The bees know best

Synopsis : Queens reared under the emergency response are numerous and preferentially started from eggs. The cells are then subjected to strong selection by workers after capping. What does this tell us about good quality queens and can we use this knowledge to improve our own queen rearing?

Introduction

In Eats, sleeps, bees I made a passing comment on the confidence I have in the ability of bees to choose ‘good’ larvae when rearing a new queen. I was justifying why I only leave a single queen cell in a colony that needs requeening. The precise words were:

“I also had total confidence that the bees had selected a suitable larva to raise as a queen in the first place. After all, the survival of the resulting colony depends on it.”

I thought this might be an interesting topic to look at in a little more detail. There is some interesting science on queen cell production.

And subsequent destruction.

Queen cells

Queen cells … have they chosen well?

In addition, there are related observations on what the bees choose as the starting material for queen cells. This should inform our own queen rearing activities. I’ll discuss these (briefly) after presenting the science.

Emergency, supersedure and swarm responses

But first I need introduce the three ‘responses’ under which a colony rears one or more new queens. These are the emergency, supersedure and swarming responses 1

The swarming response

Around this time of the season 2 many beekeepers will be familiar with queen cells produced under the impulse to swarm.

A strong, queenright colony runs out of space. Eggs are laid in specially created vertically oriented cells and are subsequently reared as new queens.

Once these swarm cells are sealed the colony swarms. The old queen and a significant proportion of the workers disappear over the fence. One or more new queens emerge and the colony may produce casts, each headed by a virgin queen. One new queen finally remains, gets mated and heads the original colony.

Swarming is honey bee reproduction … it is the only (natural) way one colony becomes two.

The supersedure response

Supersedure is the in situ replacement of the current queen. The colony produces a small number of supersedure cells – often just one, located in the middle of a central frame 3 – the new queen emerges, mates and starts laying. There may be two queens in the box for an extended period, but eventually the old queen disappears.

Supersedure is probably more common than most beekeepers think. It is the usual explanation for the presence of an unmarked queen at an early season inspection in a hive that had previously contained a marked queen.

The emergency response

If the incumbent queen is removed or killed the colony must rear another or they are doomed. They do this under the emergency response.

Some beekeepers – particularly beginners 4 – inadvertently crush the queen while returning brood frames. They are then surprised at the next inspection to find no eggs but a lot of queen cells.

What’s this? Swarming finished weeks ago!

This is the emergency response at work. The bees select several suitable eggs or larvae, reshape the comb to allow a vertically-oriented cell to be drawn and feed with copious amounts of Royal Jelly.

And voilà, a new queen 5 is produced.

Inducing these responses

The emergency response is triggered by the removal of the old queen – either by physically taking her out of the box, or killing her. Both are easy to achieve 🙁 6

There are ways to induce a supersedure response, but they sometimes involve damaging the queen 7 and are unreliable and – more importantly – ethically dubious. There are more ethically acceptable alternatives.

Lots of beekeepers inadvertently induce the swarming response by not providing the bees with sufficient space, not supering early enough or allowing the brood nest to be backfilled with nectar.

However, doing this in a controlled manner is not a certainty. In one of my apiaries 50% of the colonies have shown no inclination to swarm this season whereas the others all produced swarm cells. All were treated similarly and were – to all intents and purposes – of equivalent strength.

Sealed queen cells produced under the swarming response

For scientific purposes inducing a swarming response cannot be relied upon for studies of queen cell production and selection.

In contrast, the emergency response is 100% reliable. Therefore, in the majority of studies on brood choice, queen cell production and selection, it’s the emergency response that is exploited. That’s certainly the case with the two papers I’m going to briefly discuss this week. 8.

Pick a larva, any larva

Is that what the bees do?

Of course not.

Regular readers will remember from Timing is everything that only larva up to three days old are suitable for producing new queens i.e. six days after the egg is laid.

However, if the queen is laying 1000 eggs per day 9 that still means there are up to 3000 suitably aged larvae in the hive for the production of a new queen, should one be needed.

Eggs and young larvae

Eggs and young larvae

Actually there’s even more choice as the bees can start the queen rearing process – the production of a queen cell – from a cell occupied by an egg … something that has been known for decades, but is relatively rarely discussed.

So, what do they choose?

The first study I’m going to discuss addresses this point and the interesting (and critical) aspect of the quality of the resulting queens that are produced.

Hatch, S., Tarpy, D. & Fletcher, D. Worker regulation of emergency queen rearing in honey bee colonies and the resultant variation in queen quality. Insectes soc. 46, 372–377 (1999).

The study was very straightforward. They induced the emergency response by dequeening strong hives. They then monitored the production and position of queen cells over time, determining the age of the egg/larvae selected by extrapolating back from the day the queen cell was sealed.

Cells that were capped were caged with queen excluder and the resulting emerged queen was analysed to determine her quality. This essentially involved determining her size and weight (the bigger the better) and ovarial number, but they measured additional features as well.

Emergency cell production

In the 8 colonies used, almost all queen cell construction was started within 24 hours of queen removal. A few more cells were produced for up to 48 hours after dequeening, but none were started after that.

There will still be many hundreds of (apparently) suitably aged larvae in the colony at this point. However, these were not selected as all the queen cells that would be made had already been started.

Colonies produced different numbers of queen cells, from 6 to 56 (average 27).

However, the majority of these cells were torn down before emergence, and a few of those that were sealed never emerged. Of the 217 cells started, 115 (53%) were torn down, 11 (5%) did not emerge and the remaining 91 (43%) emerged.

Not only did the number of queen cells produced vary greatly between hives, so did the numbers of queens that emerged – from 3 to 20 (average 11).

The brood nest is roughly spherical or rugby ball-shaped and usually occupies the centre of the hive. About 46% of the cells started were on the central three frames, and these had a much greater chance of producing queens. This was because queen cells started on the central frames of the brood nest were less likely to be torn down (41%) than those on the periphery (71%).

Pick an egg or a larva (in which case, the younger the better)

So if it’s not Pick a larva, any larva’, what do the bees choose to start their emergency queen cells from?

Remember how important this is. Without a new queen the colony cannot survive. The clock is ticking. They only have a few days to make this choice before all the brood in the nest are too old for queen production.

The non-random construction of queen cells.

They predominantly choose eggs.

Almost 70% of queen cells started were initiated when the cell contained an egg, rather than a larva. What’s more, the majority of the eggs chosen were three days old.

If you consider that there were 6 possible choices (1, 2 or 3 day old eggs and 1, 2 and 3 day old larvae), it’s striking that 34% of all the queen cells produced were from 3 day old eggs.

In fact, it turns out that only five choices were made as none of the queen cells were started from 3 day old larvae.

Furthermore, over 60% of queen cells produced from 2 day old larvae were subsequently torn down.

Bees choose to make queens from the oldest eggs or the very youngest larvae.

Are you getting the message?

Since the production of a new queen is essential for colony survival we should assume that the bees have evolved a queen cell production ‘strategy’ that maximises the chances of producing a suitable queen.

Almost 60% of the ‘starting material’ chosen by the bees to ensure colony survival – that resulted in queen production – were 3 day old eggs or 1 day old larvae.

This emphasises the need to provide colonies we use for queen rearing with eggs and larvae of this age range. It also reinforces the importance of only selecting the smallest larvae possible when grafting.

The choice the bees make is presumably because queens reared from older larvae are of poorer quality, perhaps because they have a reduced period for feeding with Royal Jelly.

So how do the queens produced from eggs and young larvae compare?

Queen ‘quality’

Of the 91 queens that emerged only 89 were analysed because two ”escaped capture”.

It’s reassuring to know that it’s not just cackhanded beekeepers that make mistakes 😉

There were no differences in the morphology – weight or size – for queens that emerged from cells on either the central or peripheral frames 10.

However, queens reared from 3 day old eggs were significantly heavier than queens reared from larvae. In addition, queens reared from 3 day old eggs had a longer thorax than queens reared from either younger eggs or larvae.

Other morphological measurement – e.g. wing length or width – did not differ significantly between queens reared from eggs or larvae.

But are these hefty, long-thoraxed, queens better quality?

This isn’t a simple question. What does better quality mean? It’s not the size or productivity of the resulting colony she heads since that is also influenced by the genetics and number of drones she mates with.

It’s also time consuming and impractical to measure scientifically (for 89 queens).

Instead, the scientists measured the number of ovarioles and the volume of the spermatheca as potential indicators of fecundity. There was no relationship between weight and ovariole number, irrespective of the age of the egg or larva when the cell was started.

If not more fecund, what?

So, if bigger queens don’t necessarily have increased fecundity (though remember, this wasn’t shown – all they demonstrated was that the ‘innards’ involved in fertilised egg production were similar) why might the bees select eggs/larvae that resulted in bigger queens being produced?

One possibility is that these bigger queens have greater success in what is termed polygyny reduction.

This is what beekeepers call fighting.

If more than one queen is present they fight until only one is left in the hive. This hadn’t been extensively studied in 1999 (when this paper was published) but has been addressed in other studies 11.

Alternatively, and suggested in a tempting but cryptic ’unpublished data’, heavier queens may be able to achieve higher levels of polyandry i.e. mate with more drones, so increasing the genetic diversity, and consequently the fitness, of the colony. I’ve discussed the importance of polyandry and so-called hyperpolyandry for colony fitness and disease resistance previously, so won’t revisit these here.

It’s easy to speculate that a queen with a larger thorax may have better developed flight muscles. These might enable her to stay longer in drone congregation areas for mating.

Why are so many cells started (and queens reared)?

In the emergency response only one queen is needed to ‘rescue’ the colony from oblivion.

Why therefore are so many queen cells – on average 27 per colony – started?

And why do the workers allow an average of 11 queens emerge?

The authors suggest a number of possible reasons:

  1. Colonies raise multiple queens to guarantee the requeening process. This assumes that the ‘cost’ of queen rearing is low, which seems reasonable. Since only 5% of queens raised failed to emerge it is probably not to overcome this limitation.
  2. Multiple queens allow colony reproduction if conditions are suitable. Only colonies that raise multiple queens would be able to (simultaneously) reproduce and requeen, so there might be a selective pressure to allow this.
  3. A consequence of age demographics (brood or workers) in the colony. This is slightly trickier to explain and has not been tested. Queen cells result from an ‘interaction’ of available brood (eggs/larvae) with workers. A colony has variable numbers of both, and there are a variety of worker cohorts, only some of which contribute to cell building. Therefore, the production of multiple cells (and queens) may simply reflect the variation in the factors – ages of brood and workers – involved.
  4. Rearing multiple queens allows workers to select the ‘best’. That’s clearly wrong because the ‘best’ would be just one queen. Perhaps a better explanation would be that it allows workers to either select for better queens by destroying those that are less good.

No single reason

Biology is complicated 12 and it may be that all four of the reasons above are correct. There may be (and almost certainly are) additional reasons that favour the production of multiple queens.

However, of the four reasons above, this paper provides nearly compelling evidence that the workers are selecting which emerge and which do not.

Remember, 53% of the cells that were started were torn down.

In addition, there was both a spatial and temporal bias to the cells that were torn down. This strongly suggests that the process (of cell destruction) was not random.

However, it remains only nearly compelling because we know nothing about the queens that were in cells that were torn down.

By definition those queens don’t exist. The cells were torn down and the queens killed/eaten/discarded so we have no measure of their quality.

If they were indistinguishable from those that did emerge then I’d struggle to convince you that the worker selection was producing ‘better queens’ from the large number of queen cells that were started.

Analysing the non-existent

But fortunately this experiment has been done.

Tarpy, D.R., Simone-Finstrom, M. & Linksvayer, T.A. Honey bee colonies regulate queen reproductive traits by controlling which queens survive to adulthood. Insect. Soc. 63, 169–174 (2016).

The experimental methods were almost identical. However, this time, when they caged the capped queen cells they randomly assigned them to cages that either allowed or prevented worker access (both types of cages prevented the escape of the queen).

They then analysed the queens that emerged from the ‘worker-accessible’ and ‘worker-excluded’ queen cells.

The hypothesis was straightforward, if the workers were randomly destroying a proportion of queen cells there would be no differences in the characteristics of the resulting queens. Conversely, if there was selection, the queens from the ‘worker-excluded’ cells would be different.

The overall numbers of queen cells produced (average 12, range 4 – 22 per colony) and the proportion – 57% – of the ‘worker-accessible’ cells torn down were similar to the study I’ve already described.

Effect of queen treatment on two different measures of queen reproductive potential.

‘Worker-excluded’ queens were significantly smaller than those from ‘worker-accessible’ cages. They also weighed less. This is obvious from the top left panel (above) but confounded 13 by the small size of the study and the significant differences in the weight of queens produced in different colonies 14.

Despite the limited size of this study these results strongly suggest that workers are somehow ‘weeding out’ lower quality (defined here as smaller and probably lighter) queens.

I’ll leave it to you to speculate on how the workers outside the queen cell determine the size/weight/quality of the queen inside the cell … 😉

Does this have relevance to beekeeping?

I think there are a number of interesting points from this study that have relevance to practical beekeeping.

  • Queen cells were started under the emergency response only in the first 3 days after the queen was removed. The vast majority were started within 24 hours. This should help determine when the queen went missing or – if you deliberately removed her – defines the latest date that you need to be concerned about new cells being started.
  • If you are improving your stocks by adding larvae from a separate colony 15 then make sure you add a frame containing eggs and larvae. You want to be sure they have access to 3 day old eggs.
  • It probably makes sense to place this frame in the centre of the brood nest.
  • If you’re grafting larvae for queen rearing – as I’ve already suggested – make sure you choose those under ~18 hours old. The younger and the smaller the better.
  • But, perhaps we should instead think about grafting eggs rather than larvae?

This last suggestion is a topic of a (part-written) future post.

Here are a couple of additional points to think about. Studies have shown that egg transfer results in the largest queens. However, eggs are accepted significantly less well than larvae … and some colonies will not accept them at all. I’ll discuss this in more detail some other time.

And a final caveat …

The final point to remember is that both these studies analysed queen cell production and the resulting queens under the emergency response.

Many queen rearing methods – the so-called ‘queenright’ ones such as my favoured Ben Harden method – exploit the supersedure response. It’s always possible that the bees have different preferences for queens reared under the supersedure (or for that matter the swarming) responses.

But I doubt it 😉

After all … colony survival is dependent upon good quality queens and the bees know best.


 

Correx: cheap, light, useful. Choose any three

Synopsis : From quick fixes to permanent solutions, Correx – extruded, twinwall, fluted polypropylene – has multiple uses in beekeeping. If you learn how to fold, stick and shape it you can save time, money and space. Here are just a few of the things I use it for.

Introduction

The Spring honey is almost ready to harvest. Supers went from ”filling nicely” to ”Woah! Damn that’s heavy” in the space of a week. They’re now fast approaching ”No more than two at a time” territory which means; a) they’re full, and/or b) I’m less strong than I used to be 1.

The corpulent supers prompted me to rummage through a teetering stack of equipment to try and find sufficient clearer boards to use before removing the honey supers for extracting.

Clearer boards are effectively one-way ‘valves’ that funnel the bees down into the brood box 2.

Quick fix clearer board – hive side

These are two and bit times a season pieces of kit … the Spring and Summer honey harvests and irregular usage to empty the odd brood box when compressing colonies prior to the winter. The rest of the time they sit, unused, unwanted and – not infrequently – in the way.

And, for convenience, you need more than one.

I like to have one for every hive in the apiary, particularly when taking the summer honey off. That way you can strip all the hives simultaneously, so avoiding problems with robbing. None of my apiaries are particularly big, but it still means I’ve needed up to a dozen clearer boards at a time.

That’s a lot of wood and limited-use kit to sit around unused. I therefore build lots of them from Correx.

Clearer boards – one wood and six made from ekes and Correx

This post isn’t about clearer boards. I’ve described those before.

Instead it’s about Correx and the myriad of uses that it can be put to.

If you don’t use it you’re probably missing out.

If you do, you probably have some additional uses to add to the list below.

Correx

Correx is a registered trademark owned by DS Smith. Other trademarks (by other companies) include Cartonplast, Polyflute, Coroplast, FlutePlast, IntePro, Proplex, Twinplast, Corriflute or Corflute … and there are probably some I’ve missed.

It’s all very similar stuff, variously described as corrugated plastic or corriboard, and perhaps more accurately described as an extruded, twinwall, fluted polypropylene.

