm) occupy a new site (or hive 5), draw comb in which the queen lays, the larvae are fed 6, pupate and emerge. At the same time, foragers collect the necessary nectar and pollen to maintain the new colony.

The swarmed colony (i.e. the queenless part of an artificial swarm) contains ample stores and the nurse bees. What they don’t have is a queen. But they do have eggs and young larvae. The nurse bees select and feed one or more of these young larvae with copious amounts of Royal Jelly. A few days later a virgin queen emerges, matures, mates and returns to the colony to start laying eggs.

Sealed queen cell ...

Sealed queen cell …

Therefore both natural and artificial swarms exploit the potential in both parts of the original colony to eventually reproduce the colony.

No potential

Not all components of the colony have the potential to give rise to a new colony or superorganism. A solitary queen doesn’t even have the ability to feed herself properly, let alone double up for egg laying and nursing larvae duties.

This comes as a surprise to some people. If you frequent any of the online discussion forums you’ll sometime see questions posted like this:

What sort of hive do I need to buy to put a queen bee in to make honey?

Followed by some polite, or not so polite, responses saying that there’s a little bit more to beekeeping than that 7.

The ‘flying’ bees alone, in the absence of a queen, also have no potential. They can lay eggs (as laying workers, see above), but since the eggs are unfertilised the colony will be doomed. It’s not unusual for a queen from an artificial swarm (or from a cast) to fail to return from a mating flight, so condemning the workers in the hive to oblivion.

Swarms and behavioural plasticity

The classic artificial swarm involves moving the nurse bees and the brood to a new site, leaving the queen and the flying bees in the original location.

You do this so that the flying bees that have orientated to the position of the original hive – whether out in the field actively foraging or in the moved hive – eventually return and so become separated from the nurse bees and the brood.

In doing this you remove the urge to swarm and you weaken the queenless hive.

The majority of those flying bees are foragers.

And this is where behavioural plasticity is essential. remember that the artificial swarm predominantly contains foragers, not the nurse bees needed to feed developing larvae.

Some of these foragers undergo rejuvenation to produce wax or to become nurse bees. These build new comb and, in a few days, feed larvae that have hatched from the eggs laid by the queen.

This behavioural plasticity contributes to the potential of the artificial swarm to produce a new colony or superorganism.

A small swarm ...

A small swarm …

Do the same processes happen in natural swarms?

That requires a discussion of the worker composition of swarms which is not straightforward and will have to wait for another day 😉