If you don’t know what I’m talking about then you’re probably familiar with the material they make For Sale signs from … that’s Correx 3.

Under offer ...

For sale …

Correx is lightweight, impervious to most oils, solvents and water, relatively UV resistant and recyclable. These characteristics make Correx ideal for a range of beekeeping applications.

It is easy to cut and can be folded, with or across the ‘grain’ if you know the tricks of the trade.

Correx is available in a range of thicknesses – typically 1-8 mm. Two millimetre Correx is often used as a protective floor covering in new buildings. However, it’s rather thin and flimsy.

Almost everything I use is 4 mm and so, unless I state otherwise, assume that’s what I’m referring to in the text below.

Almost certainly the stuff I use is not Correx, but I’ll call it Correx for convenience 4.

Before discussing 5 applications I’ll make a few comments on sourcing Correx and cutting, gluing and folding it.

Free Correx

For Sale signs belong to the estate agent selling the house. However, they’re often not collected after the house sale completes and are dumped in a nearby ditch, stuffed down the side of the garage or otherwise discarded. Many still have the 2.4 m wooden post attached.

If they really are unwanted it’s often a case of ’ask and ye shall receive’ … and, if the sign is in a ditch, you don’t probably even need to ask.

When I lived in a semi-urban area I used to carry a handsaw in the car to help my repurposing of these sorts of signs.

Elections are another good source, particularly if the candidate in your ward a) loses ignominiously, and b) immediately retires. It’s unlikely the political party will find another Archibald Tristan Cholmondeley-Warner to stand for them, so the electioneering signs are – like the politician – surplus to requirements.

As always, never walk past a part-filled skip without having a good look at the contents 😉

Never!

Buying Correx

Correx is relatively inexpensive when bought in multiples of 2.4 x 1.2 metre sheets 6. I’ve paid about £10 a sheet delivered for 5 or more, purchased from eBay, but can’t find anything quite that price when I had a quick look this week.

You might not think you need 14 square metres of Correx but you’d be surprised at the things it can be used for. It’s also easy to store behind a bookcase or in the shed.

Correx sheet

Correx sheet …

It’s also worth asking at local plastics and printing companies that may have offcuts or failed print runs. It doesn’t matter what’s printed on the Correx 7. There’s a beekeeper in Northern Ireland that crafted a nuc box out of election propaganda bearing a photo of the candidate. The nuc entrance was arranged to be the politicians mouth.

Be creative.

Finally, Correx is often used to make guinea pig cages or runs, so befriend a cavie-keeper and you might locate the mother lode 8 😉

Correx engineering

Thin Correx (4 mm) is easy to work with. It can be cut with a Stanley knife. All you need is a good straightedge, a steady hand 9 and a sharp blade. Marking up the sheets is easiest in pencil as many pens don’t work on the smooth impervious surface 10. Pencil works equally well on black or white sheets.

I’d recommend you don’t use scissors as they tend to crush the sheet. It’s also difficult to cut large sheets with a small pair of scissors.

Folding Correx

Correx has a ‘grain’ created by the vertical internal ribs that connect the upper and lower faces of the sheet. If you need to fold the sheet you’re working with, the method used depends whether you are folding across or with the grain.

To fold across the grain you need to crush the ribs without cutting through the upper face of the sheet. To achieve this use a pizza cutter and a straightedge. A pizza cutter is usually sufficiently blunt that the sheet isn’t cut. The crushed side of the sheet becomes the inner angle of the fold.

Pizza cutter

Pizza cutter … take care scoring the Correx

Making folded corners requires a little ingenuity but is obvious once you realise how the sheet folds 11.

Corner detail

Corner detail …

To fold with the grain requires a small amount of surgery. First cut on either side of a rib, then fold the sides back leaving a T-shaped piece – formed by the rib and a small piece of the upper face of the sheet – protruding. Then, with a steady hand and a sharp knife, cut the leg of the T away.

Folding Correx with the grain – cut one of the ribs away

The sheet then folds easily with the uncut face forming the outer angle of the corner.

Gluing Correx

This is tricky. I’ve tried every glue in my workshop and none of them work. The surface of Correx has some sort of treatment that means that glues do not adhere. There are tricks that involve flaming the surface to remove the treatment, but – at least in my experience – they are hit and miss.

Usually miss 🙁

There are commercial hotmelt adhesives 12 that can be used – like the ones the estate agents use to stick two signs back-to-back – but they are quite expensive.

Whatever the surface treatment is, it also prevents many sticky tapes adhering properly or permanently.

But there’s one exception … Unibond Power Tape Plus. It’s available in silver and black. Critically for beekeeping it’s both waterproof and temperature resistant. This tape is about a fiver a roll and this represents excellent value for money.

Sticky stuff ...

Sticky stuff …

I’ve got some Correx hive roofs held together with Unibond Power Tape that have been in constant use since 2014, outdoors (obviously) in temperatures ranging from sub-zero to 30°C or more 13.

Highly recommended.

To help the tape stick even better it’s worth gently abrading the surfaces to be taped together using wet and dry sandpaper and then cleaning with a solvent like acetone. Press the tape down firmly and check it in about a decade or so.

Uses

I’m going to concentrate on the uses I make of Correx, because those are the things I have experience of.

There are lots of other things you could use it for … for example, I’ve not built nuc boxes from Correx, but I know you can. They are increasingly used by the bulk commercial nuc suppliers. If you don’t want to build your own you can purchase these boxes for £9 to £12 each 14, flat-packed, in National or Langstroth formats. These boxes tend to use interlocking tabs to hold them together, rather than tape or glue. They might be suitable for short term, summer usage, but not for overwintering a nuc colony.

Roofs

I’ve made lots of Correx roofs and they are still in everyday use, either on hives or on stacks of spare boxes. I’ve described how to build them in detail, together with their pros and cons.

Correx in the frost ...

Correx in the frost …

Everything I wrote 7 years ago is still valid, so I won’t repeat it here.

A single 2.4 x 1.2 sheet of Correx is big enough to produce 8 roofs. Even if you can’t find Correx cheaper than £13 a sheet that’s still less than £1.75 a roof including the cost of the tape holding it together 15.

I routinely successfully overwinter colonies with Correx roofs covering a 50 mm thick block of Kingspan insulation.

Semi-permanent division boards e.g for vertical splits

In my experience these are one of the few things 16 that cannot be satisfactorily made from 4 mm Correx.

These types of boards might be separating brood boxes for a month or more while one half of a vertical split requeens. During this time the board tends to warp. The bee space increases on one side and is destroyed on the other. Consequently the bees build unwanted brace comb above and below the frames.

Split board ...

Correx split board …

I now only use my 4 mm Correx split boards in extremis. I know that some of the commercial beekeepers use 6 mm or 8 mm Correx split boards. The additional rigidity of the thicker Correx presumably withstands warping sufficiently.

If When I run out of equipment I’ve been known to use split boards as crownboards. For the same reasons – warping – I try and avoid using horizontal sheets of Correx in the hive for extended periods.

Temporary division boards e.g. Cloake and clearer boards

In contrast, Correx is ideal when used for limited periods in the hive. One obvious application is the removable slide in a Cloake board for queen rearing.

Cloake board ...

Cloake board …

Mine was built from a For Sale sign rescued from a skip in Newcastle. It’s one of the thicker pieces of Correx I’ve used (6 or 8 mm) and is significantly more rigid than the standard 4 mm sheets. However, I’m sure that 4 mm would do as the slide is only in place for about 24 hours to induce the emergency response and initiate queen cell production.

As I wrote in the introduction, the majority of my clearer boards are built from Correx. I now zip tie the escapes to the underside of the board 17 and then pair them with a simple eke when I need to use them for clearing supers.

Zip tied escape on a Correx clearer board

These work fast and efficiently, they don’t warp and they can be separated from the eke and stored separately (where they take up little space) if/when the eke is being used for something else (like a spacer to provide an upper entrance, or whilst vaporising from above the brood box).

Floors

The only floors I’ve built with Correx are those for bait hives when paired with two stacked supers. These work really well.

Inside ...

Bait hive floor

Bait hives should have solid floors, so if I want to use an open mesh floor on a bait hive I simply lay a small sheet of Correx on the mesh and remove it once the hive is occupied.

Varroa trays

Most, or at least many, commercial Varroa trays are made of Correx 18. To make counting mites easier it helps to draw a grid on the tray.

Varroa tray gridded to make counting mite drop easier

Of course, to make counting mites really easy it helps if there are few of them. Use miticides properly and at the right time. In that way your Varroa levels will never get too high and you’ll never run out of fingers when counting the mite drop 😉

OK, perhaps a slight exaggeration, but it’s certainly easier to count low numbers of mites rather than thousands. I’ve seen post-treatment mite drops so heavy you could trace patterns through the mite corpses with your finger, and the easiest way to count them was with a digital lab balance.

Ewww!

Landing boards

Almost all of my hives have Correx landing boards. Some are integral to the kewl floors I use …

Correx kewl floor landing board

… while others are attached to the outside of my bee shed.

Laden foragers returning ...

Laden foragers returning …

You can paint Correx with a variety of different types of paint. Radiator enamel or car spray paint works well. Using different colours and/or decorating the landing board with distinctive shapes helps bees orientate to the hive entrance and reduces drifting.

For vertical surfaces, try sprinkling sand onto the semi-dry paint before over-spraying to provide laden foragers better grip when entering the hive.

My white Correx landing boards are starting to exhibit UV damage after 4-5 years of use. Either avoid white, paint them or put up with having to infrequently (and inexpensively) replace them.

Miscellaneous

Most of my nucs are red 19 or blue. When I’m making up lots of nucs for queen mating I pin Correx shapes above the entrance to help the bees – and particularly the queens – distinguish between the hives. Again this reduces problems with drifting.

Correx signage on poly nucs

Almost all my nuc boxes are Thorne’s Everynucs. These are well designed except for the cavernous entrance. Again, Correx can be used to fix the situation; I use it to block the entrance entirely for travel, or to provide a much reduced entrance that is easier for the small colony to defend.

Correx, the beekeepers friend ...

Correx, the beekeepers friend …

I’m currently busy rearing my first queens of the season. The method I’m using involves sealing the standard hive entrance and redirecting the bees to an upper entrance 20. This process is really speeded up by leaning a sheet of Correx against the front of the hive, directing the returning foragers to the upper entrance.

Correx sheet redirecting returning foragers

Doing this stops the bees milling around the original entrance and is particularly helpful in borderline weather conditions e.g. low temperatures and intermittent showers 21, when it prevents bees getting chilled.

Correx and tape were used to build these ‘fat dummies’

Fat dummies for queen rearing? Correx to the rescue.

I could go on … but I won’t.

You’ve got the general idea by now.

If you’ve found additional uses for Correx then please add a comment below.


 

Eats, sleeps, bees

Synopsis : The beekeeping season is starting to get busy. Swarm control is not only essential to keep your hives productive, but also offers easy opportunities to improve the quality of your bees. Good records and a choice of bees is all you need. This week I discuss stock improvement together with a few semi-random thoughts on honey labelling, colony behaviour and wax foundation. Something for everyone. Perhaps.

Introduction

May is usually a lovely month in Scotland. It is often dry and sunny enough to spend much of the time outdoors, the days are long enough 1 to get a lot done and it’s early enough in the year to avoid the dreaded midges 2.

Usually and often.

Unfortunately, the weather so far this month has been unseasonably cool. It was probably better for much of March than it’s been for the first half of May.

But that good weather in March gave the bees a real boost – particularly in my apiaries on the east coast of Scotland.

Consequently, there’s still a lot of beekeeping to do now – swarm control, preparations for queen rearing, catching up with all the things I didn’t do in the winter ( 🙁 ) – often in between some rather iffy weather 3.

The next couple of months are usually pretty much full on … hence Eats, sleeps, bees 4.

Latitude …

The differences I discussed in Latitude and longitude a month ago are particularly marked now.

Beekeepers in Sussex or Kent have been complaining about running out of supers since mid-April. Other have been proudly displaying their first (or second) round of grafted queen cells.

In contrast, a few of my west coast colonies are still only on 6-7 frames of brood. It will be at least another fortnight until I even think about whether they’ll need swarm control.

Which might be a fortnight before they’ll actually need it.

These are perfectly healthy west coast native bees, adapted to the climate and forage available here.

The wonderful west coast of Scotland

They are classic late developers, evolution having timed colony expansion to fit with the local forage and the availability of weather good enough for queen mating.

There’s insufficient forage to produce oodles of brood in late April and many colonies have yet to produce any mature drones (though they all now have drone brood). Instead, they build up rather slowly, and are probably at the peak in July when the heather starts to yield.

This is all reasonably new to me and I feel I’m still learning how the season develops here on the west coast. I’m sure I’ll get the hang of it.

Eventually 😉

Going by the rate colonies are currently building up, and their performance last year, I expect to be rearing queens from these colonies in June and early July 5.

… and longitude

Meanwhile, in Fife things are progressing much faster.

My apiaries there are about 160 miles east and at a similar latitude, but most of the colonies are already overflowing their boxes. Swarm prevention is a distant memory and I’m now busy with swarm control.

The genetics are different. My east coast bees are all local mongrels, again adapted to local conditions.

However, I suspect an even greater difference is the early season forage and – although it’ll be finished in the next week or so – the oil seed rape (OSR).

Oil seed rape … and rain

The OSR gives colonies a massive boost. They gorge on it – both the nectar and pollen – quickly filling supers and a multitude of hungry larval mouths. Reasonably strong nucs made up for swarm control on the 1st of May are now in a full brood box and will be more than ready for the summer nectar flow when it starts.

Queen rearing would have started already if the two boxes I’d earmarked for cell raising hadn’t become a little overcooked and produced queen cells at the beginning of the month 🙁 .

The best laid plans etc. 6.

And, to add insult to injury, the (lovely quality) colony I’d intended to source larvae from produced queen cells the following week.

D’oh!

Quality control

One of the (nominal) cell raising colonies – we’ll call it colony #6 for convenience 7 was borderline in terms of temperament.

On a balmy afternoon, with a good nectar flow, the bees were calm, unflustered and a pleasure to handle.

However in cool, damp or blustery weather they weren’t so great.

This is one of the reasons that record keeping is so important. Although I’d not inspected them this season in very poor conditions 8, my records from last year also showed they were, shall we say, ’suboptimal’. Not psychotic or even hugely aggressive, but certainly hotter than I’d prefer and nothing like as stable on the comb as I like 9.

Of course, the simple answer is not to go burrowing through the box in cool, damp or blustery weather’ 🙂

However, I don’t always have a choice as these bees are 160 miles away. Met Office forecasts are good for tomorrow, questionable for next week and essentially guesswork for next month (which is when I’m booking the hotels).

So, having realised that both swarm control and quality control were needed, how have I tried to improve the quality of this colony?

Controlling quality

I discovered open, charged queen cells in colony #6 on the 1st of May. Without intervention the colony would have swarmed before the end of the first week of the month 10. The queen was clipped but, as I hope I made clear last week, queen clipping does not stop swarming.

Swarm control

I used my preferred swarm control method by making up a nuc with the old queen and a couple of frames of emerging brood with the adhering bees. I put these, together with a frame of stores and a couple of new frames into a nuc box and moved them to an out apiary several miles away.

By moving the nuc away I don’t have to worry about losing bees back to the original hive. I can therefore make the nuc up a little weaker than I would otherwise need to. An out apiary (or two) isn’t essential, but it makes some tasks a lot easier.

I then went carefully through colony #6, shaking all the bees off each frame and destroying every queen cell. There were still eggs and young larvae present, so they would undoubtedly make more queen cells before my visit a week later. However, by shaking every frame and being rigorous about destroying every queen cell I ensured:

  • there would be a bit less work to do the following week
  • I’d not missed a more mature cell somewhere that could have left a virgin queen running about at my next visit. This was unlikely, based upon the timing of brood development, but it’s better to be safe than sorry.

Colony #6 is in a double brood box. While ransacking the brood nest for queen cells I also hoiked out a frame of drone brood and cut out yet more drone brood from a foundationless frame or two. Since the genetics of this colony was questionable it made sense to try and stop these undesirable genes being spread far and wide.

At the same time I rearranged the frames, moving all the unsealed brood into the top box.

One week later

Early on the morning of the 8th of May I checked the colony again. As expected there were more queen cells reared from eggs and larvae I’d left the week before.

The vast majority of these queen cells were in the top box, but – since I’m a belt and braces beekeeper – I checked the bottom box as well. Again, it’s better to be safe than sorry.

All of the queen cells were again destroyed.

Tough love … but if you want to improve the quality of your bees you have to exclude those with undesirable characteristics.

Importantly, by now the youngest larvae in the colony would be at least four days old. This is really too old – at least given the choice (and I was going to give them a choice) – to rear a new queen from.

Room for one more …

I rearranged the frames, leaving a gap in the middle of the top box, closed colony #6 up and completed my inspection of the other colonies in the apiary.

The last colony I checked was my chosen ‘donor’ colony with desirable genetics.

More swarm control 🙂 and a few days saved

The donor colony (#7) had started queen cells sometime during the first week of May and so also needed swarm control. However, very conveniently it had produced two nice looking cells on separate frames.

Both these queen cells were 3-4 days old and so would be capped in the next 24-48 hours.

A three and a bit day old queen cell

I could therefore use my standard nucleus swarm control (to ‘save’ the queen ‘just in case’), leaving one queen cell in colony #7 and donating the other queen cell to colony #6.

Which is exactly what I did.

Having gently brushed off the adhering bees from the frame (you should never vigorously shake a frame containing a queen cell you want 11 ) I gently slotted it into the gap I’d left in the upper brood box of colony #6. I also marked the frame to make my subsequent check (on the 15th) easier.

The frame marked QC is the only one that needs to be checked next week

By adding a well developed, but unsealed, queen cell to colony #6 I’ve saved the few days they would have taken to rear a queen from an egg or a day old larva.

Because the cell was open I was certain it was ‘charged’ i.e. it contained a fat larva sitting contentedly in a deep bed of Royal Jelly 12.

Better to be safe than sorry (again)

There were also eggs and a few larvae on the frame containing the queen cell (which was otherwise largely filled with sealed brood). It was likely that some of these would also be selected to rear new queens.

And they were when I checked on the 15th.

There was my chosen – and now nicely sculpted and sealed – cell and a few less well developed cells on the donated frame.

I know the cell I selected was charged and the larva well nourished.

In addition, I also had total confidence that the bees had selected a suitable larva to raise as a queen in the first place. After all, the survival of the resulting colony depends on it.

Therefore, I didn’t need any backups.

No ’just in case’ cells.

Rather than risking multiple queens emerging and fighting, or the strong colony throwing casts, I (again) destroyed all but the cell I had originally selected.

I’m writing this on the 17th and she should have emerged today … so my records carry a note to check for a laying queen during my first inspection in June.

This shows how simple and easy stock improvement can be.

No grafting, no Nicot cages, no mini-nucs and almost no colony manipulations etc. Instead, just an appreciation of the timings and the availability of a frame from a good colony (and this could be from a friend who has lovely bees … ).

And in between all that

That was about 1400 words on requeening one colony 🙁 . That was not quite what I intended when I sat down to write a post entitled Eats, sleeps, bees.

My east coast beekeeping – including 8-9 hours driving – takes a couple of days a week at this time of the season. On the west coast I have fewer colonies and – as outlined above – they are less well advanced, so there’s a bit less to do 13.

However, there are always additional bee-related activities that appear to fill in the gaps between active colony inspections.

I’ll end this post with a few random and half thought out comments or questions on stuff that’s been entertaining or infuriating me in the last week or so.

In between the writing, inspections, Teams meetings, editing, reviewing and writing … 😉

Honey labelling

I use a simple black and white thermal printer – a Dymo LabelWriter 450 – to produce labels that don’t detract from (or obscure) the jar contents.

Dymo thermal label (and a jar of honey)

I’ve used these for over 6 years and been very happy with the:

  • cost of the labels (a few pence per jar)
  • flexibility of the system. I can change the best before date, the batch number or other details for each print run; whether it’s 1 or 1000.
  • ability to include QR codes containing embedded information, like a website address or details of the particular batch of honey.

However Dymo, in their never ending quest for more profits a ‘better consumer experience’ have recently upgraded their printers and label printing software 14.

The newest incarnation of the printer I use – now the Dymo LabelWriter 550 – only works with authentic Dymo labels.

A more accurate spelling of authentic is  e x p e n s i v e , at least if you only buy labels in small quantities (100’s, not 1000’s).

If you fancied adding a little square label on the cap of 100 jars claiming ”Delicious RAW honey” you’d not only be falling foul of the Honey Labelling Regulation, you’d also have to cough up £18 for a roll of labels.

Dymo labels are great quality. Smudge proof, easy to remove and sharp black on white. In bulk they are reasonably priced (~3p – the same cost as an anti-tamper label – if you buy >3000 at a time).

However, you can get similar labels for a third of the price … but they won’t be usable in the new printer.

The Dymo LabelWriter 450 has no such restrictions and is still available if you look around.

I’m tempted to buy a spare.

Colony to colony variation

I started this post with a discussion of variation due to latitude and longitude. However, individual colonies in a single location can also show variation (in addition to temperament, running, following etc.) that I don’t really understand.

I have three colonies in a row behind the house here on the west coast. I can see whether they are busy or not when I’m making coffee, doing the washing up or pottering in the work room (two of these activities are more common than the other 😉 ).

All in a row (though not the colonies referred to in the text as they’re camera shy)

And they are consistently different, despite being pretty similar in terms of colony strength and development.

One colony typically starts foraging before the others and another, probably the weakest of the three, forages later and in worse weather.

Early in the season these differences were so marked I thought that one of the colonies had died.

I assume – because a) I’ve not got the imagination to think of other reasons, b) it’s the justification I use for anything I don’t properly comprehend, and c) I’ve not done any experiments to actually test what else it could be – that this is due to genetics.

It’s only because I’m fortunate enough to look out on these colonies dozens of times a day that I’ve noticed these consistent behavioural differences. I suspect my other colonies show it, but that I’ve never looked carefully or frequently enough.

Attractive foundation

I’m busy making up nucs for swarm control and sale. Although many of the frames I use are foundationless I also use a lot with standard foundation. The frames are built (or should be built!) in the winter, but I add the foundation once the weather improves and there’s less risk of cracking the brittle sheets due to low temperatures.

I buy foundation once every season or so and carefully store it somewhere cool and flat. Some of these sheets are quite old by the time I get round to using them and they often develop a white powdery ‘bloom’ on their surface.

Before (bottom) and after (top) 30 minutes in the honey warming cabinet

I used to run a hairdryer over the frames containing these bloomed sheets. The warm air brings out the oils in the wax and makes they much more attractive to the bees. They smell great!

Frames in the honey warming cabinet (W = worker foundation, to distinguish them from D = drone)

These days I just stick a ‘box full’ of frames at a time into my honey warming cabinet set at about 40°C for 30 minutes. Not necessarily quicker, but a whole lot easier … so freeing up time to do something else related to bees 🙂


Note

Today is World Bee Day. The 20th of May was Anton Janša’s (1734-1773) birthday. He was a beekeeper – teaching beekeeping in the Hapsburg court in Vienna –  and painter from Carniola (now Slovenia). He promoted migratory beekeeping, painted his hives and invented a stackable hive. 

Is queen clipping cruel?

Synopsis : Is clipping the queen a cruel and barbaric practice? Does it cause pain to the queen? Surely it’s a good way to stop swarming? This is an emotive and sometimes misunderstood topic. What do scientific studies tell us about clipped queens and swarming?

Introduction

After the contention-free zone of the last couple of weeks I thought I’d write something about queen clipping.

This is a topic that some beekeepers feel very strongly about, claiming that it is cruel and barbaric, that it causes pain to the queen and – by damaging her – induces supersedure.

Advocates of queen clipping sometimes recommend it as a practice because it stops swarming and is a useful way to mark the queen 1.

I thought it would be worth exploring some of these claims, almost all of which I think are wrong in one way or another.

1002, 1003, 1004, 1005, er, where was I? Damn!

Here’s one I didn’t lose earlier – swarm with a clipped queen from the bee shed

I clip and mark my queens.

You can do what you want.

This post is not a recommendation that you should clip your queens. Instead, it’s an exploration of the claimed pros and cons of the practice, informed with a smattering of science to help balance the more emotional responses I sometimes hear.

By all means do what you want, but if you oppose the practice do so from an informed position.

Having considered things, I believe that the benefits to my bees outweigh the disadvantages.

And I deliberately used the word ‘bees’ rather than ‘me’ in the line above … for reasons that should become clear shortly.

What is queen clipping?

Bees have four wings. The forewings 2 are larger and provide the most propulsive power.

Each wing consists of a thin membrane supported by a system of veins. The veins – at least the larger veins – have a nerve and a trachea running along them. Remaining ‘space’ in the vein is filled with haemolymph as the veins are connected to the haemocele.

Queen ‘clipping’ involves using a sharp pair of scissors to remove a third to a half of just one of the forewings.

Done properly – by which I mean cutting enough from one wing only whilst not amputating anything else (!) – significantly impairs the ability of the queen to fly.

She will still attempt to fly but she will have little directional stability and is unable to fly any distance.

Easy to see

Easy to see – clipped and marked queen

It shouldn’t need stating 3 but it’s only sensible to clip the wing of a mated, laying queen.

Although you can mark virgin queens soon after emergence – before orientation and mating flights 4 – clipping her wing will curtail all mating activity 5.

How to clip the queen

If I know I want to mark and clip a queen I find my Turn and Mark cage, Posca pen and scissors. The cage is kept close to hand, the pen and scissors are left in a semi-shaded corner of the apiary.

Tools of the trade – Turn and Mark cage, Posca pen and sharp scissors

Then all you need to do is:

  • Find the queen, pick her up and place her in the cage. Leave the caged queen with the pen/scissors while the frame is returned to the hive 6.
  • Holding the cage in my left hand and scissors in my right I gently depress the plunger and wait until she reverses, lifting one forewing through the bars of the cage. At that point I depress the plunger a fraction more to hold her firmly in place.
  • Cut across the forewing to reduce its length by 1/3 to 1/2. Be scrupulously careful not to touch the abdomen with the scissors, or to sever a leg by accident 7.
  • Mark the queen with a single spot of paint on her thorax then leave the queen in the cage for a few minutes while the paint dries.
  • Return the queen to the hive. The simplest way to do this is to remove the plunger and lay the barrel of the cage on the top bars of the frame over a frame of brood. The workers will welcome her and, in due course, she’ll wander out and down into a seam of bees.

Returning a marked and clipped queen to a nuc

Don’t real beekeepers just hold the queen with their fingers?

Probably.

Maybe I’m not a real beekeeper 😉

I prefer to cage the queen before clipping and marking her.

I wear nitrile or Marigold gloves (or one of each) to keep my fingers propolis free. If the gloves are sticky with propolis I don’t want this coating the queen. I also prefer to keep my scents and odour off the queen 8.

The other reason I prefer to cage the queen is to reduce the potential for damaging her with the scissors.

You’d have to be even more cackhanded than me 9 to pierce the abdomen of a caged queen with the scissors. In addition, her ability to raise a hind leg up and through the bars of the cage is restricted. In contrast, when held in the fingers, both these can be more problematic.

Mr Blobby goes beekeeping

Finally, briefly caging the queen allows me to use both my hands for other things – like completing the colony inspection without any risk of crushing the queen.

Yes, I could unglove before clipping and marking the queen, but it’s almost impossible to get nitriles back on if your hands are damp.

Does queen clipping stop swarming?

No.

Is that it? Nothing more to say about swarming?

OK, OK 😉

If the queen is not clipped the colony will typically swarm on the first suitable day after the new queen cell(s) in the hive are sealed. The swarm bivouacs nearby, the scout bees find and select a suitable new nest site and the bivouacked swarm departs – often never to be seen again – to set up home.

I’ll return to the subsequent fate of the swarm at the end of this post.

A colony with a clipped queen usually swarms – by which I mean the queen and up to 75% of the workers leave the hive – several days after the new queen cell(s) is capped.

Ted Hooper 10 claims a colony headed by a clipped queen “swarm(s) when the first virgin queen is ready to emerge” 11. This is not quite the same as when the first virgin emerges.

Since queen development takes 16 days from the egg being laid this theoretically means you could conduct inspections on, at least, a fortnightly rota. Unfortunately, it’s not quite that simple as bees could choose an older larva to rear as a new queen.

Hooper has a page or so of discussion on why a 10 day inspection interval achieves a good balance between never losing a swarm and minimising the disturbance to the colony. 12.

What happens when a colony with a clipped queen swarms?

A clipped queen cannot fly, so when she leaves the hive with a swarm she crashes rather unmajesterially 13 to the ground.

In my experience there are two potential outcomes:

  • the bees eventually abandon her and return to the hive. Usually the queen will perish. They are still likely to swarm when the virgin queen(s) emerge. All together now … “queen clipping does not stop swarming”.
  • the queen climbs the leg of the hive stand and often ends up underneath the hive floor. The bees join her. In this case you can easily retrieve the swarm together with the clipped queen. Temporarily set aside the brood box and supers and knock the clustered bees from underneath the floor into a nuc box.

I spy with my little eye … a clipped queen that swarmed AND was abandoned by the bees. It’s a tough life.

Sometimes both the queen and the swarm re-enter the hive (or I return them to the hive). In my experience these queens often don’t survive, presumably being slaughtered by a virgin queen.

So that addresses the swarming issue 14. What about the more contentious aspect of queen clipping causing pain?

Do queens feel pain?

I discussed whether bees feel pain a couple of years ago. The studies on self-medication with morphine following amputation are relevant here. Those studies were on worker bees, but I’ve no reason to think queens would be any different 15. I’m not aware of more recent literature on pain perception by honey bees though it’s well outside my area of expertise, so I may have missed something.

Therefore, based upon my current understanding of the scientific literature, I do not think that worker bees feel pain and I’m reasonably confident that queens are also unlikely to feel pain.

It’s worth noting here that it’s easy to be anthropomorphic here, particularly since we (hopefully) all care about our bees. Saying that your bees are happy, or grumpy or in pain, because it’s a nice day, or raining or you’ve just cut her wing off, are classic examples of ascribing human characteristics to something that is non-human.

We might think like that 16 but it’s a dangerous trap to fall into.

Is clipping queens cruel and barbaric?

According to my trusty OED, cruel means “Of conditions, circumstances: Causing or characterized by great suffering; extremely painful or distressing.”

Therefore, if clipping a queen’s wing causes pain and distress then it should be considered a cruel practice.

I’ve discussed pain perception previously (see above). If bees, including queens, do not feel pain then clipping her wing cannot be considered as cruelty.

Someone who is barbaric is uncultured, uncivilised or unpolished … which surely couldn’t apply to any beekeepers? In the context of queen clipping it presumably means a practise known to cause pain and distress.

Having already dealt with pain that brings me to ‘distress’.

How might you determine whether a queen with a clipped wing is distressed?

Perhaps you could observe her after returning her to the colony? Does she run about wildly or does she settle back immediately and start laying again?

Returning a marked and clipped queen – no apparent distress, just calmly disappearing into a seam of bees

But, let’s take that question a stage further, how would you determine that it was the clipped wing that was the cause of the distress? 17

That pretty much rules out direct observation. Queens are naturally photophobic 18 so you’d need to use red light and an observation hive. I’m not aware that this has been done.

Instead, scientists have observed the performance of colonies headed by clipped and unclipped queens. I’d argue that this is a convenient and suitable surrogate marker for distress. You (or at least I) would expect that a queen that was in distress would perform less well – perhaps laying fewer eggs, heading a smaller colony that collected less honey etc.

Are clipped queens distressed? Is their performance impaired?

Which finally brings us to some science. I’ve found very little in the scientific literature about queen clipping, but there is one study dating back over 50 years from Dr I.W. Forster of the Wallaceville Animal Research Centre, Wellington, New Zealand 19. I can’t find a photo of Dr. Forster, but there’s an interesting archive of photos from the WARC provided online from the Upper Hutt City Library.

Wallaceville Animal Research Centre staff photo 1972. Presumably Dr. Forster is somewhere in the group.

The paper has a commendably short 37 word results and discussion section 😉  20

The study involved comparing performance of colonies headed by clipped or unclipped queens over three seasons (1968-1970), a total of 124 colony years. They 21 scored colony size (brood area), honey per hive (weight) and the the number of supersedures.

I’ll quote the single sentence in the results/discussion on honey production in its entirety:

There was no significant variation in honey production between hives headed by clipped and unclipped queens.

Forster 22 didn’t specifically comment on colony size/strength in the discussion. Had it differed significantly some convoluted explaining would have been needed to justify the similarity in honey production.

Comparative colony strength of colonies headed by clipped or unclipped queens.

And it doesn’t.

Each column represents the average number of frames of brood in 6-29 colonies headed by clipped or unclipped queens. Statistically there’s no also difference in this aspect of performance (entirely unsurprisingly).

Colonies headed by clipped queens are not impaired in strength or honey production, so I think it’s reasonable to assume that the queen is probably not distressed.

Do clipped queens get superseded (more) frequently?

I suspect most beekeepers underestimate supersedure rates in their colonies.

I clipped and marked a queen last weekend. In early August last year my notes recorded her as ’BMCLQ’ i.e. a blue marked clipped laying queen 23. In mid/late April this year she was unmarked and unclipped … and stayed that way until it was warm enough to rummage through the hive properly.

She’s now a YMCLQ 24 and was clearly the result of a late season supersedure.

Every spring I find two or three unmarked queens in colonies. Sometimes it’s because I’d failed to find and mark them the previous season. More usually it’s because they have been superseded.

The Forster study recorded supersedure of clipped and unclipped queens. It varied from 10-25% across the two seasons tested (’68 and ’69) and was fractionally lower in the clipped queens (20% vs. 22.5%) though the difference was not significant.

So, to answer the question that heads this section … yes, clipped queens do get superseded 25. However, done properly they do not show increased levels of supersedure 26.

Let’s discuss swarming again

In closing let’s again consider the fate of swarms headed by clipped or unclipped queens.

If a colony with the clipped queen swarms the queen will either perish on the ground, or attempt to return to the hive. If the swarm abandons her they will return to the hive … but may swarm again when the first virgin emerges.

If she gets back to the hive she may be killed anyway by a virgin queen.

You might lose the queen, but you will have gained a few days.

If a colony with an unclipped queen swarms … they’re gone.

Yes, you might manage to intercept them when they’re bivouacked. Yes, they might end up in your bait hive. But, failing those two relatively unlikely events, you’ve lost both the queen and 50-75% of the colony.

What is the likely fate of these lost swarms?

They will probably perish … either by not surviving the winter in the first place, or from Varroa-transmitted viruses the following season.

Studies by Tom Seeley suggest that only 23% of natural swarms survive their first winter. Furthermore, the survival rates of previously managed colonies that are subsequently unmanaged – for example, the Gotland ‘Bond’ experiment – is less than 5%.

Let’s be generous … a lost swarm might have a 1 in 4 chance of surviving the winter, but its chances of surviving to swarm again are very slim.

Anecdotal accounts of ’a swarm occupying a hollow tree for years’ are common. I’m sure some are valid, but tens of thousands of swarms are probably lost every season.

Where does that number come from?

There are 50,000 beekeepers in the UK managing 250,000 colonies. On average I estimate I lose swarms from 5-10% of my colonies a season, and my swarm control is rigorous and reasonably effective 27. If there were over 25,000 swarms ‘lost’ a year in the UK I would not be surprised.

Free living colonies are not that common, strongly suggesting most perish.

Where do these ‘lost’ swarms go?

There are four obvious possibilities. They:

  1. voluntarily occupying a bait hive and become managed colonies
  2. occupy a hollow tree or similar ‘natural’ void
  3. set up a new colony in an ‘unnatural’ void like the roof space of a children’s nursery or the church tower
  4. fail to find a new nest site and perish

Natural comb

A colony settled here and subsequently perished

Of these, the first means that it’s likely the colony will be managed for pests and disease, so their longer term survival chances should be reasonably good.

In contrast, the survival prospects for unmanaged colonies are bleak. They will almost certainly die of starvation or disease.

What about the lost swarm that occupies the loft space in the nursery or the church tower? Whether they survive or not is a moot point (and the same arguments used for ‘bees in trees’ apply here as well). What is more important is that they potentially cause problems for the nursery or the church … all of which can be avoided, or certainly reduced, if the queen is clipped.

And if you conduct a timely inspection regime.

Why I clip my queens

Although it is convenient to reduce the frequency of colony inspections, that is not the main reason I clip my queens.

I clip my queens to help keep my worker population together, either to increase honey production or to provide good strong colonies for making nucs (or queen rearing).

This has the additional benefit of not imposing my swarms and bees on anyone else. Whilst I love my bees, others may not.

An additional, and not insignificant, benefit is that the prospects for survival of a ‘lost’ swarm are very low.

By reducing the loss of swarms I’m “saving the bees”.

More correctly of course, I’m preventing the loss of an entire colony. I think clipping queens is therefore an example of responsible beekeeping.

I also think queen clipping is acceptable as I’ve seen no evidence – from my own beekeeping or in the literature – that it is detrimental to the queen or the colony.

Thou shalt not kill

Finally, there are some that argue you should never harm or kill a bee. I have two questions in response to that view;

  • What do you do with a queen heading up a truly psychotic colony? Do you kill her and replace her or do you put up with the aggravation and make the area around the hive a ‘no go zone’ for anyone not wearing a beesuit?
  • How many beekeepers can honestly say that no bees are harmed when returning frames during an inspection, or putting heavy supers back on a hive? 28

I would have no hesitation in killing and replacing a queen heading an aggressive colony.

Again, I think that’s responsible beekeeping.

Similarly, although I’m as careful and gentle as I can be when conducting inspections or returning supers, to think that no bees are ever injured or killed is fantasy beekeeping.


Note

This is an emotive topic and I’ve written far more than I’d intended – that’s due to a couple of days of rain and the ‘expectant father’ wait for my new queens to start laying. I could have written half as much again.

The time spent writing meant I’ve not done an exhaustive literature search. I know that Brother Adam wrote in 1969 that he’d clipped queens for over 50 years without noticing any disadvantages. I realised during the week that my American Bee Journal subscription has lapsed so I’ve not managed to go through back issues, though I have searched almost 30 years of correspondence on Bee-L. If an ABJ turns up more relevant information I’ll revisit the subject.

Timing is everything

Synopsis : The invariant timings of brood development dictate many beekeeping events including colony inspections, queen rearing and Varroa management. It makes sense to understand and exploit these timings, rather than ignore or fight against them.

Introduction

There are some inherent contradictions involving timing in beekeeping that can confuse beginners. Actually, they can confuse anyone – beginner or old lag 1 – who doesn’t appreciate the considerable flexibility of some of the timings and the near-total inflexibility of others.

I think that many of the inherent difficulties in beekeeping e.g. judging when to do what to the colony, comparing seasonal differences or deciding whether intervention is needed or ill advised, are due to a lack of appreciation of the relative importance of some of these timings.

I gave an overview of some of the ‘flexible timings’ a couple of weeks ago when discussing the year to year climatic variation that compounds differences caused by latitude.

The onset of brood rearing in midwinter, the crossover date 2, the start of swarming and the timings of the major and minor nectar flows can all vary from year to year.

To appreciate these you need to be observant, but predicting their impact can be tricky. Some are multi-factorial e.g. colony strength and development in a warm, dry spring can be different to a warm, wet spring.

I’ve probably written enough about some of these flexible events already so will instead focus on some of the ‘inflexible timings’ that dictate the activity of the colony and, by extension and through necessity, the activity of the beekeeper.

In many ways these are easier to understand.

By definition, they are invariable 3.

Less to remember … but remembering them is important 😉

The environment

Those ‘flexible timings’ I refer to above mainly reflect the year-to-year climatic variation – warm springs, Indian summers, hard winters.

In contrast, inside the hive the environment is remarkably stable.

It can vary from 4°C to 40°C outside – even on a single day – but the temperature in the brood nest is controlled within a narrow 33-36°C range.

Hives in the snow

Freezing outside, 34.5°C in the broodnest

In fact, in the very centre of the brood nest – the region where pupal development takes place – it is as near as makes no difference 34.5°C.

The workers thermoregulate the hive, heating the comb where needed 4 or evaporating water to cool the hive.

With hive monitoring equipment and suitably placed thermometers you can tell when a colony shifts into brood rearing mode in the spring – the varying temperature of the clustered bees increases and stabilises to a near-invariant 34 and a bit degrees Centigrade.

Brood rearing starts ...

Brood rearing starts – indicated by stabilisation of brood temperature (arnia.co.uk)

The image above is from Arnia who make hive monitoring equipment. The key phrase in the sentence above is ‘suitably placed thermometers’. You tend to have only one or two and they can’t be everywhere, so it’s easy to miss the onset of brood rearing.

Temperature, behaviour and neuroanatomy

Stable temperatures are important for brood development. Worker bees reared at 32°C are less good at waggle dance communication. They only complete about 20% of the circuits (less enthusiastic) and exhibit more variability in the duration of the waggle phase (the distance component) when compared to bees reared at higher temperatures within the ‘normal’ range 5.

In further studies, bees reared at abnormally low or high temperatures (though varying by only 1-2 °C from normal hive temperatures) exhibited differences in neuroanatomical development 6. Of the regions of the brain studied, the numbers of microglomeruli within the mushroom bodies of the brain, areas involved in memory and learning, differed significantly when the pupation temperature was as little as 1°C over or under 34.5°C.

Despite these behavioural and developmental differences, the emergence rate and the duration 7 of development are somewhat less influenced by brood nest temperature.

Influence of temperature on pupal brood development – duration (left axis) and emergence rate (right axis)

In the graph above the duration of pupal development is 10-11 days between 34.5°C and 37°C, and eclosion (emergence) rates exceed 90% from 31-36°C.

Correct development of honey bee workers therefore requires a stable brood nest temperature.

As a consequence of this stability the duration of the development cycle is highly reproducible and – more to the point – predictable.

Before discussing the development cycle it’s worth noting that queens and drones are reared under similarly stable conditions. I’ve discussed the influence of temperature on queen development before but am unaware of similar studies on drones.

The development of workers

The graph above shows the influence of temperature on the duration of pupal development. This is not the same as sealed brood development. 8. The 10-11 days shown above needs to be extended by 2 days (48 hours) when considering the more beekeeper-friendly concept of sealed or capped brood.

Under normal conditions worker development takes 21 days. Three days as an egg, five as an open larva and 13 capped 9.

During those 21 days bees go through a series of six molts between five developmental stages termed instars. The first molt is the egg hatching, molts 2-4 occur during the first few days of larval feeding. Molt 5 is the change from the pre-pupal capped larva to the pupa and the final molt occurs at emergence.

Once the brood is capped there’s nothing much the beekeeper needs to worry about (or can do). In contrast, the early days of worker development involve at least one notable event 10.

Young larvae and queen rearing

The worker larva is fed progressively, which essentially means almost all the time. Nurse bees visit the larva thousands of times, initially feeding a mix of secretions from the hypopharyngeal and mandibular glands. The diet is then switched to one lacking the mandibular gland component and is finally supplemented with pollen and honey.

This dietary switch takes place around day three of larval development and effectively seals the fate of the developing bee as a worker.

Before day three of larval development, larvae destined to be workers or queens receive the same diet. After day 3 a series of genetic switches are ‘pushed’ that prevent the larva developing into a queen.

This means that larvae of less than three days old are needed to produce new queens. A terminally queenless colony will sometimes attempt to rear a new queen from an older larva (if nothing else is available) but these are usually substandard – so called scrub queens – or fail.

The adult worker

After emergence the worker fulfils a number of roles for the colony; nurse bee, comb builder, guard, scout, forager etc. The precise timings of these are flexible. Not all bees of the same age have the same role, and they can even be reversed. However, as far as practical beekeeping is concerned 11, the only other timings that really matter are the longevity of workers; in the summer this is about 6 weeks and in the winter, 6 months.

The timings to remember – workers

The full development cycle takes 21 days. Larvae more than 3 days old 12 are unsuitable for queen rearing (and, as I shall discuss in a future post, better queens are produced from younger larvae). The adult worker spends the first half of her 6 week life within the hive, and the last 3 weeks as a forager. Winter bees live for many months.

The development of queens

The development cycle of the queen bee is shorter than that of the worker because their diet is much richer. Of course it’s not quite that straightforward (it wouldn’t be, would it?). Because of the diet there are a number of genetic pathways turned on or off in the developing queen that ensure she is ‘fit for purpose’ on emergence. The developing queen goes through the same number of molts and instars, but they are compressed in time.

Sealed queen cell ...

Sealed queen cell

The queen cell is sealed on the ninth day of development, the fifth day after hatching from the egg, and the queen emerges on the 16th day.

The adult queen

Relative to workers and drones the queen appears almost immortal. A queen may live for at least three years and, if well looked after, longer than that. Most of this aftercare is provided by the hive, but the beekeeper can influence things as well. High quality ‘breeder queens’ are often kept in nucs and discouraged from laying excessive amounts of brood. This prolongs their effective lifespan.

As far as timings are concerned – and assuming we’re not dealing with a $500 breeder queen – the only three things that are important relate to the mating of the queen.

After emergence the queen needs to reach sexual maturity before she can go on her mating flights, this takes 5-6 days. Once mated there is a further delay of 2-3 days before the queen starts laying. The final number to remember is that adult queens older than 26-33 days are too old to mate.

The timings to remember – queens

The full development cycle takes 16 days. The cell is capped on the 9th day after the egg was laid 13. Upon emergence, queens take 5-6 days before they are mature enough to mate. A mated queen starts laying 2-3 days after returning from her last mating flight. If they’re not mated within about 4 weeks of emergence then they’ve blown it.

Therefore, the minimum duration to go from newly laid egg to mated, laying queen is at least 23 days. Alternatively, assuming a 2-3 day old larva is available, this time period is reduced to about 18 days.

From emergence, it’s theoretically possible 14 to have a mated, laying queen within 8 days.

However, in my experience, queen mating usually takes longer than these minima … and always longer than I want. Other than confirming emergence I always leave a new queen a minimum of a fortnight before checking if she’s laying, and longer if the weather has been unsuitable for mating.

The development of drones

Like teenage boys getting up late and then doing nothing other than lounge around eating and thinking about sex 15, the drone takes the longest to emerge. The full development cycle from the laying of an unfertilised egg to emergence takes 24 days.

As before, the number of molts and instars are the same as undergone by queens and workers.

The adult drone

Like the queen, the drone needs to become sexually mature before going on a mating flight. This takes 10-12 days after emergence. The drone has a finite lifespan and usually lives no more than about a month during the summer.

Drones that successfully mate with a queen prematurely die. Those that don’t mate either die trying or are ejected from the hive by the workers at the end of the season.

It’s not unusual to hear beekeepers talk about finding drones overwintering. I’m not aware whether these are exceptionally long-lived drones laid by the queen the preceding summer/autumn, or laid by a failing queen during the winter, or even by laying workers in a queenless colony overwinter 16.

The timings to remember – drones

The full development cycle takes 24 days. It takes about five weeks between the appearance of the first eggs in drone cells and the presence of sexually mature drones in the hive.

Swarming cannot happen until there are drones in the area, so it’s worth keeping an eye of drone brood production.

Hive inspections and queen rearing

So, there you have it, just a few numbers to remember … and, more importantly, to understand their significance for beekeeping.

Unusually I’ve prepared an oversized figure to illustrate these timings 17 with colour-coding worker, queen and drone events in green, blue and red respectively.

Worker, drone and queen development and key post-emergence timings

Note that some timings have dual significance. Worker larvae no more than three days old (day 6 – in green) can be reared as queens with suitable feeding.

Hive inspections … and caveats

It should now be obvious why regular weekly hive inspections are recommended in the time leading up to and during the peak swarming period.

If there are no charged queen cells – those containing eggs or developing larvae – during an inspection then any that do develop in the seven days before the next inspection will still not be sealed (and therefore the colony will not have swarmed).

This assumes that the colony swarms on or after the day that the queen cell is sealed.

Sometimes – rarely – the swarm goes early, apparently leaving only uncapped swarm cells. When I’ve had this happen a thorough examination of the brood frames has sometimes turned up a sealed cell, tucked away against a sidebar, that I’d missed in the previous inspection … the colony had not swarmed early, I’d 18 not been observant enough.

With a well-populated colony it’s sometimes necessary to shake all the bees off each frame to be certain there are no queen cells lurking under the ruffled curtain of workers.

Not all queen cells are this obvious

Colonies containing clipped queens tend to delay swarming (but they certainly still swarm) and you can usually get away with a 10 day interval between inspections. Furthermore, since the clipped queen cannot fly, even if the colony does swarm they usually return and end up clustered underneath the OMF after she has crawled back up the leg of the hive stand.

Outside the main swarming period inspections can be much less frequent. I usually inspect only once or twice between mid-July and the end of the season.

Queen rearing

One of my (few) poorly tempered hives unexpectedly contained several 3+ day old queen cells last Sunday. I made up a nuc with the old queen, destroyed all the queen cells and closed up the hive.

They will produce more queen cells 19, but they cannot swarm as there’s no queen.

At my inspection this Sunday I will destroy all the new queen cells.

The genetics of this colony are (at best) ‘undesirable’ 🙁 

Since there’s been no laying queen in the hive for 7 days there cannot now be any larvae young enough to be reared as a new queen 20. Therefore, having destroyed all the queen cells, I’ll add a frame of eggs and larvae from a (well-behaved and so genetically desirable) neighbouring colony 21.

If they want a new queen 22 they will rear one from this donated frame.

The 23 egg in the graphic above is the earliest you can expect a laying queen. In reality – as explained above – it usually takes longer. A minimum of 30 days from egg to egg-producing queen is perhaps more dependable.

Therefore, in around 24 to 30 days – and most likely the latter – this colony will have a new queen which will hopefully improve their behaviour.

The timing of Varroa treatment(s)

But think about what’s happening to the rest of the brood in that colony.

The last eggs laid in the colony was on the Sunday the 1st of May. By the 21st of May all the worker brood will have completed development and emerged. By the 24th of May all the drones will have emerged.

The colony should therefore be broodless in the last week of May.

Even if the new queen is laying by then (some chance!) she won’t have produced any sealed brood.

If needed I could use this 7 day window of opportunity to treat the colony with oxalic acid and reduce the Varroa levels in the hive.

It’s unlikely I’ll need to as the mite numbers have been low this season. However, it’s very reassuring that I have the option should I need it 24.

Adding a Varroa board to check mite drop

But … hang on a moment.

Why did I write that the colony only should be broodless?

What about the eggs and larvae on the frame I added from the donor colony? 25

These will be up to one week younger than any brood in the queenless colony.

Potentially those young eggs and larvae will close that ’window of opportunity’.

Perhaps the easiest way around this is to excise one good sealed queen cell from the donated frame and leave it in queenless colony, and then remove the donated frame and use it elsewhere.

If the colony produces several good quality queen cells it’s likely that I’ll chop them all out and make up some nucs – queen rearing without all the graft.

Literally 😉

Conclusions

I’ve written far more than I intended but I think this reflects the importance of the – effectively invariant – timings of brood development.

These dictate so many of our beekeeping activities that it makes sense to learn to work with them, rather than forever struggling against them.

With good observation and regular colony inspections – weekly during the the main part of the season – there should be little or no chance of losing a swarm.

Furthermore, should a colony show signs of swarm preparation, timely intervention coupled with an appreciation of the timings of brood development, mean you have the opportunity to conduct both stock improvement and mite management.

Nice one 😉


 

Brood in all stages

Synopsis : The presence of brood in all stages (of development) is an important indicator of the state of your colony. Is it queenright? Is it expanding or contracting? Quantifying the various developmental stages – eggs, larvae and pupae – is not necessary, but being able to determine changes in their proportions is very useful.

Introduction

There’s something very reassuring about the words ’brood in all stages’ to a beekeeper, or at least to this beekeeper.

It means, literally, that there is brood in all stages of development i.e. eggs, larvae and pupae.

Record keeping

Update the notes …

As far as I’m concerned, it’s such an important feature of the hive that it gets its own column in my hive records, though the column heading is conveniently abbreviated to BIAS.

And BIAS is what I’ll mostly use for the remainder of this post, again for convenience.

Why is it so important?

Why, when you conduct an inspection of the colony, is the presence of BIAS so important?

And why should you be reassured if it is present?

Broadly I think there are two reasons:

  • it tells you the likely queenright status of the hive. Is there a laying queen present?
  • (with a little more work) you can determine the egg laying rate of the queen and whether it’s changing. This is important as it provides information of the likely adult worker strength of the colony in a few weeks’ time. Are there going to be enough bees to exploit the expected nectar flow? Will there be sufficient young bees for queen rearing?

Of course, detailed scrutiny of the eggs, larvae or pupae in the hive can provide a wealth of information about the health of the colony. I will mention one specific example later, but it’s not the main focus of this post.

The development cycle of the honey bee

The post last week emphasised the variation – from year to year – in the climate 1. In contrast, despite the temperature fluctuating outside the hive, the environment inside the hive is remarkably stable. Partly as a consequence of this the development of the brood is very predictable.

Honey bee development

Honey bee development

Worker bees take 21 days to develop, by which I mean that an egg laid on day 1 will – assuming development is successful – result in an adult worker emerging 2 on day 21. There can be a few hours variation, largely influenced by temperature, but as far as we need to be concerned here worker bee development takes 21 days.

Days 1 to 3 are spent as an egg. The egg then hatches to release a larva which is fed for a little over five days before capping. The developing bee then pupates for about 13 days before emergence.

For simplicity it helps to think of the development cycle as 3 days as an egg, 5 days as a larva and 13 days as a pupa. EEELLLLLPPPPPPPPPPPPP 3 or 3:5:13 … I’ll return to these numbers later.

In fact it’s a little more complicated than that. The larva actually pupates after the cell is capped, so it exists in two states; an open larval stage during which is is fed by nurse bees and a capped larval stage which is more correctly termed the pre-pupal stage. The larva then metamorphoses into a pupa within the capped cell.

None of this really matters as far as your interpretation of the ’brood in all stages’ you see in the colony during a regular inspection. However, it’s reassuring to know that there’s lots of complicated things with weird names and confusing terminology going on in there … which I’ve simplistically distilled to 3:5:13.

But, if you do want to know more you could have a read of this article by Rusty Burlew which also appeared in the American Bee Journal 160:509-511 (2020).

Queenright or not?

So, if there are eggs present there must be a queen present, right?

Wrong 🙁

But it is more than likely 🙂

In fact, if there are eggs, larvae and sealed brood present i.e. BIAS, then you can be pretty confident there is a queen present.

Or, more correctly, that there was a queen present within the last 3 days.

If an egg takes three days to hatch then it is possible that the queen laid the eggs and has subsequently disappeared.

For example, the colony may have swarmed in the intervening period.

Alternatively, during that ’quick-but-entirely-unnecessary-peek’ you took inside the hive two days ago you inadvertently crushed the queen between the bars of a Hoffman frame.

Oops … eggs but no queen 🙁

Slim Jim Jane and pre-swarming egg laying activity

When a colony swarms the mated, laying queen leaves with the swarm. To ensure that she can fly sufficiently well she is slimmed down in the days before swarming and her egg laying rate slows significantly.

Despite searching – both the literature and my own memory banks 4 – I’ve failed to find any detailed information on how long before swarming her laying rate slows. It appears as though she generally does not stop laying before swarming, but it’s down to just a trickle (if that’s the right word) in comparison to when she’s ‘firing on all cylinders’.

Queen cells and laying workers

The other telltale sign that a swarmed colony leaves is the presence of one or (usually) more queen cells. Typically some of these are capped, with the colony swarming on the first suitable day after the first cell is capped.

Queen cells – good and bad

So, back to your colony that may or may not be queenright … the presence of only a small number of eggs compared to capped brood levels and one or more queen cells suggests that they have swarmed within the last 3 days.

In contrast, If there are ‘normal looking’ eggs present, even if few in number, and you didn’t have a ’quick-but-entirely-unnecessary-and-actually-a-bit-clumsy-peek’ two days ago, it’s likely that your colony is queenright.

I prefixed eggs (above) with ‘normal looking’ because there is one further situation when the colony has no queen but there are eggs present. That’s when the colony has developed laying workers.

Under certain conditions unmated worker bees can lay unfertilised eggs.

However, in contrast to the queen, workers have short, dumpy abdomens and cannot judge whether the cell already contains an egg. As a consequence they lay multiple eggs in cells and many of these eggs are in unusual positions – rather than being central at the bottom of the cell they are on the sidewalls, or the sloping edges of the base of the cell.

Drone laying workers ...

Multiple eggs per cell = laying workers (usually)

These eggs are usually laid in worker cells. Being unfertilised they can only develop into drones, and since they are in cells that are too small for drones they end up protruding like little bullets from the comb.

Laying workers ...

Laying workers …

They are also scattered randomly around the frame, rather than being in the concentric ring pattern used when the queen lays up a frame.

BIAS and the queenright status of the colony

So, let’s summarise that lot before (finally) getting back to 3:5:13.

If:

  • there is BIAS and no queen cells present and you’ve not disturbed the colony in the last few days … then the colony is most likely queenright. Yes, there’s an outside chance she recently dropped dead, but it’s much more likely that you just can’t find her. Don’t worry, the presence of BIAS and the other supporting signs tell you all you need to know … there’s a queen present and she’s laying. All is good with the world. Be reassured 🙂
  • there is BIAS and capped queen cells … then it’s likely they swarmed very recently 🙁
  • eggs are present, possibly together with some small, unsealed queen cells and you had a ’quick-but-entirely-unnecessary-and-frankly-a-bit-stupid-in-retrospect-peek’ two days ago … then all bets are off. The colony may or may not be queenright. Only inspect when you need to and be very careful returning frames to the hive 5. If you didn’t open the hive in the last few days (and accidentally obliterate the queen) the presence of BIAS and unsealed queen cells usually means that the colony is queenright but is preparing to swarm. Swarm control is urgently needed.
  • multiple eggs are present in strange places in cells, coupled with scattered bullet-shaped capped cells (and oversized larvae in worker cells) … then there are laying workers present. Your colony is not queenright. Technically I suppose there is brood in all stages, but the brood looks odd. But there’s somethings else as well … laying workers develop in the absence of pheromones produced by open brood (larvae). Therefore to develop laying workers a colony transitions through a period when there is not brood in all stages. In my experience laying workers usually develop after a colony experiences a protracted period when it is totally broodless i.e. no eggs, larvae or pupae.

Let’s move on.

3:5:13

If the queen is laying at a steady rate i.e. the same number of eggs per day, then the ratio of eggs to larvae to sealed brood will be about 3:5:13.

This means for every egg present you should expect to find just less than two larvae and slightly more than four capped worker cells.

I’m not suggesting you count them, but you should be able to judge the approximate proportions of the three brood types during your inspections.

This is more complicated than it sounds (and it already sounds quite complicated). The queen lays eggs in an expanding 3D rugby-ball shaped space – the ellipsoid broodnest – moving from frame to frame. Consequently, individual frames will contain different proportions of eggs, larvae and capped pupae, but the overall proportions should work out to be about 3:5:13.

And this is where things start to get a little more interesting 6.

A picture is worth a thousand words

I’ve drawn some simple Excel charts to illustrate some of the points I want to make. For each of the charts I’ve assumed the queen lays at 1000 eggs per day for the first 5 days and then she either stops altogether (perhaps one of those ’quick-but-entirely-unnecessary-and-frankly-idiotic-peek’ queen-meets-Hoffman-frame scenarios), or either speeds up or slows down her laying rate by 200 eggs per day.

The numbers don’t matter, just focus on the proportions of different classes of brood.

Speeding up

If there are more eggs and larvae expected – when compared to the levels of capped brood – then the laying rate of the queen is increasing. For example, here is what happens when she increases her laying rate from 1000 to 2000 eggs/day over 5 days.

Queen increasing her laying rate

The line graph is perhaps less clear than a simple plot of the percentages of the three types of brood. Note the relative reduction in capped brood (pupae) around day 15.

Changes in percentages of brood as queen increases her laying rate

If this occurs it means that the colony has the resources – pollen and nectar – to expand and that you’ll have more young adult workers in another fortnight or so, and an increased foraging force in 4-5 weeks. These things are important if you are thinking about the ability to exploit a summer nectar flow, or perhaps to rear queens in the colony.

Slowing down

Conversely, if eggs and larvae are much less than about 40% of the total brood 7, then the queen is reducing her laying rate. Perhaps there is a dearth of nectar or pollen? Does the colony have sufficient stores? Do you need to feed – little and often – some thin syrup to stimulate brood rearing?

Queen slowing her laying rate (e.g. prior to swarming)

Or is the colony slimming down the queen in preparation for swarming? Do they have sufficient space? Is the colony backfilling brood cells with nectar?

Changes in percentage of brood as the queen slows her laying rate (e.g. prior to swarming)

Note how 12 days after the Q slows her laying rate (assuming she stops entirely 8 ) then the only things left in the colony is sealed brood.

Queen-meets-Hoffman-frame scenario

This is essentially the same as slowing down, except it all happens more abruptly.

Disappearance of brood after the queen abruptly disappears

If you inadvertently kill the queen the colony very quickly runs out of eggs and larvae. Using the emergency response you would expect the colony to raise queen cells promptly.

Estimating brood area during inspections

I’m not suggesting you count eggs, larvae or sealed brood. Inspections are best when they are relatively non-intrusive. It disturbs the colony, it can agitate the bees and it changes the pheromone concentrations and distribution which control so much of what happens in the hive.

But it is worth learning how to determine whether there is more or less sealed brood than open brood and eggs.

Scientists have developed a number of ways to accurately quantify colony strength and population dynamics.

The classic approach, developed between the 1960’s and 1980’s is termed the Liebefeld Method and was nicely reviewed by Ben Dainat and colleagues in a recent paper in Apidologie 9. More recent strategies include the use of digital photography and image analysis, either using ImageJ or semi-automated python scripts such as CombCount.

But none of those approaches are really practical during a normal colony inspection.

I guesstimate the relative proportions of eggs + larvae and sealed brood, and also try and work out the approximate total levels of BIAS present in the colony.

If about 60% of the brood is sealed and there are 3 full frames and about 6 half frames of brood in all stages I would be happy that the colony was queenright, that the laying rate of the queen was probably stable and I’d record the total levels of BIAS as 6 (full frames in total).

Eyeballing sealed brood levels

When you get a frame like the one below it’s easy to work out how much brood it contains.

That'll do nicely

That’ll do nicely …

It’s as near as makes no difference one full frame (assuming the other side looks similar).

But most frames contain a more or less oval brood pattern, some of which may have already emerged.

Brood frame

In these instances it helps to guesstimate what halves, quarters, eighths look like. Or use the diagrams of brood patches on Dave Cushman’s site to work out the approximate total levels.

It’s also worth remembering that the presence of adult bees on the frames will confound things.

Lots of capped brood … somewhere under all those bees

To properly judges the levels of brood you need to shake the bees off the frames. This adds even more disruption to the inspection and I only ever really do it in two specific situations:

  • when looking for signs of brood disease, such as foulbrood
  • when I have to find every single queen cell in the colony

During normal inspections I work with what I can see … and if I need to see more (eggs, larvae or sealed brood) I gently run the back of my hand over the attached workers, or blow gently on them. Both these methods encourages them to move aside, without the ignominy of being dumped in a writhing heap at the bottom of the brood box.

In conclusion

As described – other than the Liebefeld Method – estimating the amount of brood in all stages (BIAS) is a rather inexact process. However, despite this, it’s a useful exercise that helps you judge the state of the colony, and gives you some insight into what is likely to happen over the next few weeks.

And, let’s face it, anything that gives us a better idea of what to expect is useful 😉


Note

Eagle eyed readers will realise there’s a slight glitch in the numbers graphed above. I realised this as silly o’clock 10 this morning and haven’t had time to go back and butcher the spreadsheet and redraw all the graphs. My error does not fundamentally change the patterns observed, but just alters the percentages slightly. I’ll update them once I’ve had a nap 😉

Latitude and longitude

Synopsis : Bees don’t use a diary. Colony development is influenced by local environmental conditions. These are largely determined by latitude and longitude but also vary from year to year. Understanding these influences, and learning how to read the year to year differences, should help you judge colony development. You’ll be better prepared for swarm prevention and control, and might be able to to identify minor problems before they become major problems.

Introduction

Writing a weekly post on beekeeping inevitably generates comments and questions. Over the last 5 years I’ve received about 2500 responses to posts and at least double that in email correspondence. That works out at ~30 comments or questions a week 1.

Every one of them – other than the hate mail and adverts 2 – has received a reply, either online or by email.

Some are easy to deal with.

It takes just seconds to thank someone for a ”Great post, now I understand” comment, or to answer the ”Where do I send the cheque? question.

Others are more difficult … and the most difficult of all are those which ask me to diagnose something about their hive.

I almost always prefix my response by pointing out that this sort of online diagnosis is – at best – an inexact art 3.

Patchy brood pattern

Patchy brood & QC’s …

Think about it … is your definition of any of the following the same as mine?

  • a strong colony 4
  • an aggressive colony
  • a dodgy-looking brood pattern 5
  • a ‘large’ queen cell

Probably not.

Engaging in to and fro correspondence to define all these things isn’t really practical in a week containing a measly seven 24 hour days.

Geography

However, having stated those caveats, there’s still the tricky issue of geography.

Many correspondents don’t mention where the hive is – north, south, east, west (or in a couple of instances that they are in the southern hemisphere 6).

Location has a fundamental impact on your bees. The temperature, rainfall, forage availability etc. all interact and influence colony development. They therefore determine the timing of what happens when in the colony.

And so this week I decided to write a little bit about the timings of, and variation in, environmental events that influence what’s going on inside the hive.

I’ll focus here on latitude and temperature as it probably has the greatest influence. My comments and examples will all be UK based as it’s where a fraction over 50% of the readers are, but the points are relevant in all temperate areas.

Latitude

Temperate climates – essentially 40°-60° north or south of the equator – experience greater temperature ranges through the year and have distinct seasons (at least when compared with tropical areas). Whilst latitude alone plays a significant role in the temperature range – smaller nearer the equator – the prevailing wind, altitude, sea currents and continentality 7 also have an important influence.

For starters let’s consider the duration of the year during which foraging might be possible. I’ll ignore whether there’s any forage actually available, but just look at the temperature over the season at the northern and southern ends of mainland Great Britain.

I arbitrarily chose Thurso (58.596°N 3.521°W) and Penzance (50.119°N 5.537°W) for these comparisons. Both are lovely coastal towns and both are home to native black bees, Apis mellifera mellifera 8.

The lowest temperature I have observed my native black bees flying on the west coast of Scotland was about 8°C 9. So, let’s assume that the ‘potential foraging’ season is defined by an average maximum daily temperature above 8°C.

How do Penzance and Thurso compare?

Thurso – average Max/Min temperatures (°C)

In Thurso there are eight months (November just squeezed in by 0.1°C) where the average maximum daily temperature exceeds 8°C.

Penzance – average Max/Min temperatures (°C)

In contrast, every month of the year in Penzance has an average maximum daily temperature exceeding 8°C.

Thurso and Penzance are just 950 km apart as the bee flies.

Forage availability

I don’t have information on the forage available to bees in Penzance or Thurso, but I’m sure that gorse is present in both locations. The great thing about gorse is that it flowers all year, or – more accurately – individual, genetically distinct, plants can be found every month of the year in flower.

Based upon the temperature it’s possible that Penzance bees could forage on gorse in midwinter and so be bringing fresh pollen into the hive for brood rearing.

The gorse is in flower … somewhere under there

However, further north, gorse might be flowering but conditions may well not be conducive for foraging.

Inevitably, warmer temperatures will extend the range of forage types available, so increasing the time during the year in which brood rearing can occur 10.

In reality, at temperatures below 12-14°C bees start to cluster 11 and bees chilled to 10°C cannot fly. It’s unlikely much foraging could be achieved at the 8°C used in the examples above 12.

The point is that different latitudes differ greatly in their temperature, and hence the forage that grows, the time it yields nectar and pollen, and the ability of the bees to access it.

Brood rearing

The availability of forage has a fundamental impact on the ability of the colony to rear large amounts of new brood.

It’s not until foraging starts in earnest that brood rearing can really ramp up.

Similarly, low temperatures in autumn, reduce the availability of nectars and ability of bees to forage, so curtailing brood rearing 13.

And the ability to effectively treat mites in the winter is largely determined by the presence or absence of sealed brood. If there is sealed brood in the colony there will also be mites gorging themselves on the capped pupae. These mites are untouched by the ‘usual’ winter miticide, oxalic acid.

Therefore, effective midwinter mite management should be much easier in Thurso than Penzance.

I’ve not kept bees in either of those locations, but I know my bees in Fife (56°N) are reliably broodless at some point between late October and mid-December. Varroa management is therefore relatively straightforward, and Varroa levels are under control throughout the season.

In contrast, when I kept bees in Warwickshire (52°N) there were some winters when brood was always present, and Varroa control was consequently more difficult. Ineffective control in the winter results in higher levels of mites earlier in the season.

Brood rearing models

To emphasise the differences here are two images generated from Randy Oliver’s online Varroa Model, just showing the amounts of brood in all stages and adult bees 14. The overall colony sizes and amount of brood reared are about the same, but the ‘hard winter’ colony (no foraging for five months) is broodless for a much greater period.

The brood and bee population in hives that experience ‘default’ and ‘hard’ winters

Without knowing something about the latitude and/or the likelihood of there being capped brood present in the hive, it’s impossible to give really meaningful answers to questions about winter mite treatment.

This also has a bearing on when you conduct your first inspections of the season.

It is also relevant when comparing what other beekeepers are discussing on social media – e.g. those ’8 frames of brood’ I mentioned last week. If it’s early April and they’re in Penzance (or Perigord) then it might be understandable, but if you’re in Thurso don’t feel pressurised into checking your own colonies as it may well be too early to determine anything meaningful.

Year on year variation

But it’s now approaching late April and most beekeepers will be starting to think/worry about swarm control.

When should you start swarm prevention and, once that fails, when must you apply swarm control?

Or, if you’d prefer to take a more upbeat view of things, when might you expect your bait hives to be successful and when should you start queen rearing?

Again, like almost everything to do with beekeeping, dates are pretty meaningless as your colonies are not basing their expansion and swarm preparations on the calendar.

They are responding to the environmental conditions in your particular locality and in that particular year.

Which brings me to year on year variation.

Not every year is the same.

Some seasons are warmer than others – the spring might be ‘early’ or there might be an ‘Indian summer’. In these instances foraging and brood rearing are likely to start earlier or finish later.

One way to view these differences is to look at the Met Office climate anomaly maps. These show how different the climate – temperature, rainfall, sunshine etc. – can be from year to year when compared to a 30 year average.

Met Office anomaly charts – spring temperatures 2020 and 2021 (compared to 30 year averages)

Here are the anomaly maps for the last two springs. For almost all of the country 2020 was unusually warm. Penzance was 1.5°C warmer than the 30 year average. In contrast, over much of the country, 2021 was cooler than the 1990-2010 average.

So when considering how the colony is developing it’s important to consider the local conditions.

Those Met Office charts are retrospective … for example, you cannot see how this spring compares with previous years (at least, not yet 15.).

Rainfall

And, while we’re on the subject of anomalies … here are the rainfall charts for the summers of 2012 and 2021.

Met Office anomaly charts – summer rainfall 2012 and 2021 (compared to 30 year averages)

I suspect that both were rather poor years for honey. 2012 was – with the exception of Thurso! – exceedingly wet. My records for that year don’t include honey yield 16.

Last year was generally dry, and very dry in the north and west 17. Since a good nectar flow often needs moisture in the soil it may have been poor for many beekeepers.

It was my first full season on the west coast and the heather honey yield was disappointing (but it’s not a great heather area and I’ve nothing to compare it with … perhaps I’ll be disappointed every year?). However, I managed a record summer honey crop in Fife from a reduced number of hives. Quite a bit of this was from lime which I always think of as needing rain to get a good flow from, so perhaps the little rain we did have was at the right time.

Local weather and longitude

If you really want to know what the weather has been doing in your area you probably need something more fine-grained and detailed than a Met Office chart. There are very large numbers of ‘personal weather stations’, many of which share the data they generate with websites such as windy.com or wunderground.com.

Find one by searching these sites and you’ll be able to access recent and historical weather data to help you determine whether colony build up is slow because it’s been colder and wetter than usual. Or – if the conditions have been ideal (or at least normal) but the colony is struggling – whether the queen is failing, if there’s too much competition for forage in the neighbourhood, or if there might be disease issues.

Of course, judgements like these mean you need to have good records year on year, so you know what to expect.

My main apiary on the west coast has it’s own weather station.

Weather station and a typical west coast sky

To emphasise the local influence of prevailing winds and warm sea currents it’s interesting to note that my west and east coast apiaries – which are at almost the same latitude 18 – experience significantly different amounts of rainfall.

We had >270 mm of rain in November 2021 on the west coast, compared to ~55 mm on the east. In July 2021 the figures were 43 mm and 7 mm respectively.

All of which I think makes a good argument for rearing local bees that are better adapted to the local conditions 19. That’s something I’ve discussed previously and will expand upon further another time.

Phenology

Rainfall charts and meteorological tables are all a bit dull.

An additional way a beekeeper can observe the progression of the season, and judge whether the colony is likely to be developing as expected, or a bit ahead or a bit behind, is to keep a record of other environmental events.

This is phenology, meaning ‘the timing of periodic biological phenomena in relation to climatic conditions’.

  • Are frogs spawning earlier than normal?
  • When did the first snowdrops/crocus/willow flower?
  • Are the arrival dates of migrant birds earlier or later than normal?

I’m poor at identifying plants 20 so tend to focus on the animals. The locals – frogs, slow worms, toads, bats, butterflies, dragonflies – are all influenced by local conditions. Many don’t make an appearance until well into the beekeeping season.

Frogspawn

Or perhaps I just don’t notice them?

In contrast, the avian spring migrants appear in March and April. These provide a good indication of whether the spring is ‘early’ or ‘late’.

For example, cuckoo arrived here in 2020 (a warm spring) on the 18th of April. In 2021, a cold spring, they didn’t make an appearance until the 24th.

This year, despite January to March being warmer than average, they have yet to arrive. The majority of GPS-tagged birds are still en route, having been held up by a cold start to April 21, though some have just 22 arrived in southern Scotland.

Wheatear are also several days later this year than the last couple of seasons, again suggesting that the recent cold snap has held things back.

You can read more about arrival dates of spring migrants on the BTO website.

Beekeeping is not just bees

Much of the above might not appear to be much to do with beekeeping.

But, at least indirectly, it is.

Your bees live and work in a small patch of the environment no more than 6 miles in diameter. That’s a very small area (less than 30 square miles). The local climate they experience will determine when they can forage, and what they can forage on. In turn, this influences the timing of the onset of brood rearing in the spring (or late winter), the speed with which the colony builds up, the time at which winter bees start to be reared and the duration of the winter when it’s either too cold to forage or there’s nothing to forage on (or both).

As a beekeeper you need to understand these events when you inspect (and judge the development of) your colonies. Over time, with either a good memory or reasonable hive records, you can make meaningful comparisons with previous seasons.

If your colony had ’8 frames of brood’ in mid-April 2020 (a warm year) and your records showed they swarmed on the 27th, then you are forewarned if things look similar this season.

Conversely, if spring 2020 and this year are broadly similar (and supported by your comprehensive phenological records 23 ) but your bees have just two frames of brood then something is amiss.

Of course, the very best way to determine the state of the colony is to inspect it carefully. Understanding the environmental conditions helps you know what to expect when you inspect.


 

Early season inspections

Synopsis : The first inspection of the season needs to be late enough that the colony is expanding well, early enough that it isn’t making swarm preparations and timed to coincide with reasonable weather. Tricky. When you do open the hive you have to deal with whatever you find and leave the colony in a suitable state for the upcoming season.

Introduction

It is often tricky to decide when to do the first inspection of the season.

Too early and the bees will appear disappointingly understrength. If the weather is borderline you risk chilling the brood or the bees may get very defensive.

Or typically, both 🙁 .

Too late and the colonies may have backfilled the comb with early nectar and already started to make swarm preparations.

Early season – pollen pattie and brace comb

Twitter has been busy with beekeepers proudly announcing “8 frames of brood” or “Supers on this weekend”, without reference to local conditions or sometimes even their location.

Remember, some of these regular ‘tweeters’ are in France 😉 .

It must be particularly confusing for beekeepers starting their first spring with bees. They are desperate to start ‘real beekeeping’ again, which means opening colonies and looking for queens and brood, just like they were doing at the end of last season 1. However, they get dispirited if the colony is defensive or appears weak (less than 8 frames of brood!), and they kick themselves for not starting sooner if there are queen cells already present.

So what’s the best thing to do?

You have to use your experience and your judgement … or failing those, use some common sense.

I have reasonable amounts of experience and (sometimes) have good judgement, but I mainly rely upon a combination of common sense and local observation 2.

Together with a soupçon of opportunism.

Sometimes my timing is spot on, and sometimes I’m early or a bit late.

In these circumstances you have to deal with whatever you find in the colony and make the best of it.

A false start

Despite the incessant storms and getting trapped in a December blizzard (!) it has been a mild winter. We’ve had an unusually low number of frosts – none in January, one in February and two in March.

I was beginning to think that the season proper was going to start unusually early.

That was reinforced by the weather in the the last fortnight of March, which was fantastic.

Late afternoon sun on Beinn Resipol, Ardnamurchan, March 2022

Fantastic for March that is 3. Warm days, bees busy with the early season flowering gorse (it flowers all season), even a little nectar being collected.

About half my colonies had received an extra kilo or two of fondant in February or early March, and all received at least one pollen substitute pattie to help get them off to a good start. By late March the colonies were looking good 4.

I’m still a long distance beekeeper, with my colonies about equally split between the east and west coasts of Scotland. I therefore book hotels weeks or months in advance for some of my beekeeping. Predicting the weather that far ahead is impossible, so it involves some guesstimates and, inevitably, some beekeeping in unsuitable weather.

Early season is usually particularly difficult, but by late March this year I was feeling quietly confident 5.

And then April started with several hard frosts and the temperature dropped to single digits (°C) for days at a time.

Still, I was committed to make the trip to Fife … and I’m pleased I went.

And they’re off!

I have a couple of apiaries in Fife. I usually visit both on each of successive days on a trip. That allows me to store all the equipment in one apiary, without having to transport it back and forth across Scotland. This works well and means I can cope with most eventualities.

It was 9°C with a chilly easterly when I got to the first apiary. On removing the lid on the first hive it was very clear that I was (fashionably, of course 😉 ) late to the party … the bees were already building brace comb in the headspace between the top bars of the frame and the underside of the inverted crownboard.

That’s what you’ve been getting up to …

I had no spare equipment with me 6, but it was obvious that the colony needed a queen excluder and a super … as well as quite a bit of tidying up.

Which was going to be the story of the trip.

With infrequent apiary visits – either enforced by distance (in my case) or imposed by bad weather (not unusual in spring) – you have to deal with whatever situations you find when you have the opportunity to open hives.

It was clear from the state of this colony, which was on a single brood box, that the bees had expanded well during the warm weather and were going to rapidly run out of space.

Other colonies in the same apiary were on double brood boxes and were heavy with remaining winter stores – and, no doubt, some early season nectar – and reassuringly packed with bees.

It looked like a very promising start to the season.

More of the same

I travelled on to my main apiary to review the situation there. This is the apiary with my bee shed and all of my stored equipment. It is closer to the coast and the wind blows in directly from the North Sea.

It was colder and even less welcoming.

However, the bees were all in a very good state and clearly needed more space and a little post-winter TLC to get them ready for the season.

However, the temperature precluded any meaningful colony inspections. I could check for laying queens, get an approximation of colony strength (frames of brood) and give them space for further expansion. Anything more than this and there would be a risk of chilling the bees. Because of the low temperature I took relatively few photos.

Interestingly, colonies outside the bee shed were significantly better advanced than those inside. This is the first time I’ve seen this, and I’ve previously commented that the bees in the shed are often a week or two ahead of those outside.

However, in looking back through my notes I think it’s a reflection of the quality and early winter state of the colonies that currently reside in the shed. These are the ones mainly used for research and which regularly have brood ‘stolen’ for experiments (even late into the autumn). Consequently they were probably weaker going into the winter. At least one of the colonies had been united late in 2021 to ensure they would make it through the winter … and they had 🙂 .

What follows is a discussion of a few of the problems (and some potential solutions) that you can encounter at this time of the season.

‘Dead outs’ and ‘basket cases’

I’m not going to dwell on these as there’s not a lot to say and often little that can be salvaged.

Some colonies die overwinter.

I’ve discussed the numbers (and their questionable reliability) before. Most annual surveys show that about 10-35% of colonies die overwinter. The precise percentage depends upon the size and rigour of the survey 7, the severity of the winter 8 and the honesty of the beekeepers who respond 9.

Let’s just accept that quite a few colonies are lost overwinter.

I strongly suspect the majority of these losses are due to poor Varroa management. I’ve previously discussed the reasons uncontrolled mite levels are deleterious, and the – relatively straightforward – solutions that can be applied to prevent these losses 10.

It’s always worth conducting a post-mortem on ‘dead outs’ to try and work out what went amiss.

Queen failure

Some queens fail overwinter. This is probably unrelated to poor Varroa control and is ’just another thing that can go wrong’.

They either die, stop laying fertilised eggs or stop laying altogether.

They may or not be present when you check the colony in spring.

Whatever the failure, the overall result is much the same, although the appearance of the colony might differ (in terms of numbers of bees and the proportion of drones present). The colony will be significantly understrength, with little or no worker brood … and may have lots of drones.

I consider colonies with failed queens are a lost cause in March or (at least here in Scotland) much of April.

The bees that remain are likely very old. There’s no use providing them with a frame of eggs in the hope they’ll rear a new queen as it’s unlikely that there are sufficient drones about. If there aren’t flying drones I certainly wouldn’t bother.

You could provide them with a new queen if you can find one, but is it worth it?

The colony will be ‘well behind the curve’ in terms of strength for a month or two. You may have to boost them with additional brood. Unless you have ample spare brood in other colonies (as well as a spare queen and a willingness to commit these resources) I really wouldn’t bother.

Fortunately, at least so far (and I won’t be certain until later this month), all my colonies have survived and are flourishing … so let’s move on to a couple of solvable problems instead.

Brace yourself

When I add a fondant ‘top up’ to a colony I remove the crownboard and place the container of fondant directly over the cluster. This ensures that the bees can immediately access the fondant, rather than negotiating their way through a hole in the crownboard to the cold chilly space under the roof. To provide space for the fondant container I either use an eke or one of my deep-rimmed perspex crownboards.

A consequence of this is that, as the colony expands, they may build brace comb in the headspace over the top bars.

What a mess … some tidying required before the super can be added

Sometimes they fill the space entirely, though you might be lucky and find they’ve only built inside the fondant container.

Brace comb hidden inside the empty fondant container

Irrespective of the extent of comb building I usually take this to indicate that the colony needs additional space and that they should be supered.

Pronto.

Removing and reusing brace comb

I smoke the bees down – as gently as practical – and cut off the brace comb using a sharp hive tool. In the photos above the comb was filled with early season nectar.

When cutting off the comb I try and prevent too much of the nectar from oozing out and down between the frames. A sharp hive tool held almost parallel to the top bars is often the best solution. Working fast but carefully, I dumped the nectar-filled brace comb into the empty fondant container and then quickly checked the colony. The latter consisted of little more than gently splitting the brood nest and checking the approximate number of frames of brood in all stages.

I added a queen excluder, a super and a crownboard with a small hole in it, above which I placed the salvaged brace comb, surrounded by an empty super.

Crownboard and nectar-filled brace comb – stored overwinter and (hopefully) used in the spring

Finally, I added a second crownboard with some additional honey-filled brace comb they’d built last September. I wrote about this in Winding down last year. The intention is that the bees will take down the nectar/honey above the lower crownboard and either use it for brood rearing (if it’s too cold to forage) or store it properly.

If all this works as hoped the empty comb can be melted down and turned into beeswax wraps.

Waste not, want not 😉 .

The accidental ‘brood and a half’

My colony #7 has a stellar queen who produces prolific, gentle bees and who lays gorgeous slabs of brood with barely a cell missed. I used her as a source of larvae for queen rearing last season and will do so again this year.

“Gorgeous slabs of brood”

The colony entered the winter with a ‘nadired super’. I’ve discussed these somewhere before 11. Essentially this means a stores-filled super underneath the (single in this case) brood box.

Often the bees will empty the super before the winter and it can be safely removed.

Or, as in this instance, completely forgotten 🙁 .

When the bees had emptied it or not is a moot point … by last weekend they’d part filled it again.

With brood.

The queen had moved down into the super and laid up half the frames, at least two of which were drone comb 12.

I consider ‘brood and half’ an abomination. I prefer the flexibility offered by just one size of brood frame and also prefer using a single brood box if possible.

Despite perhaps swearing quietly when I realised the super was half-filled with brood (the drone brood was almost all capped) it’s only really a minor inconvenience.

Furthermore, this is a good queen and is likely to produce drones with good genes. How could I get rid of the ‘brood and a half’ setup as soon as possible and save all those lovely drones with the hope that they could spread their genes far and wide?

Upper entrances

The obvious answer was to add a queen excluder and a super, but to move the nadired super containing brood above the queen excluder.

If there had been no drone brood in this ‘super’ that would have been sufficient. However, drones cannot get through a queen excluder and distressingly 13 die trying.

Rearrangement to provide an upper entrance – before (left) and after (right)

I therefore added an upper entrance to the colony, immediately above the queen excluder. The easiest way to do this is to use a very shallow eke. I build them just 18 mm deep from softwood, with a suitably placed slot only half that depth.

The brood is directly above the brood box and so will be kept warm. The drones can emerge in due course, and fly from the upper entrance. Some will return there but – ‘boys will be boys’ – many will distribute themselves around the apiary waiting for better weather and potential queen mating.

Standard and upper entrance

If there is a strong nectar flow the bees can fill the new empty super and they will backfill the no-longer-nadired super once the brood emerges.

And finally … what did I fail to mention in this colony rearrangement ?

That’s right, the thing I failed to mention because I failed to check 🙁 ?

Where was the queen ?

It is important that the queen is in the brood box, rather than the no-longer-nadired super, when you reassemble the hive. If she isn’t, you’ll return to find two supers full of brood and an empty brood box.

A very quick check confirmed that the queen was in the brood box so I left them to get on with things.

Stores

I didn’t do a full inspection on any of the colonies I checked.

It was far too cold to spend much time rummaging around in the boxes. However, I did confirm that all were queenright and had brood in all stages.

I also ‘eyeballed’ the approximate strength of the colonies in terms of frames of brood. Typically this just involves separating the frames and looking down the seams of bees, perhaps partly removing the outer frames only to confirm things. Even just doing this I still saw a few queens which was doubly reassuring 🙂 .

The weakest colonies – those in the shed – had 3-4 frames of brood. The strongest were booming … perhaps even the 8 cadres de couvée 14 you read about on Twitter 😉 .

All of the colonies had ample stores, and several had too much.

The capped frames of stores were occupying valuable space in the brood box that the colony will need to expand into over the next 2-3 weeks. I therefore used my judgement to replace one or two frames 15 of capped stores with drawn comb or new frames. I save the frames of stores carefully and will use them to make up nucs next month.

Here are some I saved for later

I’ve heard mixed reports of winter survival and spring build up this year. I’m aware that some beekeepers in the south of England are reporting higher than usual colony losses. Others were reporting very strong expansion in the early spring and even a few early swarms.

It will be interesting to see how the season develops. As always it will be ’the same, but different’ which is one of the things that makes beekeeping so challenging and enjoyable.


 

Bait hives, evolution & compromise

Synopsis : The features of a successful bait hive are well known. However, they are not absolutes. The more desirable features your bait hives offer the more successful they should be, but both the bees and the beekeeper can make compromises through necessity or preference.

Introduction

I gave a talk on bait hives to a friendly group of beekeepers from Westerham last week. Westerham is near Sevenoaks in Kent, a rich agricultural area with lots of fruit growing and hops for the brewing industry.

And, as you will see shortly, lots of beekeeping.

One of the messages I try and get across in my talk on bait hives is that it is a remarkably successful way to capture swarms … and a whole lot less work than teetering precariously on a step ladder holding a skep.

However, success involves two things:

  • understanding the needs of the swarm, and
  • overcoming the doubt that such a passive activity – essentially putting a box in a field – can be so successful.

But I’m getting ahead of myself.

Some readers may not know what a bait hive is.

Bait hive

Smelling faintly of propolis and unmet promises

The post this week is not intended to be a comprehensive account of how you should prepare and set out bait hives. I’ve covered this topic ad nauseam before. Instead, I’m going to try and convince you that, although it is a passive activity, if you do things correctly you are very likely to succeed.

And then, in the second half of the post, I’ll discuss an interesting question (and my – possibly less interesting – answer) from one of the Westerham beekeepers that is a nice illustration of some of the compromises that beekeeping entails.

Bait hives and swarm traps

A bait hive is an artificial nest site placed somewhere suitable to attract a swarm.

In the US these are often called ‘swarm traps’.

I don’t think either name is perfect … a bait hive doesn’t involve ‘bait’ 1 and a swarm trap doesn’t really ‘trap’ the swarm as they are free to leave again.

That they (almost) never do is rather telling … I touch on this in my post on absconding.

Perhaps the term ‘swarm hive’ would be better? 2

A bait hive deployed in mid-April in good time for the swarm season ahead

A bait hive possesses the features that scout bees look for when searching the environment for a new nest site. Essentially these are the following:

  • a 40 litre void
  • smelling of bees
  • with a small entrance situated near the bottom of the void
  • facing south
  • shaded but clearly visible
  • and located at least 5 metres above the ground

The majority of these features were defined by studies of natural swarms and in experiments by Thomas Seeley described in his book Honeybee Democracy 3.

Conveniently a beekeeper can meet these needs by assembling the following and placing it somewhere suitable:

  • a brood box with a roof, a solid floor and a small entrance
  • filled (completely or partially) with foundationless frames plus one old dark brood frame
  • a drop or two of lemongrass oil

Surely it can’t be that easy?

Yes it can … and it is.

But let’s first try and overcome the impression that something as simple and passive as a box in a field will even be found by scout bees, let alone selected by them as the new nest site for the swarm.

If you build it, they will come

In the 1989 file Field of Dreams an Iowan farmer, Ray Kinsella (played by Kevin Costner), follows his dream of creating a baseball field in his corn field. The oft misquoted ’If you build it, they will come’ from the movie really means that if you put your doubts aside you will succeed 4.

Kevin Costner … in a Field of Corn

He cuts down his corn, builds a baseball field and Shoeless Joe Jackson and the banned 1919 Chicago White Sox players appear.

Kinsella was attracting disgraced baseball players from 50 years earlier … all your bait hive needs to do is attract a swarm from a nearby mismanaged 5 hive.

Which is a whole lot easier.

Nearby hives

So how many nearby hives are there? How many are likely to swarm? And how near is nearby?

Let’s return to the lovely blossom-filled orchards around Westerham in Kent for some specifics.

The National Bee Unit’s Beebase has information on the number of apiaries within 10 km of any of your own apiaries that are registered.

You are registered, aren’t you? 6

Beebase record for an apiary in Westerham, Kent

Within a 10 km radius of Westerham there are 247 other apiaries. That’s a lot 7, but I’ve no doubt it reflects the excellent forage in the area, and the unstinting efforts of Kent beekeeping associations to train more beekeepers.

How many hives do these apiaries contain? I have to start guessing here as mere mortals can’t mine that sort of information from Beebase.

Let’s assume five hives per apiary.

That seems a reasonable number to me 8.

Firstly, it’s a sensible minimum number of hives to co-locate in an apiary. Secondly, with about 250,000 managed colonies in the UK and about 50,000 beekeepers, if we assume that they are evenly distributed 9 it works out as a rather neat 5 hives per apiary.

Which means that in the 314 square kilometres within a 10 km radius of Westerham there are over 1200 hives, which equates to almost 4 hives per square kilometre (the precise number is 3.931, but you’ll appreciate I’m in arm waving mode here).

How far do scout bees, er, scout?

To answer this we can safely (but briefly) disengage arm waving mode.

Scout bees fly from and return to the bivouacked swarm. They then communicate with other scout bees by performing a waggle dance on the surface of the bivouac.

Thanks to Karl von Frisch we can decipher the waggle dance, which includes both directional and distance information.

And from doing exactly that we know that scout bees survey the landscape for at least 3 km from the swarm.

Hive density, swarms, scout bees and bait hives (see text for details)

In the diagram above a typical area investigated by scout bees is indicated by the pale yellow circle. The red dot indicates the bivouacked swarm. The grid in the background is 1 km squares.

The bait hive is in blue in the centre of a circle of radius 10 km. The smaller dotted circle represents the maximum distance from which a scout bee would travel to find the bait hive 10 .

Let’s put some numbers on that. 

Assuming the average hive density at Westerham is about 4 per km2 and that apiaries and hives are evenly distributed, there will be 111 hives within the smaller dotted circle of radius 3 km 11 .

If any of those hives swarm, their scout bees could or should find the bait hive.

And, if they like the bait hive enough, they might persuade their fellow scouts to check it out and – in due course – together lead the swarm to the bait hive.

The final piece of the jigsaw necessitates re-engaging arm waving mode … 

Ready?

What proportion of hives swarm each year?

Over the last several years I would say that the majority of my full-sized production colonies have tried to swarm each season. By ’tried’ I mean produced charged queen cells which necessitated me employing swarm control.

Queen cells ...

Queen cells …

The vast majority of these colonies did not swarm … because the swarm control was successful.

But I’ve certainly lost a few swarms over the years 🙁

About 80% of free-living colonies studied by Thomas Seeley in the Arnott Forest swarmed each season. There are reasons to think that this may be higher than normal 12, but possibly not much higher than large, healthy managed colonies.

So, if 80% of managed colonies around Westerham ‘try’ and swarm each season, the actual number of swarms is a reflection of how well trained the beekeepers of Kent are … and, for those who have kept bees for several seasons, how effective they are at swarm control.

And, whilst I’m sure the training is excellent and the swarm control is diligently applied, I’m equally sure that many swarms are lost 😉

A small swarm ...

A small swarm …

If we assume that only 10% of colonies swarm, that’s still 11 swarms a season within range of a bait hive placed anywhere within the larger 10 km radius circle.

And I’d wager my favourite hive tool 13 that it’s more than 10% 😉

Evolution of nest site preferences

The preferences shown by scout bees 14 have evolved because swarms that move into nest sites like these survive better.

If they survive, they are also more likely to reproduce (swarm), so passing on the genes that were instrumental in creating the bees that selected those particular features in a nest site.

This does not mean that the nest site features are absolutes.

For example, a 35 litre or 45 litre void is likely to be just as attractive.

In fact, the scout bees may not be able to discriminate between these anyway.

However, although a tiny 10 litre void or a cavernous 100 litre space is less attractive, it does not mean that a swarm won’t select a cavity of these volumes and move in.

Whether it does or not depends upon what other choices are available and upon the poorly understood (at least by me) ranking of the importance of the various features of the nest sites.

For example, if you offer a poxy 15 10 litre bait hive in an environment rich in suitable 40 litre cavities you will probably be unlucky.

However, if the bees rank void volume as relatively unimportant, and your bait hive was perfect in all other regards, then perhaps they would choose to move in.

Compromises by bees

In reality, they probably would not move in to a 10 litre bijou bait hive, perfect in all other regards, as the volume available is the primary determinant of how big the colony can get, how much brood it can rear and how much pollen and nectar it can store.

Furthermore, the natural environment (in which I include your bait hive placed in the landscape) does not offer simple choices in which only individual features vary.

Almost everything varies … even two apparently similar bait hives are likely to occupy locations with more or less exposure, or greater or lesser shade, between which the scout bees will choose.

And natural cavities, in trees, church towers or compost bins 16 are likely to vary in many or all of the features judged by scout bees.

The scout bees make their decision based upon the sum of the overall desirability of a nest site, which is undoubtedly influenced by their ranking of which features are more or less important.

Perhaps they can cope with a west facing entrance that’s a bit larger than they would prefer if the shade is good, the space is the right size and it pongs nicely of bees.

It’s effectively a compromise.

But remember that your bait hive has to compete with the wealth (at least in some landscapes) of natural nest sites.

In this regard, you have an advantage. The more of the desirable features you offer, the more desirable the nest site should be.

Q&A

Which, by a typically long and circuitous route, brings me to the interesting question from a Westerham beekeeper 17 following my bait hive talk:

If scout bees prefer bait hives with solid floors does this mean that bees prefer solid floors over open mesh floors?

I can’t remember the exact wording of my answer but know it involved reference to the draughtiness of the space. I hope I also mentioned the amount of light inside the void, but can’t be sure.

A more complete answer would be that bees aren’t too worried about a draughty space, at least one with small holes, cracks or fissures, as these can be filled with propolis. However, they do prefer a dark space, and a bait hive with an open mesh floor would presumably be too well illuminated for the scout bees.

I think this reflects the evolution of nest site choice.

Bees have evolved to prefer (select) dark spaces as these – by definition – don’t have large holes that let light or more importantly bears, honey badgers and robbing bees, in.

Natural cavities don’t have mesh floors. Indeed, stainless steel mesh isn’t something that bees will have experienced for the first few million years of their evolution.

Therefore, it’s not that they prefer solid floors over mesh floors, it’s that they prefer dark, secure spaces over well lit voids that may well be difficult to defend.

Covered OMF ...

Covered OMF … as bees prefer bait hives with solid floors

But, when setting out your bait hives there’s an easy fix … simply cover an open mesh floor with a piece of cardboard or Correx. You can always remove it again once the bees have arrived.

What do the bees want?

But do scout bee preferences tell us something about what the colony, once established, prefers?

Not necessarily, at least with regard to the closed or open nature of the floor.

Let’s accept that that scout bees (and therefore swarms) prefer a solid floor for the reasons given above. That is not the same as it being an indication that the established colony would prefer a solid floor over an open mesh floor.

If they did, what differences in the behaviour of the bees would you observe?

  1. I think you’d see more colonies absconding from hives with open mesh floors than those with solid floors. I’m not aware of any data showing that colonies on solid floors abscond less. I don’t use solid floors and have never had a full colony abscond.
  2. The bees would cover and seal the mesh with propolis. Again, I’ve never seen this in my own hives, though I regularly see them blocking gaps over the colony with propolis.

There are enough beekeepers still using solid floors, and even some reverting from mesh floors to solid floors. However, I don’t think I’ve ever heard a beekeeper moving (or moving back) to solid floors to reduce the number of colonies that abscond.

Have you?

Compromises by beekeepers

Finally, let’s return to that list of desirable features sought by the scout bees.

Remember that they are not absolute.

Just because a bait hive faces west doesn’t mean it will be ignored by scout bees. I’ve attracted two swarms in successive days to one west facing bait hive in my garden. The same bait hive caught a swarm two months earlier as well 18.

By facing the bait hive west I got a better view of the entrance … it was a compromise that suited me.

Under offer ...

Under offer …

I regularly use two stacked supers (in place of a brood box) as a bait hive. These have been very effective, despite having about 25% greater volume 19.

Again, this is a compromise that suits me. It allows me to use some supers that I dislike because they have an overhang/rebate and are infuriatingly incompatible with my other equipment.

I also never site bait hives more than 5 metres above the ground.

In fact, I almost always site them at knee height.

Bees have probably evolved to choose high altitude nest sites to avoid predation by bears.

Global (current and historic) distribution of the brown bear

There are no bears in Scotland, at least not wild ones, though historically they were present. Their absence isn’t why I don’t bother to place my bait hives up trees.

I want to be able to observe scout bee activity easily. More importantly, I want to be able to safely move the hive late in the evening of the day the swarm arrives.

I can do both these things much better with the hive on a hive stand.

It probably makes the bait hives slightly less attractive to the scout bees, but it’s a compromise I’m willing to make as it improves my enjoyment of the bees and simplifies my beekeeping.

If I wanted to climb ladders I’d go out collecting bivouacked swarms in a skep 😉


 

The bee bag

Synopsis: Preparing for the season ahead should include making sure you have everything you need in the bee bag for apiary visits, but that you are not carrying things you never use. A place for everything, and everything in its place … at least until swarming starts.

Introduction

I think there’s sometimes a misconception that those who write (or talk) about a topic are the most knowledgeable on that topic.

After all, why else would they feel qualified to write?

And, if they’re knowledgeable – even if not all knowing – then they also have the luxury of time (to write, or to enjoy the scenery or whatever). Rather than repeatedly struggling doing the wrong thing, they briefly and efficiently do the right thing™.

Their incisive and unwavering decision making, coupled with a calm and measured confidence, means difficult tasks are made easier and routine activities are rendered trivial.

And this efficiency of thought and activity is complemented by an impressive level of organisation and preparedness. After all, how else would they be able to achieve what they do, without being prepared for all eventualities … and have the tools immediately to hand that are needed?

I’m sure that’s true of some who write … and it might even be true of some who write and talk about beekeeping … but it’s not true of me 🙁

At least, not often.

I might write about how I did something, making it sound trivial and unexciting:

“… pick the queen up by her wings and place her in the JzBz cage, add a few nurse bees to keep her company and place the cage safely in your pocket.”

But I omitted to describe the times I couldn’t find a JzBz cage, or got stung repeatedly grabbing workers, or let the virgin queen fly around the shed for 5 minutes before she disappeared out of the door.

Or when the cage fell through the hole in my pocket (caused by a razor sharp hive tool), down my trouser leg and into my boot.

Those who can, do; those who can’t, teach

The luxury of writing means I can skip over those things that make me sound like the author of the bestselling Slapstick beekeeping, and instead present a coherent vision of what beekeeping should be like.

Think of it as a sort of sanitised version of beekeeping, with the swearing bowdlerised and the Charlie Chaplin-style antics omitted to make me look vaguely competent.

Not, I should add, that every visit to the apiary looks like Laurel and Hardy 1 in beesuits.

I do my best to learn from my mistakes, or at least not forget them, and – every winter – I incrementally improve my organisation for the season ahead.

I review my notes from the season just finished and I make general, and sometimes very specific, plans for the following year. If these necessitate buying or building new equipment then I try and do that during the seemingly interminable short winter days (if that isn’t oxymoronic).

This winter this has involved completing my queen rearing incubator and building some cell punches for queen rearing.

Cell punches

The organisation involves preparing this new ‘stuff’ as well as sorting out some of the accumulated debris from the season just finished.

End of season squalor – yes, that is a small bag of fondant buried in the bee bag

In particular, I sort through, tidy and hopefully streamline, the contents of the bee bag.

The beekeepers box

When you visit the apiary there are a few tools you will almost always need – for example, a smoker and a hive tool. You’ll need something combustible in the smoker and some way of igniting it. And you should have something to carry that lot in that is itself non-flammable, so you don’t risk self-immolation when driving back home.

I’ve discussed the fireproof box I use for my smoker previously. I now keep smoker fuel and a kitchen ‘creme brûlée’ blowtorch in a clear plastic box. Bitter experience – you can guess what – taught me that a clear box enables me to easily check the blowtorch is present before I drive 150 miles to the apiary.

Where there’s smoke, there’s fire

The easiest – and most hygienic – way to store your hive tool is in a strong solution of washing soda in the apiary. It’s always there and it’s always clean.

But there are times in the apiary when you’ll need a lot more than a smoker and a hive tool.

I’m not referring here to the large items – the spare brood boxes, the supers, the split boards or queen excluders 2.

Instead, I’m referring to the smaller stuff … like the JzBz cage to put the queen into, or the (wickedly sharp) scissors to clip her wing or the Posca pen to mark her.

Just add fingers and thumb for a complete queen marking and clipping kit

Beekeepers have come up with all sorts of fancy carrying boxes made from wood or metal. Jim Berndt described a typical one in Bee Culture a few years ago. Built from 3/4” pine, and with space for the smoker, frame brush, frame hanger and any number of other things.

It must have weighed a ton.

Jim admitted as much when he acknowledged that he’d build the next one from thinner wood.

I’ve seen boxes with integrated seats, or was it a seat with an integrated beekeepers box?

The bee bag

But anything rigid, by definition, lacks flexibility.

If there’s not space in the box for Thorne’s-must-have-gadget-of-2022 (something you only need every other month in the apiary) then you have to carry it separately. If there is space in the box but you only need Thorne’s-must-have-gadget-of-2022 twice a season then the box is heavier and bigger than it need be.

All of which can be avoided by using a cheap bag to carry the necessities down to the apiary.

And what could be cheaper than a supermarket ‘bag for life’ ? 3

A bag for life … or at least 3 years of beekeeping

These bags are light and easy to carry, with strong woven handles. Although they aren’t cavernous (they never have quite enough space for my shopping) they are certainly big enough to carry the essentials, and not-so-essentials, to and from the apiary.

Importantly, they are strong.

Being open and flexible you can, if needed, squeeze all sorts of additional things in.

Although I described them as cheap a better term would be inexpensive. I think they started at about 25p, but they seem to be £1 to £1.25 now.

Being made of polypropylene they are easily rinsed out or wiped clean should they get dirty.

And they will get dirty.

And since they are so cheap inexpensive, it’s not the end of the world if you melt them with the smoker or perforate them with a hive tool.

I’ve used this sort of bag for my beekeeping – not the same one, though they tend to last several seasons – for many years. The Tesco’s centenary was in 2019 and the bag above will certainly get me through to the end of the 2022 season.

Bringing order to entropy

Each winter I sort through the debris that accumulates at the bottom of the bag. I clean everything and get rid of anything that’s been carried around unused for the season. Finally, I replenish the perishables, the worn out or the irreparably damaged.

And then I’m ready for the season ahead 🙂

I don’t just carry around a bag containing a pick’n’mix of jumbled beekeeping paraphernalia 4. The items in the bag are separated into logically-labelled containers for my beekeeping activities.

And long, much repeated and enjoyable field testing has shown that the very best type of containers to use are those designed for ice cream 🙂

Not, I hasten to add, your ’fancy Dan’ Ben and Jerry’s ‘£5 for a couple of scoops’ ice cream in those pathetic cardboardy tubs 5.

Instead, what you need are plastic, square or rectangular (for efficient packing) and with well-fitting lids. Two litre containers are much better than anything much smaller, not just because they’re more fun to empty, but also because they are likely to themselves house smaller containers.

I’m still using some 2.5 litre containers that were sold full of Lidl Gelatelli Vanilla (see the photo above). The ice cream was pretty good but they appear to have stopped making it 6.

I’m sure, if you work hard, you’ll be able to find something equally good … it’s a thankless task, but someone has to do it 😉

What’s in the bag?

I can get everything small I need into two of these boxes – one marked ‘daily’ and the other labelled ‘queen stuff’.

I like to keep the labelling simple to avoid confusion.

Daily

These are the things I use, or might use, on every trip to the apiary:

  • a box containing drawing pins (difficult to use with gloves) and map tacks (easy to use with gloves), together with the red numbered disks I use to label the queen in the hive 7.

A variety of pins, some numbers for queens (see text) and two tubes for sampling weird-looking bees

  • numbers for the outside of the hive
  • marker pen for labelling anything except queens
  • a wired queen excluder cleaner 8 and an uncapping fork for checking drone brood for Varroa
  • spirit level for levelling a hive. This is important if you use foundationless frames. Once you’ve tried to rearrange the frames in an wonky hive full of drawn foundationless frames you’ll realise how useful a small spirit level is 9

Not needed on a daily basis admittedly, but kept in the ‘daily’ box – QE scraper, level and uncapping fork

  • a selection of closed cell foam blocks to hold frames together when transporting hives. These are simply wedged tightly between the top bar and the sidewall of the hive and thereby minimise the risk of crushing the queen (or other bees) when moving the hive.
  • screw cap sample tubes, just in case I see any weird, sick or odd looking bees during inspections
  • a couple of JzBz queen cages
  • digital voice recorder for taking hive notes

Closed cell foam blocks.

Queen stuff

Since a lot of my season is taken up with queen rearing this box contains both the tools for queen rearing and the used-less-than-daily tools needed for marking and clipping the queen:

  • queen marking cage (I like the push and twist ones best, as you can tell from the amount of propolis and paint covering mine)
  • dressmakers snips (Fiskar’s) for clipping the queen. These are very sharp. Don’t leave them in you bee suit pocket or you will get injured 🙁
  • Posca marking pens. Check these in the winter and make sure they haven’t dried up or gone super-gloopy. Either outcome makes for frustration when marking the queen. I only routinely use white, blue or yellow and buy whatever is cheapest or easiest to get, and use that colour for the season (or until the pen expires)
  • tools for grafting larvae and, new this season, the cell punches shown above

Grafting tools. Of these, only the middle (a 000 sable artists brush) one is needed.

  • USB rechargeable head torch (for use when grafting 10 )
  • magnifying glasses 11
  • more JzBz queen cages and some Nicot cages to protect soon-to-emerge cells

What’s in the bag but not in the box?

Inevitably, not everything fits into one of these two conveniently-sized ice cream containers 12.

The base of the bag contains some folded sheets of newspaper which are used when uniting colonies. Before the broadsheets became the same size as the Daily Mail they were preferable as a single sheet would cover a brood box. Now they’ve been shrunk you have to overlap two sheets.

Or read the Financial Times … and there’s very little point in me doing that 🙁

Unstapled newspaper … pictures of an enthusiastic Angela Merkel contrasting nicely with a John Cleese stereotype.

Avoid newspapers that are stapled.

Inevitably when pulling them apart (in a stiff breeze, with an open hive ready to be united) they tear at the staple, increasing your frustration and making you look more like Laurel or Hardy.

I also carry a couple of pieces of fibreglass insect mesh. This stuff is sold by the metre to cover open windows and so keep mosquitoes out, but is ideal for covering an open hive when moving colonies on a hot day. A Thorne’s travelling screen costs £19.40 and works no better than a piece of this mesh which costs £19 less 13. By some sort of miracle I’ve ended up with two colours of mesh, one for standard brood boxes and one for nucs 14.

Fibreglass mesh for use as travel screens (that’s £19 you owe me).

I wear gloves while beekeeping so the bag contains a box of disposable long cuffed latex-type gloves for routine use. There is also be a pair of Marigold washing up gloves for any colonies that are a bit rambunctious 15.

At least there should be a pair of Marigold’s in there … something else to order.

I try and keep a couple of hive straps in the bag.

Finally, you can never have enough gaffer tape … so there’s always a roll in the bee bag. It’s ideal for temporarily sealing hive entrances, strapping nucleus roofs down for transport or patching up holes in the bee bag.

Rejects for 2022

Having sorted through the bee bag I collected a small pile of stuff that wasn’t used last season.

And don’t let me see you in there again! Rejects from the bee bag.

In the case of the ‘crown of thorns’ queen marking torture chamber I don’t think I’ve used it for years. I’ve no idea why it was still in the bag. There’s probably more of my blood on the needle-sharp points than there is paint on the mesh … and there’s clearly no point in me carrying it around for another year.

The awful ‘Chinese’ grafting tool goes out as well, as do some JzBz queen cups, a dodgy pink sparkly Posca pen 16, an ill-fitting pair of magnifying glasses and a shonky magnifier.

And that ‘clip catcher’ … again, almost never used.

Elementary my dear Watson

As I slowly approach very (very) early middle age 17 my presbyopia is becoming more noticeable. I’ve needed magnifying glasses for grafting for several years and, increasingly, in poor light can struggle to see eggs. Unfortunately, about half my beekeeping is done in sub-optimal lighting … the colonies I keep in the bee shed are easy to inspect, whatever the weather, but the lighting is far from ideal.

LED hand magnifier (with some Nicot cups for using when testing if a colony is queenright).

Having chucked out one magnifying glass I’ve found an LED illuminated magnifying glass to try this season. This has a good quality glass lens and a dazzlingly bright set of warm/cool/both LED’s around the rim, powered by a rechargeable lithium battery.

Let there be light. USB rechargeable LED magnifier.

With a choice between wearing reading glasses for all my colony inspections – and inevitably tripping over a super I fail to notice at my feet – or periodically using a magnifying glass if the lighting is poor, I’ve chosen the latter route.

I’ll report back later in the season whether it was the right route to choose.

I’m ready, but the season isn’t

With the unwanted stuff discarded, and the wanted stuff checked and tidied, the bee bag is now ready for the season ahead. I’ve ordered some new Posca pens, charged the magnifying glass and the digital voice recorder …

I’ll probably still look like Fred Karno when I’m floundering around in the apiary, but at least I’ll have the things I need with me.

Unfortunately, it currently looks as though the season isn’t ready for me.

Where did all that lovely weather go?

The last 7-10 days have been stunning, but it’s currently 3°C and snowing 🙁

Which is probably fortunate as I still have a couple of hundred frames to build …


Note

I first wrote about the bee bag way back in November 2016. Time has passed, the contents of the bag have changed a bit (though the jokes are largely the same) so that page now redirects here.